Citation: | Gao H, Hu HF, Zhan QW. Tailoring temperature response for a multimode fiber. Opto-Electron Sci 4, 240004 (2025). doi: 10.29026/oes.2025.240004 |
[1] | Randel S, Ryf R, Sierra A et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization. Opt Express 19, 16697–16707 (2011). doi: 10.1364/OE.19.016697 |
[2] | Carpenter J, Thomsen BC, Wilkinson TD. Degenerate mode-group division multiplexing. J Lightwave Technol 30, 3946–3952 (2012). doi: 10.1109/JLT.2012.2206562 |
[3] | Carpenter J, Wilkinson TD. All optical mode-multiplexing using holography and multimode fiber couplers. J Lightwave Technol 30, 1978–1984 (2012). doi: 10.1109/JLT.2012.2191586 |
[4] | Kahn JM, Miller DAB. Communications expands its space. Nat Photonics 11, 5–8 (2017). doi: 10.1038/nphoton.2016.256 |
[5] | Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94 |
[6] | Borhani N, Kakkava E, Moser C et al. Learning to see through multimode fibers. Optica 5, 960–966 (2018). doi: 10.1364/OPTICA.5.000960 |
[7] | Marima D, Hadad B, Froim S et al. Visual data detection through side-scattering in a multimode optical fiber. Opt Lett 45, 6724–6727 (2020). doi: 10.1364/OL.408552 |
[8] | Zhang LH, Xu RC, Ye HL et al. High definition images transmission through single multimode fiber using deep learning and simulation speckles. Opt Lasers Eng 140, 106531 (2021). doi: 10.1016/j.optlaseng.2021.106531 |
[9] | Zhao J, Sun YY, Zhu HB et al. Deep-learning cell imaging through Anderson localizing optical fiber. Adv Photonics 1, 066001 (2019). |
[10] | Fan WR, Chen ZY, Yakovlev VV et al. High-fidelity image reconstruction through multimode fiber via polarization-enhanced parametric speckle imaging. Laser Photonics Rev 15, 2000376 (2021). doi: 10.1002/lpor.202000376 |
[11] | Gao H, Hu HF, Zhao Y et al. Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures. Sens Actuators A Phys 284, 22–27 (2018). doi: 10.1016/j.sna.2018.10.011 |
[12] | Gao H, Zhang YX, Zhang WG et al. High sensitivity optical fiber temperature sensor based on PDMS-filled with extended measuring range. Optik 248, 168181 (2021). doi: 10.1016/j.ijleo.2021.168181 |
[13] | Banerjee A, Mukherjee S, Verma RK et al. Fiber optic sensing of liquid refractive index. Sens Actuators B Chem 123, 594–605 (2007). doi: 10.1016/j.snb.2006.09.063 |
[14] | Qin ZG, Qu S, Wang ZQ et al. A fully distributed fiber optic sensor for simultaneous relative humidity and temperature measurement with polyimide-coated polarization maintaining fiber. Sens Actuators B Chem 373, 132699 (2022). doi: 10.1016/j.snb.2022.132699 |
[15] | Wang YK, Tan B, Liu SR et al. An optical fiber-waveguide-fiber platform for ppt level evanescent field-based sensing. Sens Actuators B Chem 306, 127548 (2020). doi: 10.1016/j.snb.2019.127548 |
[16] | Kotov LV, Aleshkina SS, Khudyakov MM et al. High-brightness multimode fiber lasers for resonant pumping. J Lightwave Technol 35, 4540–4546 (2017). doi: 10.1109/JLT.2017.2748924 |
[17] | Zhu X, Schulzgen A, Li H et al. High-power fiber lasers and amplifiers based on multimode interference. IEEE J Sel Top Quantum Electron 15, 71–78 (2009). doi: 10.1109/JSTQE.2008.2010270 |
[18] | Bai N, Ip E, Wang T et al. Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump. Opt Express 19, 16601–16611 (2011). doi: 10.1364/OE.19.016601 |
[19] | Khudyakov MM, Lipatov DS, Gur'yanov AN et al. Highly efficient 3.7 kW peak-power single-frequency combined Er/Er-Yb fiber amplifier. Opt Lett 45, 1782–1785 (2020). doi: 10.1364/OL.386831 |
[20] | Popoff SM, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys Rev Lett 104, 100601 (2010). doi: 10.1103/PhysRevLett.104.100601 |
[21] | Carpenter J, Eggleton BJ, Schröder J. Complete spatiotemporal characterization and optical transfer matrix inversion of a 420 mode fiber. Opt Lett 41, 5580–5583 (2016). doi: 10.1364/OL.41.005580 |
[22] | Park J, Park JH, Yu H et al. Focusing through turbid media by polarization modulation. Opt Lett 40, 1667–1670 (2015). doi: 10.1364/OL.40.001667 |
[23] | Gao H, Hu HF, Zhan QW et al. Efficient switchable common path interferometer for transmission matrix characterization of scattering medium. IEEE Photonics J 14, 7825005 (2022). |
[24] | Li SH, Horsley SAR, Tyc T et al. Memory effect assisted imaging through multimode optical fibres. Nat Commun 12, 3751 (2021). doi: 10.1038/s41467-021-23729-1 |
[25] | Popoff S, Lerosey G, Fink M et al. Image transmission through an opaque material. Nat Commun 1, 81 (2010). doi: 10.1038/ncomms1078 |
[26] | Zhao TR, Ourselin S, Vercauteren T et al. Seeing through multimode fibers with real-valued intensity transmission matrices. Opt Express 28, 20978–20991 (2020). doi: 10.1364/OE.396734 |
[27] | Choi Y, Yoon C, Kim M et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys Rev Lett 109, 203901 (2012). doi: 10.1103/PhysRevLett.109.203901 |
[28] | Bianchi S, Di Leonardo R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 12, 635–639 (2012). doi: 10.1039/C1LC20719A |
[29] | Leedumrongwatthanakun S, Innocenti L, Defienne H et al. Programmable linear quantum networks with a multimode fibre. Nat Photonics 14, 139–142 (2019). |
[30] | Matthès MW, Bromberg Y, de Rosny J et al. Learning and avoiding disorder in multimode fibers. Phys Rev X 11, 021060 (2021). |
[31] | Smith FT. Lifetime matrix in collision theory. Phys Rev 118, 349–356 (1960). doi: 10.1103/PhysRev.118.349 |
[32] | Wigner EP. Lower limit for the energy derivative of the scattering phase shift. Phys Rev 98, 145–147 (1955). doi: 10.1103/PhysRev.98.145 |
[33] | Carpenter J, Eggleton BJ, Schröder J. Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nat Photonics 9, 751–757 (2015). doi: 10.1038/nphoton.2015.188 |
[34] | Xiong W, Ambichl P, Bromberg Y et al. Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling. Opt Express 25, 2709–2724 (2017). doi: 10.1364/OE.25.002709 |
[35] | Xiong W, Ambichl P, Bromberg Y et al. Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling. Phys Rev Lett 117, 053901 (2016). doi: 10.1103/PhysRevLett.117.053901 |
[36] | Ambichl P, Xiong W, Bromberg Y et al. Super- and anti-principal-modes in multimode waveguides. Phys Rev X 7, 041053 (2017). |
[37] | Arrizón V, Ruiz U, Carrada R et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J Opt Soc Am A 24, 3500–3507 (2007). doi: 10.1364/JOSAA.24.003500 |
[38] | Zhang YL, Suo JL, Wang YW et al. Doubling the pixel count limitation of single-pixel imaging via sinusoidal amplitude modulation. Opt Express 26, 6929–6942 (2018). doi: 10.1364/OE.26.006929 |
[39] | Li SH, Saunders C, Lum DJ et al. Compressively sampling the optical transmission matrix of a multimode fibre. Light Sci Appl 10, 88 (2021). doi: 10.1038/s41377-021-00514-9 |
[40] | Fujiwara E, da Silva LE, Cabral TD et al. Optical fiber specklegram chemical sensor based on a concatenated multimode fiber structure. J Lightwave Technol 37, 5041–5047 (2019). doi: 10.1109/JLT.2019.2927332 |
[41] | Chen YF, Hu YC, Yan F et al. Ultrahigh-sensitive and compact temperature sensor based on no-core fiber with PMMA coating. Opt Express 29, 37591–37601 (2021). doi: 10.1364/OE.434375 |
[42] | Du C, Wang Q, Zhao Y. Electrically tunable long period gratings temperature sensor based on liquid crystal infiltrated photonic crystal fibers. Sens Actuators A Phys 278, 78–84 (2018). doi: 10.1016/j.sna.2018.05.033 |
[43] | Xue JJ, Zhang YX, Liu W et al. Ultrahigh-sensitivity SPR fiber temperature sensor based Ge2Sb2Te5 and cyclohexane. Sens Actuators A Phys 345, 113786 (2022). doi: 10.1016/j.sna.2022.113786 |
[44] | Cheng S, Hu WB, Ye HR et al. Tapered multicore fiber interferometer for ultra-sensitive temperature sensing with thermo-optical materials. Opt Express 29, 35765–35775 (2021). doi: 10.1364/OE.441896 |
[45] | Yue CX, Ding H, Ding W et al. Weakly-coupled multicore optical fiber taper-based high-temperature sensor. Sens Actuators A Phys 280, 139–144 (2018). doi: 10.1016/j.sna.2018.07.016 |
[46] | Feng F, Chen W, Chen DH et al. In-situ ultrasensitive label-free DNA hybridization detection using optical fiber specklegram. Sens Actuators B Chem 272, 160–165 (2018). doi: 10.1016/j.snb.2018.05.099 |
[47] | Etchepareborda P, Federico A, Kaufmann GH. Sensitivity evaluation of dynamic speckle activity measurements using clustering methods. Appl Opt 49, 3753–3761 (2010). doi: 10.1364/AO.49.003753 |
[48] | Gao H, Hu HF. Spatially-resolved bending recognition based on a learning-empowered fiber specklegram sensor. Opt Express 31, 7671–7683 (2023). doi: 10.1364/OE.482953 |
[49] | Lu S, Tan ZW, Ji WJ et al. A spatial domain multiplexing technology for fiber specklegram sensor. Opt Fiber Technol 81, 103505 (2023). doi: 10.1016/j.yofte.2023.103505 |
[50] | Smith DL, Nguyen LV, Ottaway DJ et al. Machine learning for sensing with a multimode exposed core fiber specklegram sensor. Opt Express 30, 10443–10455 (2022). doi: 10.1364/OE.443932 |
[51] | Redding B, Popoff SM, Cao H. All-fiber spectrometer based on speckle pattern reconstruction. Opt Express 21, 6584–6600 (2013). doi: 10.1364/OE.21.006584 |
[52] | Bagley N, Kremp T, Lamb ES et al. Transfer learning and generalization of a neural-network-based multimode fiber position and imaging sensor under thermal perturbations. Opt Fiber Technol 70, 102855 (2022). doi: 10.1016/j.yofte.2022.102855 |
[53] | Tripathi S, Paxman R, Bifano T et al. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media. Opt Express 20, 16067–16076 (2012). doi: 10.1364/OE.20.016067 |
Schematics of the experimental setup. OBJ: microscopic objective (OBJ1: 20×, NA (numerical aperture
Calculated correlation function for output signals of the unmodulated wavefront (blue solid line), the temperature principal mode (red solid line) and the temperature anti-principal mode (green solid line).
Recorded intensity profiles of (a) temperature principal mode (top row), (b) temperature anti-principal mode (middle row) and (c) unmodulated wavefront (bottom row) at the distal end of the fiber.
Normalized bandwidth of the temperature principal mode and the temperature anti-principal mode for different fiber length.
Overview of learning empowered fiber specklegram temperature sensing schemes based on temperature anti-principal mode sensitization.
The contribution rate and cumulative contribution rate of principal components under different dimensions.
The trained deep learning model is used to predict learned configurations. (a, b) Prediction error and error distribution histogram of a fiber specklegram temperature sensor with unmodulated wavefront. (c, d) The prediction error and error distribution histogram of the fiber specklegram temperature sensor sensitized by the temperature anti-principal mode.
The trained deep learning model is used to predict unlearned configurations. (a, b) Prediction error and error distribution histogram of a fiber specklegram temperature sensor with unmodulated wavefront. (c, d) The prediction error and error distribution histogram of the fiber specklegram temperature sensor sensitized by the temperature anti-principal mode.
The performance of fiber specklegram temperature sensors based on temperature principal modes. (a, b) Prediction errors and error distribution histograms for learned configurations. (c, d) Prediction errors and error distribution histograms for unlearned configurations.