Jiang SB, Deng WJ, Wang ZS et al. Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm. Opto-Electron Sci 3, 240014 (2024). doi: 10.29026/oes.2024.240014
Citation: Jiang SB, Deng WJ, Wang ZS et al. Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm. Opto-Electron Sci 3, 240014 (2024). doi: 10.29026/oes.2024.240014

Article Open Access

Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm

More Information
  • Design of multiple-feed lens antennas requires multivariate and multi-objective optimization processes, which can be accelerated by PSO algorithms. However, the PSO algorithm often fails to achieve optimal results with limited computation resources since spaces of candidate solutions are quite large for lens antenna designs. This paper presents a design paradigm for multiple-feed lens antennas based on a physics-assisted particle swarm optimization (PA-PSO) algorithm, which guides the swarm of particles based on laws of physics. As a proof of concept, a design of compact metalens antenna is proposed, which measures unprecedented performances, such as a field of view at ±55°, a 21.7 dBi gain with a flatness within 4 dB, a 3-dB bandwidth >12°, and a compact design with af-number of 0.2. The proposed PA-PSO algorithm reaches the optimal results 6 times faster than the ordinary PSO algorithm, which endows promising applications in the multivariate and multi-objective optimization processes, including but not limited to metalens antenna designs.
  • 加载中
  • [1] Yue PY, An JP, Zhang JK et al. Low earth orbit satellite security and reliability: issues, solutions, and the road ahead. IEEE Commun Surv Tutor 25, 1604–1652 (2023). doi: 10.1109/COMST.2023.3296160

    CrossRef Google Scholar

    [2] Fkirin MA, Khira MAE. Enhanced antenna positioning control system using adapted DC servo motor and Fuzzy-PI controller. IEEE Access 11, 102661–102668 (2023). doi: 10.1109/ACCESS.2023.3313976

    CrossRef Google Scholar

    [3] Duan XC, Qiu YY, Mi JW et al. On the mechatronic servo bandwidth of a Stewart platform for active vibration isolating in a super antenna. Robot Comput Integr Manuf 40, 66–77 (2016). doi: 10.1016/j.rcim.2016.01.005

    CrossRef Google Scholar

    [4] Debruin J. Control systems for mobile Satcom antennas. IEEE Control Syst Mag 28, 86–101 (2008). doi: 10.1109/MCS.2007.910205

    CrossRef Google Scholar

    [5] Sadhu B, Tousi Y, Hallin J et al. A 28-GHz 32-element TRX phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications. IEEE J Solid-State Circuits 52, 3373–3391 (2017). doi: 10.1109/JSSC.2017.2766211

    CrossRef Google Scholar

    [6] Zhao K, Helander J, Sjoberg D et al. User body effect on phased array in user equipment for the 5G mmWave communication system. IEEE Antennas Wirel Propag Lett 16, 864–867 (2017). doi: 10.1109/LAWP.2016.2611674

    CrossRef Google Scholar

    [7] Maguid E, Yulevich I, Veksler D et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016). doi: 10.1126/science.aaf3417

    CrossRef Google Scholar

    [8] Hao RS, Zhang JF, Jin SC et al. K-/Ka-band shared-aperture phased array with wide bandwidth and wide beam coverage for LEO satellite communication. IEEE Trans Antennas Propag 71, 672–680 (2023). doi: 10.1109/TAP.2022.3222091

    CrossRef Google Scholar

    [9] Lee J, Kim H, Oh J. Large-aperture metamaterial lens antenna for multi-layer MIMO transmission for 6G. IEEE Access 10, 20486–20495 (2022). doi: 10.1109/ACCESS.2022.3150037

    CrossRef Google Scholar

    [10] Qu ZS, Qu SW, Zhang Z et al. Wide-angle scanning lens fed by small-scale antenna array for 5G in millimeter-wave band. IEEE Trans Antennas Propag 68, 3635–3643 (2020). doi: 10.1109/TAP.2020.2967086

    CrossRef Google Scholar

    [11] Ansarudin F, Abd Rahman T, Yamada Y et al. Multi beam dielectric lens antenna for 5G base station. Sensors 20, 5849 (2020). doi: 10.3390/s20205849

    CrossRef Google Scholar

    [12] Wang C, Wu J, Guo YX. A 3-D-printed multibeam dual circularly polarized Luneburg lens antenna based on quasi-icosahedron models for Ka-band wireless applications. IEEE Trans Antennas Propag 68, 5807–5815 (2020). doi: 10.1109/TAP.2020.2983798

    CrossRef Google Scholar

    [13] Zhang N, Jiang WX, Ma HF et al. Compact high-performance lens antenna based on impedance-matching gradient-index metamaterials. IEEE Trans Antennas Propag 67, 1323–1328 (2019). doi: 10.1109/TAP.2018.2880115

    CrossRef Google Scholar

    [14] Hernandez CAM, Elmansouri M, Filipovic DS. High-directivity beam-steerable lens antenna for simultaneous transmit and receive. In 2019 IEEE International Symposium on Phased Array System & Technology 1–5 (IEEE, 2019); http://doi.org/10.1109/PAST43306.2019.9020904.

    Google Scholar

    [15] Imbert M, Romeu J, Baquero-Escudero M et al. Assessment of LTCC-based dielectric flat lens antennas and switched-beam arrays for future 5G millimeter-wave communication systems. IEEE Trans Antennas Propag 65, 6453–6473 (2017). doi: 10.1109/TAP.2017.2767821

    CrossRef Google Scholar

    [16] Wang Y, Fan Q, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [17] Deng W, Jiang S, Shi Y et al. Mid‐infrared dynamic wavefront transformer based on a two‐degrees‐of‐freedom control system. Laser Photonics Rev 16, 2200152 (2022). doi: 10.1002/lpor.202200152

    CrossRef Google Scholar

    [18] Zhu RC, Wang JF, Qiu TS et al. Remotely mind-controlled metasurface via brainwaves. eLight 2, 10 (2022). doi: 10.1186/s43593-022-00016-0

    CrossRef Google Scholar

    [19] Feng ZW, Shi T, Geng GZ et al. Dual-band polarized upconversion photoluminescence enhanced by resonant dielectric metasurfaces. eLight 3, 21 (2023). doi: 10.1186/s43593-023-00054-2

    CrossRef Google Scholar

    [20] Nan T, Zhao H, Guo J et al. Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfacess. Opto-Electron Sci 3, 230052 (2024). doi: 10.29026/oes.2024.230052

    CrossRef Google Scholar

    [21] Biswas S, Lu A, Larimore Z et al. Realization of modified Luneburg lens antenna using quasi-conformal transformation optics and additive manufacturing. Microw Opt Technol Lett 61, 1022–1029 (2019). doi: 10.1002/mop.31696

    CrossRef Google Scholar

    [22] Li YJ, Ge L, Chen ME et al. Multibeam 3-D-printed Luneburg lens fed by magnetoelectric dipole antennas for millimeter-wave MIMO applications. IEEE Trans Antennas Propag 67, 2923–2933 (2019). doi: 10.1109/TAP.2019.2899013

    CrossRef Google Scholar

    [23] Liu KN, Yang SW, Qu SW et al. Phased hemispherical lens antenna for 1-D wide-angle beam scanning. IEEE Trans Antennas Propag 67, 7617–7621 (2019). doi: 10.1109/TAP.2019.2934815

    CrossRef Google Scholar

    [24] Zhang F, Pu MB, Li X et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [25] Ha YL, Luo Y, Pu MB et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron Adv 6, 230133 (2023). doi: 10.29026/oea.2023.230133

    CrossRef Google Scholar

    [26] Zhang HC, Zhang X, Ma XL et al. Full-space beam scanning based on transmission reflection switchable quadratic phase metasurface. Opt Express 30, 36949–36959 (2022). doi: 10.1364/OE.472546

    CrossRef Google Scholar

    [27] Guo YH, Zhang ZJ, Pu MB et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging. iScience 21, 145–156 (2019). doi: 10.1016/j.isci.2019.10.019

    CrossRef Google Scholar

    [28] Shi YZ, Song QH, Toftul I et al. Optical manipulation with metamaterial structures. Appl Phys Rev 9, 031303 (2022). doi: 10.1063/5.0091280

    CrossRef Google Scholar

    [29] Gao H, Fan XH, Wang YX et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026

    CrossRef Google Scholar

    [30] Lima EB, Matos SA, Costa JR et al. Circular polarization wide-angle beam steering at Ka-band by in-plane translation of a plate lens antenna. IEEE Trans Antennas Propag 63, 5443–5455 (2015). doi: 10.1109/TAP.2015.2484419

    CrossRef Google Scholar

    [31] Pham K, Nguyen NT, Clemente A et al. Design of wideband dual linearly polarized transmitarray antennas. IEEE Trans Antennas Propag 64, 2022–2026 (2016). doi: 10.1109/TAP.2016.2536160

    CrossRef Google Scholar

    [32] Wang HF, Wang ZB, Wu ZH et al. Beam-scanning lens antenna based on elliptical paraboloid phase distribution metasurfaces. IEEE Antennas Wirel Propag Lett 18, 1562–1566 (2019). doi: 10.1109/LAWP.2019.2922695

    CrossRef Google Scholar

    [33] Lou Q, Chen ZN. Sidelobe suppression of metalens antenna by amplitude and phase controllable metasurfaces. IEEE Trans Antennas Propag 69, 6977–6981 (2021). doi: 10.1109/TAP.2021.3076312

    CrossRef Google Scholar

    [34] Jiang M, Chen ZN, Zhang Y et al. Metamaterial-based thin planar lens antenna for spatial beamforming and multibeam massive MIMO. IEEE Trans Antennas Propag 65, 464–472 (2017). doi: 10.1109/TAP.2016.2631589

    CrossRef Google Scholar

    [35] Jain M, Saihjpal V, Singh N et al. An overview of variants and advancements of PSO algorithm. Appl Sci 12, 8392 (2022). doi: 10.3390/app12178392

    CrossRef Google Scholar

    [36] Liu YJ, Zhang AX, Xu Z et al. Wideband and low-profile transmitarray antenna using transmissive metasurface. J Appl Phys 125, 045103 (2019). doi: 10.1063/1.5061787

    CrossRef Google Scholar

    [37] Matos SA, Lima EB, Silva JS et al. High gain dual-band beam-steering transmit array for satcom terminals at Ka-band. IEEE Trans Antennas Propag 65, 3528–3539 (2017). doi: 10.1109/TAP.2017.2702658

    CrossRef Google Scholar

    [38] Weigand S, Huff GH, Pan KH et al. Analysis and design of broad-band single-layer rectangular U-slot microstrip patch antennas. IEEE Trans Antennas Propag 51, 457–468 (2003). doi: 10.1109/TAP.2003.809836

    CrossRef Google Scholar

    [39] Ansari JA, Brij Ram R. Analysis of broad band U-slot microstrip patch antenna. Microw Opt Technol Lett 50, 1069–1073 (2008). doi: 10.1002/mop.23274

    CrossRef Google Scholar

    [40] Lee KF, Luk KM, Mak KM et al. On the use of U-slots in the design of dual-and triple-band patch antennas. IEEE Antennas Propag Mag 53, 60–74 (2011). doi: 10.1109/MAP.2011.6028422

    CrossRef Google Scholar

    [41] Pu MB, Li X, Guo YH et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt Express 25, 31471–31477 (2017). doi: 10.1364/OE.25.031471

    CrossRef Google Scholar

  • Supplementary information for Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint