Gao H, Hu HF, Zhan QW. Tailoring temperature response for a multimode fiber. Opto-Electron Sci 4, 240004 (2025). doi: 10.29026/oes.2025.240004
Citation: Gao H, Hu HF, Zhan QW. Tailoring temperature response for a multimode fiber. Opto-Electron Sci 4, 240004 (2025). doi: 10.29026/oes.2025.240004

Article Open Access

Tailoring temperature response for a multimode fiber

More Information
  • This work introduces special states for light in multimode fibers featuring strongly enhanced or reduced correlations between output fields in the presence of environmental temperature fluctuations. Using experimentally measured multi-temperature transmission matrix, a set of temperature principal modes that exhibit resilience to disturbances caused by temperature fluctuations can be generated. Reversing this concept also allows the construction of temperature anti-principal modes, with output profiles more susceptible to temperature influences than the unmodulated wavefront. Despite changes in the length of the multimode fiber within the temperature-fluctuating region, the proposed approach remains capable of robustly controlling the temperature response within the fiber. To illustrate the practicality of the proposed special state, a learning-empowered fiber specklegram temperature sensor based on temperature anti-principal mode sensitization is proposed. This sensor exhibits outstanding superiority over traditional approaches in terms of resolution and accuracy. These novel states are anticipated to have wide-ranging applications in fiber communication, sensing, imaging, and spectroscopy, and serve as a source of inspiration for the discovery of other novel states.
  • 加载中
  • [1] Randel S, Ryf R, Sierra A et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization. Opt Express 19, 16697–16707 (2011). doi: 10.1364/OE.19.016697

    CrossRef Google Scholar

    [2] Carpenter J, Thomsen BC, Wilkinson TD. Degenerate mode-group division multiplexing. J Lightwave Technol 30, 3946–3952 (2012). doi: 10.1109/JLT.2012.2206562

    CrossRef Google Scholar

    [3] Carpenter J, Wilkinson TD. All optical mode-multiplexing using holography and multimode fiber couplers. J Lightwave Technol 30, 1978–1984 (2012). doi: 10.1109/JLT.2012.2191586

    CrossRef Google Scholar

    [4] Kahn JM, Miller DAB. Communications expands its space. Nat Photonics 11, 5–8 (2017). doi: 10.1038/nphoton.2016.256

    CrossRef Google Scholar

    [5] Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94

    CrossRef Google Scholar

    [6] Borhani N, Kakkava E, Moser C et al. Learning to see through multimode fibers. Optica 5, 960–966 (2018). doi: 10.1364/OPTICA.5.000960

    CrossRef Google Scholar

    [7] Marima D, Hadad B, Froim S et al. Visual data detection through side-scattering in a multimode optical fiber. Opt Lett 45, 6724–6727 (2020). doi: 10.1364/OL.408552

    CrossRef Google Scholar

    [8] Zhang LH, Xu RC, Ye HL et al. High definition images transmission through single multimode fiber using deep learning and simulation speckles. Opt Lasers Eng 140, 106531 (2021). doi: 10.1016/j.optlaseng.2021.106531

    CrossRef Google Scholar

    [9] Zhao J, Sun YY, Zhu HB et al. Deep-learning cell imaging through Anderson localizing optical fiber. Adv Photonics 1, 066001 (2019).

    Google Scholar

    [10] Fan WR, Chen ZY, Yakovlev VV et al. High-fidelity image reconstruction through multimode fiber via polarization-enhanced parametric speckle imaging. Laser Photonics Rev 15, 2000376 (2021). doi: 10.1002/lpor.202000376

    CrossRef Google Scholar

    [11] Gao H, Hu HF, Zhao Y et al. Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures. Sens Actuators A Phys 284, 22–27 (2018). doi: 10.1016/j.sna.2018.10.011

    CrossRef Google Scholar

    [12] Gao H, Zhang YX, Zhang WG et al. High sensitivity optical fiber temperature sensor based on PDMS-filled with extended measuring range. Optik 248, 168181 (2021). doi: 10.1016/j.ijleo.2021.168181

    CrossRef Google Scholar

    [13] Banerjee A, Mukherjee S, Verma RK et al. Fiber optic sensing of liquid refractive index. Sens Actuators B Chem 123, 594–605 (2007). doi: 10.1016/j.snb.2006.09.063

    CrossRef Google Scholar

    [14] Qin ZG, Qu S, Wang ZQ et al. A fully distributed fiber optic sensor for simultaneous relative humidity and temperature measurement with polyimide-coated polarization maintaining fiber. Sens Actuators B Chem 373, 132699 (2022). doi: 10.1016/j.snb.2022.132699

    CrossRef Google Scholar

    [15] Wang YK, Tan B, Liu SR et al. An optical fiber-waveguide-fiber platform for ppt level evanescent field-based sensing. Sens Actuators B Chem 306, 127548 (2020). doi: 10.1016/j.snb.2019.127548

    CrossRef Google Scholar

    [16] Kotov LV, Aleshkina SS, Khudyakov MM et al. High-brightness multimode fiber lasers for resonant pumping. J Lightwave Technol 35, 4540–4546 (2017). doi: 10.1109/JLT.2017.2748924

    CrossRef Google Scholar

    [17] Zhu X, Schulzgen A, Li H et al. High-power fiber lasers and amplifiers based on multimode interference. IEEE J Sel Top Quantum Electron 15, 71–78 (2009). doi: 10.1109/JSTQE.2008.2010270

    CrossRef Google Scholar

    [18] Bai N, Ip E, Wang T et al. Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump. Opt Express 19, 16601–16611 (2011). doi: 10.1364/OE.19.016601

    CrossRef Google Scholar

    [19] Khudyakov MM, Lipatov DS, Gur'yanov AN et al. Highly efficient 3.7 kW peak-power single-frequency combined Er/Er-Yb fiber amplifier. Opt Lett 45, 1782–1785 (2020). doi: 10.1364/OL.386831

    CrossRef Google Scholar

    [20] Popoff SM, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys Rev Lett 104, 100601 (2010). doi: 10.1103/PhysRevLett.104.100601

    CrossRef Google Scholar

    [21] Carpenter J, Eggleton BJ, Schröder J. Complete spatiotemporal characterization and optical transfer matrix inversion of a 420 mode fiber. Opt Lett 41, 5580–5583 (2016). doi: 10.1364/OL.41.005580

    CrossRef Google Scholar

    [22] Park J, Park JH, Yu H et al. Focusing through turbid media by polarization modulation. Opt Lett 40, 1667–1670 (2015). doi: 10.1364/OL.40.001667

    CrossRef Google Scholar

    [23] Gao H, Hu HF, Zhan QW et al. Efficient switchable common path interferometer for transmission matrix characterization of scattering medium. IEEE Photonics J 14, 7825005 (2022).

    Google Scholar

    [24] Li SH, Horsley SAR, Tyc T et al. Memory effect assisted imaging through multimode optical fibres. Nat Commun 12, 3751 (2021). doi: 10.1038/s41467-021-23729-1

    CrossRef Google Scholar

    [25] Popoff S, Lerosey G, Fink M et al. Image transmission through an opaque material. Nat Commun 1, 81 (2010). doi: 10.1038/ncomms1078

    CrossRef Google Scholar

    [26] Zhao TR, Ourselin S, Vercauteren T et al. Seeing through multimode fibers with real-valued intensity transmission matrices. Opt Express 28, 20978–20991 (2020). doi: 10.1364/OE.396734

    CrossRef Google Scholar

    [27] Choi Y, Yoon C, Kim M et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys Rev Lett 109, 203901 (2012). doi: 10.1103/PhysRevLett.109.203901

    CrossRef Google Scholar

    [28] Bianchi S, Di Leonardo R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 12, 635–639 (2012). doi: 10.1039/C1LC20719A

    CrossRef Google Scholar

    [29] Leedumrongwatthanakun S, Innocenti L, Defienne H et al. Programmable linear quantum networks with a multimode fibre. Nat Photonics 14, 139–142 (2019).

    Google Scholar

    [30] Matthès MW, Bromberg Y, de Rosny J et al. Learning and avoiding disorder in multimode fibers. Phys Rev X 11, 021060 (2021).

    Google Scholar

    [31] Smith FT. Lifetime matrix in collision theory. Phys Rev 118, 349–356 (1960). doi: 10.1103/PhysRev.118.349

    CrossRef Google Scholar

    [32] Wigner EP. Lower limit for the energy derivative of the scattering phase shift. Phys Rev 98, 145–147 (1955). doi: 10.1103/PhysRev.98.145

    CrossRef Google Scholar

    [33] Carpenter J, Eggleton BJ, Schröder J. Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nat Photonics 9, 751–757 (2015). doi: 10.1038/nphoton.2015.188

    CrossRef Google Scholar

    [34] Xiong W, Ambichl P, Bromberg Y et al. Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling. Opt Express 25, 2709–2724 (2017). doi: 10.1364/OE.25.002709

    CrossRef Google Scholar

    [35] Xiong W, Ambichl P, Bromberg Y et al. Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling. Phys Rev Lett 117, 053901 (2016). doi: 10.1103/PhysRevLett.117.053901

    CrossRef Google Scholar

    [36] Ambichl P, Xiong W, Bromberg Y et al. Super- and anti-principal-modes in multimode waveguides. Phys Rev X 7, 041053 (2017).

    Google Scholar

    [37] Arrizón V, Ruiz U, Carrada R et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J Opt Soc Am A 24, 3500–3507 (2007). doi: 10.1364/JOSAA.24.003500

    CrossRef Google Scholar

    [38] Zhang YL, Suo JL, Wang YW et al. Doubling the pixel count limitation of single-pixel imaging via sinusoidal amplitude modulation. Opt Express 26, 6929–6942 (2018). doi: 10.1364/OE.26.006929

    CrossRef Google Scholar

    [39] Li SH, Saunders C, Lum DJ et al. Compressively sampling the optical transmission matrix of a multimode fibre. Light Sci Appl 10, 88 (2021). doi: 10.1038/s41377-021-00514-9

    CrossRef Google Scholar

    [40] Fujiwara E, da Silva LE, Cabral TD et al. Optical fiber specklegram chemical sensor based on a concatenated multimode fiber structure. J Lightwave Technol 37, 5041–5047 (2019). doi: 10.1109/JLT.2019.2927332

    CrossRef Google Scholar

    [41] Chen YF, Hu YC, Yan F et al. Ultrahigh-sensitive and compact temperature sensor based on no-core fiber with PMMA coating. Opt Express 29, 37591–37601 (2021). doi: 10.1364/OE.434375

    CrossRef Google Scholar

    [42] Du C, Wang Q, Zhao Y. Electrically tunable long period gratings temperature sensor based on liquid crystal infiltrated photonic crystal fibers. Sens Actuators A Phys 278, 78–84 (2018). doi: 10.1016/j.sna.2018.05.033

    CrossRef Google Scholar

    [43] Xue JJ, Zhang YX, Liu W et al. Ultrahigh-sensitivity SPR fiber temperature sensor based Ge2Sb2Te5 and cyclohexane. Sens Actuators A Phys 345, 113786 (2022). doi: 10.1016/j.sna.2022.113786

    CrossRef Google Scholar

    [44] Cheng S, Hu WB, Ye HR et al. Tapered multicore fiber interferometer for ultra-sensitive temperature sensing with thermo-optical materials. Opt Express 29, 35765–35775 (2021). doi: 10.1364/OE.441896

    CrossRef Google Scholar

    [45] Yue CX, Ding H, Ding W et al. Weakly-coupled multicore optical fiber taper-based high-temperature sensor. Sens Actuators A Phys 280, 139–144 (2018). doi: 10.1016/j.sna.2018.07.016

    CrossRef Google Scholar

    [46] Feng F, Chen W, Chen DH et al. In-situ ultrasensitive label-free DNA hybridization detection using optical fiber specklegram. Sens Actuators B Chem 272, 160–165 (2018). doi: 10.1016/j.snb.2018.05.099

    CrossRef Google Scholar

    [47] Etchepareborda P, Federico A, Kaufmann GH. Sensitivity evaluation of dynamic speckle activity measurements using clustering methods. Appl Opt 49, 3753–3761 (2010). doi: 10.1364/AO.49.003753

    CrossRef Google Scholar

    [48] Gao H, Hu HF. Spatially-resolved bending recognition based on a learning-empowered fiber specklegram sensor. Opt Express 31, 7671–7683 (2023). doi: 10.1364/OE.482953

    CrossRef Google Scholar

    [49] Lu S, Tan ZW, Ji WJ et al. A spatial domain multiplexing technology for fiber specklegram sensor. Opt Fiber Technol 81, 103505 (2023). doi: 10.1016/j.yofte.2023.103505

    CrossRef Google Scholar

    [50] Smith DL, Nguyen LV, Ottaway DJ et al. Machine learning for sensing with a multimode exposed core fiber specklegram sensor. Opt Express 30, 10443–10455 (2022). doi: 10.1364/OE.443932

    CrossRef Google Scholar

    [51] Redding B, Popoff SM, Cao H. All-fiber spectrometer based on speckle pattern reconstruction. Opt Express 21, 6584–6600 (2013). doi: 10.1364/OE.21.006584

    CrossRef Google Scholar

    [52] Bagley N, Kremp T, Lamb ES et al. Transfer learning and generalization of a neural-network-based multimode fiber position and imaging sensor under thermal perturbations. Opt Fiber Technol 70, 102855 (2022). doi: 10.1016/j.yofte.2022.102855

    CrossRef Google Scholar

    [53] Tripathi S, Paxman R, Bifano T et al. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media. Opt Express 20, 16067–16076 (2012). doi: 10.1364/OE.20.016067

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint