Wan YJ, Liu XD, Wu GZ et al. Efficient stochastic parallel gradient descent training for on-chip optical processor. Opto-Electron Adv 7, 230182 (2024). doi: 10.29026/oea.2024.230182
Citation: Wan YJ, Liu XD, Wu GZ et al. Efficient stochastic parallel gradient descent training for on-chip optical processor. Opto-Electron Adv 7, 230182 (2024). doi: 10.29026/oea.2024.230182

Article Open Access

Efficient stochastic parallel gradient descent training for on-chip optical processor

More Information
  • These authors contributed equally to this work

  • *Corresponding author: J Wang, E-mail: jwang@hust.edu.cn
  • In recent years, space-division multiplexing (SDM) technology, which involves transmitting data information on multiple parallel channels for efficient capacity scaling, has been widely used in fiber and free-space optical communication systems. To enable flexible data management and cope with the mixing between different channels, the integrated reconfigurable optical processor is used for optical switching and mitigating the channel crosstalk. However, efficient online training becomes intricate and challenging, particularly when dealing with a significant number of channels. Here we use the stochastic parallel gradient descent (SPGD) algorithm to configure the integrated optical processor, which has less computation than the traditional gradient descent (GD) algorithm. We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm. Moreover, we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems. In comparison with the traditional GD algorithm, it is found that the SPGD algorithm features better performance especially when the scale of matrix is large, which means it has the potential to optimize large-scale optical matrix computation acceleration chips.
  • 加载中
  • [1] Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94

    CrossRef Google Scholar

    [2] Berdagué S, Facq P. Mode division multiplexing in optical fibers. Appl Opt 21, 1950–1955 (1982). doi: 10.1364/AO.21.001950

    CrossRef Google Scholar

    [3] Ryf R, Fontaine NK, Wittek S et al. High-spectral-efficiency mode-multiplexed transmission over graded-index multimode fiber. In 2018 European Conference on Optical Communication (ECOC) 1–3 (IEEE, 2018);http://doi.org/10.1109/ECOC.2018.8535536.

    Google Scholar

    [4] van Uden RGH, Correa RA, Lopez EA et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics 8, 865–870 (2014). doi: 10.1038/nphoton.2014.243

    CrossRef Google Scholar

    [5] Ding QC, Liu B, Ren JX et al. High-security SCMA-OFDM multi-core fiber transmission system based on a regular hexagon chaotic codebook. Opt Express 30, 36010–36024 (2022). doi: 10.1364/OE.471151

    CrossRef Google Scholar

    [6] Puttnam BJ, Eriksson TA, Mendinueta JMD et al. Modulation formats for multi-core fiber transmission. Opt Express 22, 32457–32469 (2014). doi: 10.1364/OE.22.032457

    CrossRef Google Scholar

    [7] Zhu L, Zhu GX, Wang AD et al. 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. Opt Lett 43, 1890–1893 (2018). doi: 10.1364/OL.43.001890

    CrossRef Google Scholar

    [8] Zhu GX, Hu ZY, Wu X et al. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes. Opt Express 26, 594–604 (2018). doi: 10.1364/OE.26.000594

    CrossRef Google Scholar

    [9] Wang J, Yang JY, Fazal IM et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 6, 488–496 (2012). doi: 10.1038/nphoton.2012.138

    CrossRef Google Scholar

    [10] Zhao YF, Liu J, Du J et al. Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing. In Optical Fiber Communication Conference Th1H. 3 (OSA, 2016); http://doi.org/10.1364/OFC.2016.Th1H.3.

    Google Scholar

    [11] Koebele C, Salsi M, Milord L et al. 40km transmission of five mode division multiplexed data streams at 100 Gb/s with low MIMO-DSP complexity. In 37th European Conference and Exposition on Optical Communications Th. 13. C. 3 (OSA, 2011); http://doi.org/10.1364/ECOC.2011.Th.13.C.3.

    Google Scholar

    [12] Randel S, Corteselli S, Badini D et al. First real-time coherent MIMO-DSP for six coupled mode transmission. In 2015 IEEE Photonics Conference (IPC) 1–2 (IEEE, 2015);http://doi.org/10.1109/IPCon.2015.7323761.

    Google Scholar

    [13] Randel S, Sierra A, Mumtaz S et al. Adaptive MIMO signal processing for mode-division multiplexing. In Optical Fiber Communication Conference OW3D. 5 (OSA, 2012);http://doi.org/10.1364/OFC.2012.OW3D.5.

    Google Scholar

    [14] Diamantopoulos NP, Shariati B, Tomkos I. On the power consumption of MIMO processing and its impact on the performance of SDM networks. In 2017 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (IEEE, 2017).

    Google Scholar

    [15] Yang L, Zhou T, Jia H et al. General architectures for on-chip optical space and mode switching. Optica 5, 180–187 (2018). doi: 10.1364/OPTICA.5.000180

    CrossRef Google Scholar

    [16] Clements WR, Humphreys PC, Metcalf BJ et al. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016). doi: 10.1364/OPTICA.3.001460

    CrossRef Google Scholar

    [17] Cao XP, Zheng S, Long Y et al. Mesh-structure-enabled programmable multitask photonic signal processor on a silicon chip. ACS Photonics 7, 2658–2675 (2020). doi: 10.1021/acsphotonics.9b01230

    CrossRef Google Scholar

    [18] Little BE, Chu ST, Haus HA et al. Microring resonator channel dropping filters. J Lightwave Technol 15, 998–1005 (1997). doi: 10.1109/50.588673

    CrossRef Google Scholar

    [19] Pérez D, Gasulla I, Capmany J. Programmable multifunctional integrated nanophotonics. Nanophotonics 7, 1351–1371 (2018). doi: 10.1515/nanoph-2018-0051

    CrossRef Google Scholar

    [20] Zhuang LM, Roeloffzen CGH, Hoekman M et al. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015). doi: 10.1364/OPTICA.2.000854

    CrossRef Google Scholar

    [21] Ribeiro A, Ruocco A, Vanacker L et al. Demonstration of a 4 × 4-port universal linear circuit. Optica 3, 1348–1357 (2016). doi: 10.1364/OPTICA.3.001348

    CrossRef Google Scholar

    [22] Lu LJ, Zhao SY, Zhou LJ et al. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt Express 24, 9295–9307 (2016). doi: 10.1364/OE.24.009295

    CrossRef Google Scholar

    [23] Ferrera M, Park Y, Razzari L et al. On-chip CMOS-compatible all-optical integrator. Nat Commun 1, 29 (2010). doi: 10.1038/ncomms1028

    CrossRef Google Scholar

    [24] Dong JJ, Zheng AL, Gao DS et al. High-order photonic differentiator employing on-chip cascaded microring resonators. Opt Lett 38, 628–630 (2013). doi: 10.1364/OL.38.000628

    CrossRef Google Scholar

    [25] Liu WL, Li M, Guzzon RS et al. A fully reconfigurable photonic integrated signal processor. Nat Photonics 10, 190–195 (2016). doi: 10.1038/nphoton.2015.281

    CrossRef Google Scholar

    [26] Zhou HL, Dong JJ, Cheng JW et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci Appl 11, 30 (2022). doi: 10.1038/s41377-022-00717-8

    CrossRef Google Scholar

    [27] Fandiño JS, Muñoz P, Doménech D et al. A monolithic integrated photonic microwave filter. Nat Photonics 11, 124–129 (2017). doi: 10.1038/nphoton.2016.233

    CrossRef Google Scholar

    [28] Kouloumentas C, Tsokos C, Groumas P et al. Multi-rate and multi-channel optical equalizer based on photonic integration. IEEE Photonics Technol Lett 32, 1465–1468 (2020). doi: 10.1109/LPT.2020.3035506

    CrossRef Google Scholar

    [29] Zhou HL, Zhao YH, Wang X et al. Self-configuring and reconfigurable silicon photonic signal processor. ACS Photonics 7, 792–799 (2020). doi: 10.1021/acsphotonics.9b01673

    CrossRef Google Scholar

    [30] Pérez D, Gasulla I, Crudgington L et al. Multipurpose silicon photonics signal processor core. Nat Commun 8, 636 (2017). doi: 10.1038/s41467-017-00714-1

    CrossRef Google Scholar

    [31] Lu LJ, Zhou LJ, Chen JP. Programmable SCOW mesh silicon photonic processor for linear unitary operator. Micromachines (Basel) 10, 646 (2019). doi: 10.3390/mi10100646

    CrossRef Google Scholar

    [32] Zhou HL, Zhao YH, Xu GX et al. Chip-scale optical matrix computation for pagerank algorithm. IEEE J Sel Top Quantum Electron 26, 8300910 (2020).

    Google Scholar

    [33] Zheng Y, Zhai CH, Liu DJ et al. Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023). doi: 10.1126/science.adg9210

    CrossRef Google Scholar

    [34] Tian Y, Zhao Y, Liu SP et al. Scalable and compact photonic neural chip with low learning-capability-loss. Nanophotonics 11, 329–344 (2022). doi: 10.1515/nanoph-2021-0521

    CrossRef Google Scholar

    [35] Zhang H, Gu M, Jiang XD et al. An optical neural chip for implementing complex-valued neural network. Nat Commun 12, 457 (2021). doi: 10.1038/s41467-020-20719-7

    CrossRef Google Scholar

    [36] Feng CH, Gu JQ, Zhu HQ et al. A compact butterfly-style silicon photonic–electronic neural chip for hardware-efficient deep learning. ACS Photonics 9, 3906–3916 (2022). doi: 10.1021/acsphotonics.2c01188

    CrossRef Google Scholar

    [37] Shen YC, Harris NC, Skirlo S et al. Deep learning with coherent nanophotonic circuits. Nat Photonics 11, 441–446 (2017). doi: 10.1038/nphoton.2017.93

    CrossRef Google Scholar

    [38] Annoni A, Guglielmi E, Carminati M et al. Unscrambling light—automatically undoing strong mixing between modes. Light Sci Appl 6, e17110 (2017). doi: 10.1038/lsa.2017.110

    CrossRef Google Scholar

    [39] Tanomura R, Tang R, Soma G et al. All-optical dual-polarization MIMO processor based on integrated optical unitary converter. In 2022 European Conference on Optical Communication (ECOC) 1–4 (IEEE, 2022).

    Google Scholar

    [40] Tanomura R, Tang R, Ghosh S et al. Robust integrated optical unitary converter using multiport directional couplers. J Lightwave Technol 38, 60–66 (2020). doi: 10.1109/JLT.2019.2943116

    CrossRef Google Scholar

    [41] Hughes TW, Minkov M, Shi Y et al. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica 5, 864–871 (2018). doi: 10.1364/OPTICA.5.000864

    CrossRef Google Scholar

    [42] Zhang H, Thompson J, Gu ML et al. Efficient on-chip training of optical neural networks using genetic algorithm. ACS Photonics 8, 1662–1672 (2021). doi: 10.1021/acsphotonics.1c00035

    CrossRef Google Scholar

    [43] Shao R, Zhang G, Gong X. Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components. Photonics Res 10, 1868–1876 (2022). doi: 10.1364/PRJ.449570

    CrossRef Google Scholar

    [44] Zhang T, Wang J, Dan YH et al. Efficient training and design of photonic neural network through neuroevolution. Opt Express 27, 37150–37163 (2019). doi: 10.1364/OE.27.037150

    CrossRef Google Scholar

    [45] Cong GW, Yamamoto N, Inoue T et al. On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification. Nat Commun 13, 3261 (2022). doi: 10.1038/s41467-022-30906-3

    CrossRef Google Scholar

    [46] Geng C, Luo W, Tan Y et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control. Opt Express 21, 25045–25055 (2013). doi: 10.1364/OE.21.025045

    CrossRef Google Scholar

    [47] Vorontsov MA, Sivokon VP. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction. J Opt Soc Am A 15, 2745–2758 (1998). doi: 10.1364/JOSAA.15.002745

    CrossRef Google Scholar

    [48] Reck M, Zeilinger A, Bernstein HJ et al. Experimental realization of any discrete unitary operator. Phys Rev Lett 73, 58–61 (1994). doi: 10.1103/PhysRevLett.73.58

    CrossRef Google Scholar

    [49] Harris NC, Carolan J, Bunandar D et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018). doi: 10.1364/OPTICA.5.001623

    CrossRef Google Scholar

    [50] Harris NC, Braid R, Bunandar D et al. Accelerating artificial intelligence with silicon photonics. In Optical Fiber Communication Conference (OFC) 2020 W3A. 3 (Optica Publishing Group, 2020);http://doi.org/10.1364/OFC.2020.W3A.3.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint