Citation: | Sun R, Sun F, Liu Y C. Research progress and development trend of electromagnetic cloaking[J]. Opto-Electron Eng, 2024, 51(10): 240191. doi: 10.12086/oee.2024.240191 |
[1] | Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780−1782. doi: 10.1126/science.1125907 |
[2] | Chen H Y, Chan C T, Sheng P. Transformation optics and metamaterials[J]. Nat Mater, 2010, 9(5): 387−396. doi: 10.1038/nmat2743 |
[3] | Xu L, Chen H Y. Transformation metamaterials[J]. Adv Mater, 2021, 33(52): 2005489. doi: 10.1002/adma.202005489 |
[4] | Luo J, Xu P, Chen H Y, et al. Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials[J]. Appl Phys Lett, 2012, 100(22): 221903. doi: 10.1063/1.4723844 |
[5] | Pu M B, Ma X L, Li X, et al. Merging plasmonics and metamaterials by two-dimensional subwavelength structures[J]. J Mater Chem C, 2017, 5(18): 4361−4378. doi: 10.1039/C7TC00440K |
[6] | 朱潜, 田翰闱, 蒋卫祥. 电磁超表面对辐射波的调控与应用[J]. 光电工程, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115 Zhu Q, Tian H W, Jiang W X. Manipulations and applications of radiating waves using electromagnetic metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115 |
[7] | Liang s: //doi. org/10.12086/oee. 2024.240068. Liang s://doi.org/10.12086/oee.2024.240068. |
[8] | 范辉颖, 罗杰. 无反射电磁超构表面研究进展[J]. 光电工程, 2023, 50(9): 230147. doi: 10.12086/oee.2023.230147 Fan H Y, Luo J. Research progress of reflectionless electromagnetic metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230147. doi: 10.12086/oee.2023.230147 |
[9] | Ma X L, Pan W B, Huang C, et al. An active metamaterial for polarization manipulating[J]. Adv Opt Mater, 2014, 2(10): 945−949. doi: 10.1002/adom.201400212 |
[10] | Nan T, Zhao H, Guo J Y, et al. Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces[J]. Opto-Electron Sci, 2024, 3(5): 230052. doi: 10.29026/oes.2024.230052 |
[11] | Fu R, Chen K X, Li Z L, et al. Metasurface-based nanoprinting: principle, design and advances[J]. Opto-Electron Sci, 2022, 1(10): 220011. doi: 10.29026/oes.2022.220011 |
[12] | Wei P J, Xiao S Y, Xu Y D, et al. Metasurface-loaded waveguide for transformation optics applications[J]. J Opt, 2016, 18(4): 044015. doi: 10.1088/2040-8978/18/4/044015 |
[13] | Chen H Y, Miao R X, Li M. Transformation optics that mimics the system outside a Schwarzschild black hole[J]. Opt Express, 2010, 18(14): 15183−15188 doi: 10.1364/OE.18.015183 |
[14] | Zhang Z B, Zhao P F, Liao J K, et al. Vortex decomposition and reconfiguration via transformation optics[J]. Phys Rev Appl, 2024, 21(5): 054006. doi: 10.1103/PhysRevApplied.21.054006 |
[15] | Jie S S, Xue S W, Yang Z W, et al. Shear polaritons from transformation optics[J]. Opt Lett, 2023, 48(10): 2688−2691. doi: 10.1364/OL.486774 |
[16] | Xu Y D, Fu Y Y, Chen H Y. Steering light by a sub-wavelength metallic grating from transformation optics[J]. Sci Rep, 2015, 5(1): 12219. doi: 10.1038/srep12219 |
[17] | Liu Y C, Sun F, He S L. Novel thermal lens for remote heating/cooling designed with transformation optics[J]. Opt Express, 2016, 24(6): 5683−5692. doi: 10.1364/OE.24.005683 |
[18] | Xu R L, Chen Z N. A hemispherical wide-angle beamsteering near-surface focal-plane metamaterial luneburg lens antenna using transformation-optics[J]. IEEE Trans Antennas Propag, 2022, 70(6): 4224−4233. doi: 10.1109/TAP.2021.3138554 |
[19] | Sun F, Guo S W, Liu Y C, et al. A magnifying glass for virtual imaging of subwavelength resolution by transformation optics[J]. Adv Mater, 2018, 30(30): 1801641. doi: 10.1002/adma.201801641 |
[20] | Yang C F, Huang M, Yang J J, et al. Design of open devices based on multi-folded transformation optics[J]. J Phys Commun, 2020, 4(4): 045007. doi: 10.1088/2399-6528/ab8266 |
[21] | Peng L, Liu D Q, Cheng H F, et al. A multilayer film based selective thermal emitter for infrared stealth technology[J]. Adv Opt Mater, 2018, 6(23): 1801006. doi: 10.1002/adom.201801006 |
[22] | Wu Y, Tan S J, Zhao Y, et al. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application[J]. Prog Mater Sci, 2023, 135: 101088. doi: 10.1016/j.pmatsci.2023.101088 |
[23] | Kim S H, Lee S Y, Zhang Y L, et al. Carbon-based radar absorbing materials toward stealth technologies[J]. Adv Sci, 2023, 10(32): 2303104. doi: 10.1002/advs.202303104 |
[24] | Chen H H, Ma W L, Huang Z Y, et al. Graphene-based materials toward microwave and terahertz absorbing stealth technologies[J]. Adv Opt Mater, 2019, 7(8): 1801318. doi: 10.1002/adom.201801318 |
[25] | Gartner Z J, Hu J L. Guiding tissue-scale self-organization[J]. Nat Mater, 2021, 20(1): 2−3. doi: 10.1038/s41563-020-00885-1 |
[26] | Zhao Y, Ji G B. Multi-spectrum bands compatibility: new trends in stealth materials research[J]. Sci China Mater, 2022, 65(11): 2936−2941. doi: 10.1007/s40843-022-2074-5 |
[27] | Kim J, Han K, Hahn J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Sci Rep, 2017, 7(1): 6740. doi: 10.1038/s41598-017-06749-0 |
[28] | Balaji Ananth P, Abhiram N, Hari Krishna K, et al. Synthesis of radar absorption material for stealth application[J]. Mater Today: Proc, 2021, 47: 4872−4878. doi: 10.1016/j.matpr.2021.06.196 |
[29] | Alù A, Engheta N. Cloaking a sensor[J]. Phys Rev Lett, 2009, 102(23): 233901. doi: 10.1103/PhysRevLett.102.233901 |
[30] | Greenleaf A, Kurylev Y, Lassas M, et al. Cloaking a sensor via transformation optics[J]. Phys Rev E, 2011, 83(1): 016603. doi: 10.1103/PhysRevE.83.016603 |
[31] | Alù A, Engheta N. Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging[J]. Phys Rev Lett, 2010, 105(26): 263906. doi: 10.1103/PhysRevLett.105.263906 |
[32] | Fan P Y, Chettiar U K, Cao L Y, et al. An invisible metal-semiconductor photodetector[J]. Nat Photonics, 2012, 6(6): 380−385. doi: 10.1038/nphoton.2012.108 |
[33] | Vellucci S, Monti A, Barbuto M, et al. Satellite applications of electromagnetic cloaking[J]. IEEE Trans Antennas Propag, 2017, 65(9): 4931−4934. doi: 10.1109/TAP.2017.2722865 |
[34] | Monti A, Soric J, Barbuto M, et al. Mantle cloaking for co-site radio-frequency antennas[J]. Appl Phys Lett, 2016, 108(11): 113502. doi: 10.1063/1.4944042 |
[35] | Jiang Z H, Sieber P E, Kang L, et al. Restoring intrinsic properties of electromagnetic radiators using ultralightweight integrated metasurface cloaks[J]. Adv Funct Mater, 2015, 25(29): 4708−4716. doi: 10.1002/adfm.201501261 |
[36] | Soric J, Ra’di Y, Farfan D, et al. Radio-transparent dipole antenna based on a metasurface cloak[J]. Nat Commun, 2022, 13(1): 1114. doi: 10.1038/s41467-022-28714-w |
[37] | Arango F B, Alpeggiani F, Conteduca D, et al. Cloaked near-field probe for non-invasive near-field optical microscopy[J]. Optica, 2022, 9(7): 684−691. doi: 10.1364/OPTICA.449216 |
[38] | Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Phys Rev Lett, 2008, 101(20): 203901. doi: 10.1103/PhysRevLett.101.203901 |
[39] | Zhang P, Jin Y, He S L. Cloaking an object on a dielectric half-space[J]. Opt Express, 2008, 16(5): 3161−3166. doi: 10.1364/OE.16.003161 |
[40] | Gabrielli L H, Cardenas J, Poitras C B, et al. Silicon nanostructure cloak operating at optical frequencies[J]. Nat Photonics, 2009, 3(8): 461−463. doi: 10.1038/nphoton.2009.117 |
[41] | Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics[J]. Nat Mater, 2009, 8(7): 568−571. doi: 10.1038/nmat2461 |
[42] | Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366−369. doi: 10.1126/science.1166949 |
[43] | Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nat Commun, 2010, 1(1): 21. doi: 10.1038/ncomms1023 |
[44] | Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337−339. doi: 10.1126/science.1186351 |
[45] | Chen X Z, Luo Y, Zhang J J, et al. Macroscopic invisibility cloaking of visible light[J]. Nat Commun, 2010, 2(1): 176. doi: 10.1038/ncomms1176 |
[46] | Gharghi M, Gladden C, Zentgraf T, et al. A carpet cloak for visible light[J]. Nano Lett, 2011, 11(7): 2825−2828. doi: 10.1021/nl201189z |
[47] | Shin D, Urzhumov Y, Jung Y, et al. Broadband electromagnetic cloaking with smart metamaterials[J]. Nat Commun, 2012, 3(1): 1213. doi: 10.1038/ncomms2219 |
[48] | Shi X H, Gao F, Lin X, et al. Electromagnetic detection of a perfect carpet cloak[J]. Sci Rep, 2015, 5(1): 10401. doi: 10.1038/srep10401 |
[49] | Jiang Z J, Liang Q X, Li Z H, et al. A 3D carpet cloak with non-euclidean metasurfaces[J]. Adv Opt Mater, 2020, 8(19): 2000827. doi: 10.1002/adom.202000827 |
[50] | Xu H X, Hu G W, Wang Y Z, et al. Polarization-insensitive 3D conformal-skin metasurface cloak[J]. Light Sci Appl, 2021, 10(1): 75. doi: 10.1038/s41377-021-00507-8 |
[51] | Maegawa Y, Nakata Y, Sanada A. All-dielectric carpet cloaks with three-dimensional anisotropy control[J]. Nanophotonics, 2023, 12(13): 2623−2636. doi: 10.1515/nanoph-2022-0786 |
[52] | Lv C, Ding P, Tian X M, et al. Broadband and wide-angle terahertz carpet cloaks based on pattered graphene metasurfaces[J]. J Phys D Appl Phys, 2020, 53(15): 155107. doi: 10.1088/1361-6463/ab6d1d |
[53] | Tian X M, Xu J W, Xu K, et al. Phase-change reconfigurable metasurface for broadband, wide-angle, continuously tunable and switchable cloaking[J]. Opt Express, 2021, 29(4): 5959−5971. doi: 10.1364/OE.418200 |
[54] | Fallah A, Kalhor A, Yousefi L. Developing a carpet cloak operating for a wide range of incident angles using a deep neural network and PSO algorithm[J]. Sci Rep, 2023, 13(1): 670. doi: 10.1038/s41598-023-27458-x |
[55] | Esfahani A M, Yousefi L. Low profile multi-layered invisibility carpet cloak using quantum dot core-shell nanoparticles[J]. Sci Rep, 2023, 13(1): 3450. doi: 10.1038/s41598-023-30389-2 |
[56] | Fakheri M H, Abdolali A. Ultrathin carpet cloak enabled by infinitely anisotropic medium[J]. Sci Rep, 2023, 13(1): 17695. doi: 10.1038/s41598-023-44984-w |
[57] | Sun F, Zheng B, Chen H S, et al. Transformation optics: from classic theory and applications to its new branches[J]. Laser Photonics Rev, 2017, 11(6): 1700034. doi: 10.1002/lpor.201700034 |
[58] | Zhang B L. Electrodynamics of transformation-based invisibility cloaking[J]. Light Sci Appl, 2012, 1(10): e32. doi: 10.1038/lsa.2012.32 |
[59] | Greenleaf A, Kurylev Y, Lassas M, et al. Cloaking devices, electromagnetic wormholes, and transformation optics[J]. SIAM Rev, 2009, 51(1): 3−33. doi: 10.1137/080716827 |
[60] | van Dantzig D. The fundamental equations of electromagnetism, independent of metrical geometry[J]. Math Proc Camb Phil Soc, 1934, 30(4): 421−427. doi: 10.1017/S0305004100012664 |
[61] | Dolin L S. On the possibility of comparison of three-dimensional electromagnetic systems with non-uniform anisotropic filling. Izv. VUZov, Radiofizika[J], 1961, 4(5): 964–967. |
[62] | Lax M, Nelson D F. Maxwell equations in material form[J]. Phys Rev B, 1976, 13(4): 1777−1784. doi: 10.1103/PhysRevB.13.1777 |
[63] | Ward A J, Pendry J B. Refraction and geometry in Maxwell's equations[J]. J Mod Opt, 1996, 43(4): 773−793. doi: 10.1080/09500349608232782 |
[64] | Teixeira F L, Chew W C. Lattice electromagnetic theory from a topological viewpoint[J]. J Math Phys, 1999, 40(1): 169−187. doi: 10.1063/1.532767 |
[65] | Teixeira F L, Chew W C. Differential forms, metrics, and the reflectionless absorption of electromagnetic waves[J]. J Electromagn Waves Appl, 1999, 13(5): 665−686. doi: 10.1163/156939399X01104 |
[66] | Leonhardt U, Philbin T. Geometry and Light: The Science of Invisibility[M]. North Chelmsford: Courier Corporation, 2010. |
[67] | Chen H Y. Transformation optics in orthogonal coordinates[J]. J Opt A Pure Appl Opt, 2009, 11(7): 075102. doi: 10.1088/1464-4258/11/7/075102 |
[68] | Miñano J C, Benítez P, González J C. Perfect imaging with geodesic waveguides[J]. New J Phys, 2010, 12(12): 123023. doi: 10.1088/1367-2630/12/12/123023 |
[69] | Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W, et al. Light passing through subwavelength apertures[J]. Rev Mod Phys, 2010, 82(1): 729−787. doi: 10.1103/RevModPhys.82.729 |
[70] | Sadeghi M M, Li S C, Xu L, et al. Transformation optics with Fabry-Pérot resonances[J]. Sci Rep, 2015, 5(1): 8680. doi: 10.1038/srep08680 |
[71] | Xu L, Wu Q N, Zhou Y Y, et al. Transformation devices with optical nihility media and reduced realizations[J]. Front Phys, 2019, 14(4): 42501. doi: 10.1007/s11467-019-0891-6 |
[72] | Zhao P F, Xu L, Cai G X, et al. A feasible approach to field concentrators of arbitrary shapes[J]. Front Phys, 2018, 13(4): 134205. doi: 10.1007/s11467-018-0771-5 |
[73] | Chen A C, Fu Y Y, Xu Y D, et al. Total transmission through a sub-wavelength slit based on Fabry–Pérot resonance and zero-index metamaterials[J]. J Opt, 2015, 17(10): 105602. doi: 10.1088/2040-8978/17/10/105602 |
[74] | Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977−980. doi: 10.1126/science.1133628 |
[75] | Cai W S, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials[J]. Nat Photonics, 2007, 1(4): 224−227. doi: 10.1038/nphoton.2007.28 |
[76] | Huang Y, Feng Y J, Jiang T. Electromagnetic cloaking by layered structure of homogeneous isotropic materials[J]. Opt Express, 2007, 15(18): 11133−11141. doi: 10.1364/OE.15.011133 |
[77] | Kanté B, De Lustrac A, Lourtioz J M, et al. Infrared cloaking based on the electric response of split ring resonators[J]. Opt Express, 2008, 16(12): 9191−9198. doi: 10.1364/OE.16.009191 |
[78] | Kanté B, Germain D, de Lustrac A. Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies[J]. Phys Rev B, 2009, 80(20): 201104. doi: 10.1103/PhysRevB.80.201104 |
[79] | Landy N, Smith D R. A full-parameter unidirectional metamaterial cloak for microwaves[J]. Nat Mater, 2013, 12(1): 25−28. doi: 10.1038/NMAT3476 |
[80] | Chen H S, Zheng B, Shen L, et al. Ray-optics cloaking devices for large objects in incoherent natural light[J]. Nat Commun, 2013, 4(1): 2652. doi: 10.1038/ncomms3652 |
[81] | Shen L, Zheng B, Liu Z Z, et al. Large‐scale far‐infrared invisibility cloak hiding object from thermal detection[J]. Adv Opt Mater, 2015, 3(12): 1738−1742. doi: 10.1002/adom.201500267 |
[82] | Keivaan A, Fakheri M H, Abdolali A, et al. Design of coating materials for cloaking and directivity enhancement of cylindrical antennas using transformation optics[J]. IEEE Antennas Wirel Propag Lett, 2017, 16: 3122−3125. doi: 10.1109/LAWP.2017.2764064 |
[83] | Zheng B, Zhu R R, Jing L Q, et al. 3D Visible‐light invisibility cloak[J]. Adv Sci, 2018, 5(6): 1800056. doi: 10.1002/advs.201800056 |
[84] | Sun F, Zhang Y J, Evans J, et al. A camouflage device without metamaterials[J]. Prog Electromagn Res, 2019, 165: 107−117. doi: 10.2528/PIER19080803 |
[85] | Zheng B, Yang Y H, Shao Z P, et al. Experimental realization of an extreme-parameter omnidirectional cloak[J]. Research, 2019, 2019: 8282641. doi: 10.34133/2019/8282641 |
[86] | Wang B, Sun F, Chen H C, et al. Full-space omnidirectional cloak by subwavelength metal channels filled with homogeneous dielectrics[J]. Opt Express, 2022, 30(12): 21386−21395. doi: 10.1364/OE.460395 |
[87] | Liu Y C, Sun F, Yang Y B, et al. A metamaterial-free omnidirectional invisibility cloak based on thrice transformations inside optic-null medium[J]. Opt Laser Technol, 2023, 157: 108779. doi: 10.1016/j.optlastec.2022.108779 |
[88] | Zheng B, Lu H, Qian C, et al. Revealing the transformation invariance of full-parameter omnidirectional invisibility cloaks[J]. Electromagn Sci, 2023, 1(2): 0020092. doi: 10.23919/emsci.2023.0009 |
[89] | Hu X J, Luo Y, Wang J, et al. Multiband omnidirectional invisibility cloak[J]. Adv Sci, 2024, 11(28): 2401295. doi: 10.1002/advs.202401295 |
[90] | Gao Y, Luo Y, Zhang J J, et al. Full-parameter omnidirectional transformation optical devices[J]. Natl Sci Rev, 2024, 11(3): nwad171. doi: 10.1093/nsr/nwad171 |
[91] | Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777−1780. doi: 10.1126/science.1126493 |
[92] | Urzhumov Y, Landy N, Smith D R. Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves[J]. J Appl Phys, 2012, 111(5): 053105. doi: 10.1063/1.3691242 |
[93] | Xu L, Chen H Y. Transformation optics with artificial Riemann sheets[J]. New J Phys, 2013, 15(11): 113013. doi: 10.1088/1367-2630/15/11/113013 |
[94] | Zhu C H, Liu L J, Song Z Y, et al. Optimized invisibility cloaks from the Logarithm conformal mapping[J]. Sci Rep, 2016, 6(1): 38443. doi: 10.1038/srep38443 |
[95] | Lv W J, Zhou J J, Liu Y J, et al. Non-Euclidean conformal devices with continuously varying refractive-index profiles based on bispheres[J]. Phys Rev A, 2024, 109(6): 063506. doi: 10.1103/PhysRevA.109.063506 |
[96] | Leonhardt U, Tyc T. Broadband invisibility by non-Euclidean cloaking[J]. Science, 2009, 323(5910): 110−112. doi: 10.1126/science.1166332 |
[97] | Xu T, Liu Y C, Zhang Y, et al. Perfect invisibility cloaking by isotropic media[J]. Phys Rev A, 2012, 86(4): 043827. doi: 10.1103/PhysRevA.86.043827 |
[98] | Liu Y C, Sun F, He S L. Controlling lightwave in Riemann space by merging geometrical optics with transformation optics[J]. Sci Rep, 2018, 8(1): 514. doi: 10.1038/s41598-017-19015-0 |
[99] | Xu L, Chen H Y. Conformal transformation optics[J]. Nat Photonics, 2015, 9(1): 15−23. doi: 10.1038/nphoton.2014.307 |
[100] | Ma Y G, Liu Y C, Lan L, et al. First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping[J]. Sci Rep, 2013, 3(1): 2182. doi: 10.1038/srep02182 |
[101] | Howell J C, Howell J B, Choi J S. Amplitude-only, passive, broadband, optical spatial cloaking of very large objects[J]. Appl Opt, 2014, 53(9): 1958−1963. doi: 10.1364/AO.53.001958 |
[102] | Choi J S, Howell J C. Paraxial ray optics cloaking[J]. Opt Express, 2014, 22(24): 29465−29478. doi: 10.1364/OE.22.029465 |
[103] | Banerjee D, Ji C G, Iizuka H. Invisibility cloak with image projection capability[J]. Sci Rep, 2016, 6(1): 38965. doi: 10.1038/srep38965 |
[104] | Choi J S, Howell J C. Digital integral cloaking[J]. Optica, 2016, 3(5): 536−540. doi: 10.1364/OPTICA.3.000536 |
[105] | Bělín J, Tyc T, Grunwald M, et al. Ideal-lens cloaks and new cloaking strategies[J]. Opt Express, 2019, 27(26): 37327−37336. doi: 10.1364/OE.27.037327 |
[106] | Courtial J, Bělín J, Soboňa M, et al. Shifty invisibility cloaks[J]. Opt Express, 2024, 32(1): 11−25. doi: 10.1364/OE.500512 |
[107] | Alù A, Engheta N. Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights[J]. Opt Express, 2007, 15(6): 3318−3332. doi: 10.1364/OE.15.003318 |
[108] | Alù A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings[J]. Phys Rev E, 2005, 72(1): 016623. doi: 10.1103/PhysRevE.72.016623 |
[109] | Alù A, Engheta N. Multifrequency optical invisibility cloak with layered plasmonic shells[J]. Phys Rev Lett, 2008, 100(11): 113901. doi: 10.1103/PhysRevLett.100.113901 |
[110] | Rainwater D, Kerkhoff A, Melin K, et al. Experimental verification of three-dimensional plasmonic cloaking in free-space[J]. New J Phys, 2012, 14(1): 013054. doi: 10.1088/1367-2630/14/1/013054 |
[111] | Mühlig S, Cunningham A, Dintinger J, et al. A self-assembled three-dimensional cloak in the visible[J]. Sci Rep, 2013, 3(1): 2328. doi: 10.1038/srep02328 |
[112] | Kort-Kamp W J M, Rosa F S S, Pinheiro F A, et al. Tuning plasmonic cloaks with an external magnetic field[J]. Phys Rev Lett, 2013, 111(21): 215504. doi: 10.1103/PhysRevLett.111.215504 |
[113] | Farhat M, Rockstuhl C, Bağcı H. A 3D tunable and multi-frequency graphene plasmonic cloak[J]. Opt Express, 2013, 21(10): 12592−12603. doi: 10.1364/OE.21.012592 |
[114] | Fruhnert M, Monti A, Fernandez-Corbaton I, et al. Tunable scattering cancellation cloak with plasmonic ellipsoids in the visible[J]. Phys Rev B, 2016, 93(24): 245127. doi: 10.1103/PhysRevB.93.245127 |
[115] | Naserpour M, Zapata-Rodríguez C J, Vuković S M, et al. Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers[J]. Sci Rep, 2017, 7(1): 12186. doi: 10.1038/s41598-017-12413-4 |
[116] | Khan M I, Ghosh S, Baxter R, et al. Modeling broadband cloaking using 3D nano-assembled plasmonic meta-structures[J]. Opt Express, 2020, 28(15): 22732−22747. doi: 10.1364/OE.395840 |
[117] | Hansen K, Dutta A, Cardona M, et al. Zirconium nitride for plasmonic cloaking of visible nanowire photodetectors[J]. Plasmonics, 2020, 15(5): 1231−1241. doi: 10.1007/s11468-020-01145-3 |
[118] | Chu H C, Li Q, Liu B B, et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials[J]. Light Sci Appl, 2018, 7(1): 50. doi: 10.1038/s41377-018-0052-7 |
[119] | Alù A. Mantle cloak: invisibility induced by a surface[J]. Phys Rev B, 2009, 80(24): 245115. doi: 10.1103/PhysRevB.80.245115 |
[120] | Chen P Y, Alù A. Mantle cloaking using thin patterned metasurfaces[J]. Phys Rev B, 2011, 84(20): 205110. doi: 10.1103/PhysRevB.84.205110 |
[121] | Qin F F, Liu Z Z, Zhang Q, et al. Mantle cloaks based on the frequency selective metasurfaces designed by Bayesian optimization[J]. Sci Rep, 2018, 8(1): 14033. doi: 10.1038/s41598-018-32167-x |
[122] | Yuste P, Rius J M, Romeu J, et al. A microwave invisibility cloak: the design, simulation, and measurement of a simple and effective frequency-selective surface-based mantle cloak[J]. IEEE Antennas Propag Mag, 2018, 60(4): 49−59. doi: 10.1109/MAP.2018.2839903 |
[123] | Lee H, Kwon D H. Microwave metasurface cloaking for freestanding objects[J]. Phys Rev Appl, 2022, 17(5): 054012. doi: 10.1103/PhysRevApplied.17.054012 |
[124] | Monti A, Barbuto M, Toscano A, et al. Nonlinear mantle cloaking devices for power-dependent antenna arrays[J]. IEEE Antennas Wirel Propag Lett, 2017, 16: 1727−1730. doi: 10.1109/LAWP.2017.2670025 |
[125] | Vellucci S, Monti A, Barbuto M, et al. Waveform-selective mantle cloaks for intelligent antennas[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1717−1725. doi: 10.1109/TAP.2019.2948736 |
[126] | Vellucci S, Monti A, Barbuto M, et al. On the use of nonlinear metasurfaces for circumventing fundamental limits of mantle cloaking for antennas[J]. IEEE Trans Antennas Propag, 2021, 69(8): 5048−5053. doi: 10.1109/TAP.2021.3061010 |
[127] | Masoumi R, Kazemi R, Fathy A E. Design and implementation of elliptical mantle cloaks for polarization decoupling of two tightly spaced interleaved co-frequency patch array antennas[J]. Sci Rep, 2023, 13(1): 2885. doi: 10.1038/s41598-023-29889-y |
[128] | Chen P Y, Alù A. Atomically thin surface cloak using graphene monolayers[J]. ACS Nano, 2011, 5(7): 5855−5863. doi: 10.1021/nn201622e |
[129] | Bodur H, Çimen S. Scattering suppression with dual-band single-layer mantle cloak for cylindrical metasurface[J]. AEU-Int J Electron Commun, 2023, 168: 154741. doi: 10.1016/j.aeue.2023.154741 |
[130] | Chen P Y, Soric J, Padooru Y R, et al. Nanostructured graphene metasurface for tunable terahertz cloaking[J]. New J Phys, 2013, 15(12): 123029. doi: 10.1088/1367-2630/15/12/123029 |
[131] | Hamzavi-Zarghani Z, Yahaghi A, Matekovits L, et al. Tunable mantle cloaking utilizing graphene metasurface for terahertz sensing applications[J]. Opt Express, 2019, 27(24): 34824−34837. doi: 10.1364/OE.27.034824 |
[132] | Hamzavi-Zarghani Z, Yahaghi A, Matekovits L. Electrically tunable mantle cloaking utilizing graphene metasurface for oblique incidence[J]. AEU-Int J Electron Commun, 2020, 116: 153080. doi: 10.1016/j.aeue.2020.153080 |
[133] | Pawar S, Bernety H M, Yakovlev A B. Graphene-metal metasurface for cloaking of cylindrical objects at low-terahertz frequencies[J]. IEEE Access, 2022, 10: 130200−130211. doi: 10.1109/ACCESS.2022.3228833 |
[134] | Lai Y, Chen H Y, Zhang Z Q, et al. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[J]. Phys Rev Lett, 2009, 102(9): 093901. doi: 10.1103/PhysRevLett.102.093901 |
[135] | Zheng B, Madni H A, Hao R, et al. Concealing arbitrary objects remotely with multi-folded transformation optics[J]. Light Sci Appl, 2016, 5(12): e16177. doi: 10.1038/lsa.2016.177 |
[136] | Sun F, He S L. A third way to cloak an object: cover-up with a background object (Invited Paper)[J]. Prog Electromagn Res, 2014, 149: 173−182. doi: 10.2528/PIER14100303 |
[137] | Sun F, Liu Y C, Yang Y B, et al. Full space destructive interference by acoustic-null medium[J]. Appl Phys Express, 2019, 12(7): 074003. doi: 10.7567/1882-0786/ab27df |
[138] | Lan L, Sun F, Liu Y C, et al. Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization[J]. Appl Phys Lett, 2013, 103(12): 121113. doi: 10.1063/1.4821951 |
[139] | Fujii G, Akimoto Y. Electromagnetic-acoustic biphysical cloak designed through topology optimization[J]. Opt Express, 2022, 30(4): 6090−6106. doi: 10.1364/OE.450787 |
[140] | Vasquez F G, Milton G W, Onofrei D. Active exterior cloaking for the 2D Laplace and Helmholtz equations[J]. Phys Rev Lett, 2009, 103(7): 073901. doi: 10.1103/PhysRevLett.103.073901 |
[141] | Philbin T. Cloaking at a distance[J]. Physics, 2009, 2: 17. doi: 10.1103/Physics.2.17 |
[142] | Lai Y, Ng J, Chen H Y, et al. Illusion optics: the optical transformation of an object into another object[J]. Phys Rev Lett, 2009, 102(25): 253902. doi: 10.1103/PhysRevLett.102.253902 |
[143] | Pendry J. All smoke and metamaterials[J]. Nature, 2009, 460(7255): 579−580. doi: 10.1038/460579a |
[144] | Luo X D, Yang T, Gu Y W, et al. Conceal an entrance by means of superscatterer[J]. Appl Phys Lett, 2009, 94(22): 223513. doi: 10.1063/1.3149694 |
[145] | Sun F, He S L. Invisible gateway for both light waves and rays[J]. Opt Express, 2018, 26(1): 165−172. doi: 10.1364/OE.26.000165 |
[146] | Xu Y C, Liu Y C, Fei H M, et al. Asymmetric universal invisible gateway[J]. Opt Express, 2020, 28(23): 35363−35375. doi: 10.1364/OE.408826 |
[147] | Yang T, Chen H Y, Luo X D, et al. Superscatterer: enhancement of scattering with complementary media[J]. Opt Express, 2008, 16(22): 18545−18550. doi: 10.1364/OE.16.018545 |
[148] | Zang X F, Shi C, Li Z, et al. Illusion induced overlapped optics[J]. Opt Express, 2014, 22(1): 582−592. doi: 10.1364/OE.22.000582 |
[149] | Sun F, He S L. Overlapping illusions by transformation optics without any negative refraction material[J]. Sci Rep, 2016, 6(1): 19130. doi: 10.1038/srep19130 |
[150] | Sun F, Liu Y, He S. True dynamic imaging and image composition by the optical translational projector[J]. J Opt, 2016, 18(4): 044012. doi: 10.1088/2040-8978/18/4/044012 |
[151] | Sun F, Li S C, He S L. Translational illusion of acoustic sources by transformation acoustics[J]. J Acoust Soc Am, 2017, 142(3): 1213−1218. doi: 10.1121/1.5000483 |
[152] | Li C, Meng X K, Liu X, et al. Experimental realization of a circuit-based broadband illusion-optics analogue[J]. Phys Rev Lett, 2010, 105(23): 233906. doi: 10.1103/PhysRevLett.105.233906 |
[153] | Jiang W X, Luo C Y, Ge S, et al. An optically controllable transformation-dc illusion device[J]. Adv Mater, 2015, 27(31): 4628−4633. doi: 10.1002/adma.201500729 |
[154] | Jiang W X, Ma H F, Cheng Q, et al. Illusion media: generating virtual objects using realizable metamaterials[J]. Appl Phys Lett, 2010, 96(12): 121910. doi: 10.1063/1.3371716 |
[155] | Sun F, He S L. Transformation magneto-statics and illusions for magnets[J]. Sci Rep, 2014, 4(1): 6593. doi: 10.1038/srep06593 |
[156] | Yang C F, Yang J J, Huang M, et al. An external cloak with arbitrary cross section based on complementary medium and coordinate transformation[J]. Opt Express, 2011, 19(2): 1147−1157. doi: 10.1364/OE.19.001147 |
[157] | Huo F F, Li L, Li T, et al. External invisibility cloak for multiobjects with arbitrary geometries[J]. IEEE Antennas Wirel Propag Lett, 2014, 13: 273−276. doi: 10.1109/LAWP.2014.2304640 |
[158] | Vura P, Rajput A, Srivastava K V. Composite-shaped external cloaks with homogeneous material properties[J]. IEEE Antennas Wirel Propag Lett, 2016, 15: 282−285. doi: 10.1109/LAWP.2015.2441557 |
[159] | Shi Y, Tang W, Li L, et al. Three-dimensional complementary invisibility cloak with arbitrary shapes[J]. IEEE Antennas Wirel Propag Lett, 2015, 14: 1550−1553. doi: 10.1109/LAWP.2015.2412171 |
[160] | Rajput A, Srivastava K V. Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system[J]. IEEE Trans Antennas Propag, 2017, 65(3): 1458−1463. doi: 10.1109/TAP.2016.2639015 |
[161] | Holland J H. Genetic algorithms[J]. Sci Am, 1992, 267(1): 66−73. doi: 10.1038/scientificamerican0792-66 |
[162] | Holland J H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence[M]. Cambridge: MIT Press, 1992. https://doi.org/10.7551/mitpress/1090.003.0002. |
[163] | Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems[J]. Evol Comput, 1996, 4(1): 1−32. doi: 10.1162/evco.1996.4.1.1 |
[164] | Katoch S, Chauhan S S, Kumar V. A review on genetic algorithm: past, present, and future[J]. Multimed Tools Appl, 2021, 80(5): 8091−8126. doi: 10.1007/s11042-020-10139-6 |
[165] | Xi S, Chen H S, Zhang B L, et al. Route to low-scattering cylindrical cloaks with finite permittivity and permeability[J]. Phys Rev B, 2009, 79(15): 155122. doi: 10.1103/PhysRevB.79.155122 |
[166] | Martins T C, Dmitriev V. Design of dielectric cloaks by scattering cancellation technique using genetic algorithms[C]//2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2009: 766–769. https://doi.org/10.1109/IMOC.2009.5427478. |
[167] | Yu Z Z, Feng Y J, Xu X F, et al. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials[J]. J Phys D Appl Phys, 2011, 44(18): 185102. doi: 10.1088/0022-3727/44/18/185102 |
[168] | Wang X H, Semouchkina E. A route for efficient non-resonance cloaking by using multilayer dielectric coating[J]. Appl Phys Lett, 2013, 102(11): 113506. doi: 10.1063/1.4796171 |
[169] | Mirzaei A, Miroshnichenko A E, Shadrivov I V, et al. All-dielectric multilayer cylindrical structures for invisibility cloaking[J]. Sci Rep, 2015, 5(1): 9574. doi: 10.1038/srep09574 |
[170] | Xu S, Cheng X X, Xi S, et al. Experimental demonstration of a free-space cylindrical cloak without superluminal propagation[J]. Phys Rev Lett, 2012, 109(22): 223903. doi: 10.1103/PhysRevLett.109.223903 |
[171] | Bor E, Babayigit C, Kurt H, et al. Directional invisibility by genetic optimization[J]. Opt Lett, 2018, 43(23): 5781−5784. doi: 10.1364/OL.43.005781 |
[172] | Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Comput Methods Appl Mech Eng, 1988, 71(2): 197−224. doi: 10.1016/0045-7825(88)90086-2 |
[173] | Andkjær J, Sigmund O. Topology optimized low-contrast all-dielectric optical cloak[J]. Appl Phys Lett, 2011, 98(2): 021112. doi: 10.1063/1.3540687 |
[174] | Andkjær J, Asger Mortensen N, Sigmund O. Towards all-dielectric, polarization-independent optical cloaks[J]. Appl Phys Lett, 2012, 100(10): 101106. doi: 10.1063/1.3691835 |
[175] | Fujii G, Watanabe H, Yamada T, et al. Level set based topology optimization for optical cloaks[J]. Appl Phys Lett, 2013, 102(25): 251106. doi: 10.1063/1.4812471 |
[176] | Urzhumov Y, Landy N, Driscoll T, et al. Thin low-loss dielectric coatings for free-space cloaking[J]. Opt Lett, 2013, 38(10): 1606−1608. doi: 10.1364/OL.38.001606 |
[177] | Sha W, Xiao M, Wang Y H, et al. Topology optimization methods for thermal metamaterials: a review[J]. Int J Heat Mass Transfer, 2024, 227: 125588. doi: 10.1016/j.ijheatmasstransfer.2024.125588 |
[178] | Lu Y F, Tong L Y. Concurrent multiscale topology optimization of metamaterials for mechanical cloak[J]. Comput Methods Appl Mech Eng, 2023, 409: 115966. doi: 10.1016/j.cma.2023.115966 |
[179] | Fujii G, Akimoto Y. dc electric cloak concentrator via topology optimization[J]. Phys Rev E, 2020, 102(3): 033308. doi: 10.1103/PhysRevE.102.033308 |
[180] | Noguchi Y, Yamada T, Izui K, et al. Topology optimization for hyperbolic acoustic metamaterials using a high-frequency homogenization method[J]. Comput Methods Appl Mech Eng, 2018, 335: 419−471. doi: 10.1016/j.cma.2018.02.031 |
[181] | Fujii G. Biphysical undetectable concentrators manipulating both heat flux and direct current via topology optimization[J]. Phys Rev E, 2022, 106(6): 065304. doi: 10.1103/PhysRevE.106.065304 |
[182] | Fujii G, Akimoto Y. Optimizing the structural topology of bifunctional invisible cloak manipulating heat flux and direct current[J]. Appl Phys Lett, 2019, 115(17): 174101. doi: 10.1063/1.5123908 |
[183] | Zhu Z, Wang Z C, Liu T F, et al. Arbitrary-shape transformation multiphysics cloak by topology optimization[J]. Int J Heat Mass Transfer, 2024, 222: 125205. doi: 10.1016/j.ijheatmasstransfer.2024.125205 |
[184] | Sato Y, Izui K, Yamada T, et al. Robust topology optimization of optical cloaks under uncertainties in wave number and angle of incident wave[J]. Int J Numerical Methods Eng, 2020, 121(17): 3926−3954. doi: 10.1002/nme.6393 |
[185] | Guo Y M, Zhong L B, Min L, et al. Adaptive optics based on machine learning: a review[J]. Opto-Electron Adv, 2022, 5(7): 200082. doi: 10.29026/oea.2022.200082 |
[186] | Krasikov S, Tranter A, Bogdanov A, et al. Intelligent metaphotonics empowered by machine learning[J]. Opto-Electron Adv, 2022, 5(3): 210147. doi: 10.29026/oea.2022.210147 |
[187] | Lin H, Hou J J, Jin J, et al. Machine-learning-assisted inverse design of scattering enhanced metasurface[J]. Opt Express, 2022, 30(2): 3076−3088. doi: 10.1364/OE.448051 |
[188] | Wang J Y, Xi R, Cai T, et al. Deep neural network with data cropping algorithm for absorptive frequency‐selective transmission metasurface[J]. Adv Opt Mater, 2022, 10(13): 2200178. doi: 10.1002/adom.202200178 |
[189] | Yao K, Unni R, Zheng Y B. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale[J]. Nanophotonics, 2019, 8(3): 339−366. doi: 10.1515/nanoph-2018-0183 |
[190] | Zhang X R, Cui T J. Artificial intelligence-assisted chiral nanophotonic designs[J]. Opto-Electron Adv, 2023, 6(10): 230057. doi: 10.29026/oea.2023.230057 |
[191] | Xie C, Li H N, Cui C Y, et al. Deep learning assisted inverse design of metamaterial microwave absorber[J]. Appl Phys Lett, 2023, 123(18): 181701. doi: 10.1063/5.0171437 |
[192] | Patel S K, Parmar J, Katkar V. Ultra-broadband, wide-angle plus-shape slotted metamaterial solar absorber design with absorption forecasting using machine learning[J]. Sci Rep, 2022, 12(1): 10166. doi: 10.1038/s41598-022-14509-y |
[193] | Li L L, Zhao H T, Liu C, et al. Intelligent metasurfaces: control, communication and computing[J]. eLight, 2022, 2(1): 7. doi: 10.1186/s43593-022-00013-3 |
[194] | Shin S, Shin D, Kang N. Topology optimization via machine learning and deep learning: a review[J]. J Comput Des Eng, 2023, 10(4): 1736−1766. |
[195] | Qian C, Zheng B, Shen Y C, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nat Photonics, 2020, 14(6): 383−390. doi: 10.1038/s41566-020-0604-2 |
[196] | Zhen Z, Qian C, Jia Y T, et al. Realizing transmitted metasurface cloak by a tandem neural network[J]. Photonics Res, 2021, 9(5): B229−B235. doi: 10.1364/PRJ.418445 |
[197] | Blanchard-Dionne A P, Martin O J F. Successive training of a generative adversarial network for the design of an optical cloak[J]. OSA Continuum, 2020, 4(1): 87−95. doi: 10.1364/OSAC.413394 |
[198] | Wu N X, Jia Y T, Qian C, et al. Pushing the limits of metasurface cloak using global inverse design[J]. Adv Opt Mater, 2023, 11(7): 2202130. doi: 10.1002/adom.202202130 |
[199] | 左建坤, 潘美妍, 段辉高, 等. 新型红外隐身结构材料研究综述[J]. 光电工程, 2023, 50(5): 220218. doi: 10.12086/oee.2023.220218 Zuo J K, Pan M Y, Duan H G, et al. Review on new infrared stealth structural materials[J]. Opto-Electron Eng, 2023, 50(5): 220218. doi: 10.12086/oee.2023.220218 |
[200] | Sanchis L, García-Chocano V M, Llopis-Pontiveros R, et al. Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere[J]. Phys Rev Lett, 2013, 110(12): 124301. doi: 10.1103/PhysRevLett.110.124301 |
[201] | Cummer S A, Popa B I, Schurig D, et al. Scattering theory derivation of a 3D acoustic cloaking shell[J]. Phys Rev Lett, 2008, 100(2): 024301. doi: 10.1103/PhysRevLett.100.024301 |
[202] | Sun K Y, Zhang F L, Chen S, et al. Broadband acoustic illusion coating based on thin conformal metasurface[J]. iScience, 2024, 27(8): 110504. doi: 10.1016/j.isci.2024.110504 |
[203] | Ma Y G, Lan L, Jiang W, et al. A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity[J]. NPG Asia Mater, 2013, 5(11): e73. doi: 10.1038/am.2013.60 |
[204] | Wang J, Dai G L, Huang J P. Thermal metamaterial: fundamental, application, and outlook[J]. iScience, 2020, 23(10): 101637. doi: 10.1016/j.isci.2020.101637 |
[205] | Xu H Y, Shi X H, Gao F, et al. Ultrathin three-dimensional thermal cloak[J]. Phys Rev Lett, 2014, 112(5): 054301. doi: 10.1103/PhysRevLett.112.054301 |
[206] | Narayana S, Sato Y. Heat flux manipulation with engineered thermal materials[J]. Phys Rev Lett, 2012, 108(21): 214303. doi: 10.1103/PhysRevLett.108.214303 |
[207] | Schittny R, Kadic M, Guenneau S, et al. Experiments on transformation thermodynamics: molding the flow of heat[J]. Phys Rev Lett, 2013, 110(19): 195901. doi: 10.1103/PhysRevLett.110.195901 |
[208] | Xu L J, Huang J P. Transformation Thermotics and Extended Theories: Inside and Outside Metamaterials[M]. Singapore: Springer, 2023. https://doi.org/10.1007/978-981-19-5908-0. |
[209] | Han T C, Bai X, Gao D L, et al. Experimental demonstration of a bilayer thermal cloak[J]. Phys Rev Lett, 2014, 112(5): 054302. doi: 10.1103/PhysRevLett.112.054302 |
[210] | Gömöry F, Solovyov M, Šouc J, et al. Experimental realization of a magnetic cloak[J]. Science, 2012, 335(6075): 1466−1468. doi: 10.1126/science.1218316 |
[211] | Sun F, He S L. DC magnetic concentrator and omnidirectional cascaded cloak by using only one or two homogeneous anisotropic materials of positive permeability[J]. Prog Electromagn Res, 2013, 142: 683−699. doi: 10.2528/PIER13092509 |
[212] | Narayana S, Sato Y. DC magnetic cloak[J]. Adv Mater, 2012, 24(1): 71−74. doi: 10.1002/adma.201104012 |
[213] | Avanzini F, Falasco G, Esposito M. Chemical cloaking[J]. Phys Rev E, 2020, 101(6): 060102. doi: 10.1103/PhysRevE.101.060102 |
[214] | Xu X C, Wang C, Shou W, et al. Physical realization of elastic cloaking with a polar material[J]. Phys Rev Lett, 2020, 124(11): 114301. doi: 10.1103/PhysRevLett.124.114301 |
[215] | Stenger N, Wilhelm M, Wegener M. Experiments on elastic cloaking in thin plates[J]. Phys Rev Lett, 2012, 108(1): 014301. doi: 10.1103/PhysRevLett.108.014301 |
[216] | Sun F, Liu Y C, He S L. Surface transformation multi-physics for controlling electromagnetic and acoustic waves simultaneously[J]. Opt Express, 2020, 28(1): 94−106. doi: 10.1364/OE.379817 |
[217] | Ma Y G, Liu Y C, Raza M, et al. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously[J]. Phys Rev Lett, 2014, 113(20): 205501. doi: 10.1103/PhysRevLett.113.205501 |
[218] | Li J Y, Gao Y, Huang J P. A bifunctional cloak using transformation media[J]. J Appl Phys, 2010, 108(7): 074501. doi: 10.1063/1.3490226 |
[219] | Raza M, Liu Y C, Ma Y G. A multi-cloak bifunctional device[J]. J Appl Phys, 2015, 117(2): 024502. doi: 10.1063/1.4905618 |
[220] | Ahsan M, Sun F. A thermal-electric cloak via nonlinear transformation[J]. IEEE Photonics J, 2023, 15(6): 4601406. doi: 10.1109/JPHOT.2023.3327236 |
[221] | Liu Y C, Ma X M, Chao K, et al. Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium[J]. Opto-Electron Sci, 2024, 3(2): 230027. doi: 10.29026/oes.2024.230027 |
[222] | Liu Y C, Chen H C, Zhao G, et al. On-chip omnidirectional electromagnetic-thermal cloak[J]. iScience, 2024, 27(7): 110105. doi: 10.1016/j.isci.2024.110105 |
[223] | Yang Y H, Wang H P, Yu F X, et al. A metasurface carpet cloak for electromagnetic, acoustic and water waves[J]. Sci Rep, 2016, 6(1): 20219. doi: 10.1038/srep20219 |
[224] | Xu J, Jiang X, Fang N, et al. Molding acoustic, electromagnetic and water waves with a single cloak[J]. Sci Rep, 2015, 5(1): 10678. doi: 10.1038/srep10678 |
[225] | Chen H C, Liu Y C, Sun F, et al. A thermal–EM concentrator for enhancing EM signals and focusing heat fluxes simultaneously[J]. Laser Photonics Rev, 2024. doi: 10.1002/lpor.202400488 |
[226] | Chen Z H, Sun F, Liu Y C, et al. Electromagnetic-acoustic splitter with a tunable splitting ratio based on copper plates[J]. Opt Lett, 2023, 48(13): 3407−3410. doi: 10.1364/OL.492941 |
[227] | Yang J F, Qu S B, Ma H, et al. Ultra-broadband co-polarization anomalous reflection metasurface[J]. Appl Phys A, 2017, 123(8): 537. doi: 10.1007/s00339-017-1162-4 |
[228] | Ji C, Huang C, Zhang X, et al. Broadband low-scattering metasurface using a combination of phase cancellation and absorption mechanisms[J]. Opt Express, 2019, 27(16): 23368−23377. doi: 10.1364/OE.27.023368 |
[229] | Xie X, Pu M B, Li X, et al. Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces[J]. Photonics Res, 2019, 7(5): 586−593. doi: 10.1364/PRJ.7.000586 |
[230] | Akram M R, Ding G W, Chen K, et al. Ultrathin single layer metasurfaces with ultra‐wideband operation for both transmission and reflection[J]. Adv Mater, 2020, 32(12): 1907308. doi: 10.1002/adma.201907308 |
[231] | Lu X J, Li X Y, Guo Y H, et al. Broadband high-efficiency polymerized liquid crystal metasurfaces with spin-multiplexed functionalities in the visible[J]. Photonics Res, 2022, 10(6): 1380−1393. doi: 10.1364/PRJ.452272 |
[232] | Zhang H C, Zhang Z J, Ma X L, et al. Polarization multiplexing metasurface for dual-band achromatic focusing[J]. Opt Express, 2022, 30(7): 12069−12079. doi: 10.1364/OE.454805 |
[233] | Yang J N, Huang C, Wu X Y, et al. Dual‐wavelength carpet cloak using ultrathin metasurface[J]. Adv Opt Mater, 2018, 6(14): 1800073. doi: 10.1002/adom.201800073 |
[234] | Huang Y J, Pu M B, Zhang F, et al. Broadband functional metasurfaces: achieving nonlinear phase generation toward achromatic surface cloaking and lensing[J]. Adv Opt Mater, 2019, 7(7): 1801480. doi: 10.1002/adom.201801480 |
[235] | Hsu L, Ndao A, Kanté B. Broadband and linear polarization metasurface carpet cloak in the visible[J]. Opt Lett, 2019, 44(12): 2978−2981. doi: 10.1364/OL.44.002978 |
[236] | Ding P, Li M Y, Tian X M, et al. Graphene metasurface for broadband, wide-angle and polarization-insensitive carpet cloak[J]. Opt Mater, 2021, 121: 111578. doi: 10.1016/j.optmat.2021.111578 |
[237] | Li Y L, Xu J F, Liu F H, et al. Broadband achromatic transmission stealth cloak based on all dielectric metasurfaces[J]. Phys Scr, 2024, 99(7): 075536. doi: 10.1088/1402-4896/ad5803 |
[238] | Liang Q X, Yin H Y, Feng J K, et al. An additively manufactured wide angle and broadband electromagnetic camouflage metasurface[J]. Adv Eng Mater, 2023, 25(10): 2201728. doi: 10.1002/adem.202201728 |
[239] | Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light Sci Appl, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99 |
[240] | Zhang Z Y, Shi H Y, Wang L Y, et al. Recent advances in reconfigurable metasurfaces: principle and applications[J]. Nanomaterials, 2023, 13(3): 534. doi: 10.3390/nano13030534 |
[241] | Tian J T, Cao W H. Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications[J]. PhotoniX, 2024, 5(1): 2. doi: 10.1186/s43074-023-00116-1 |
[242] | Huang C, Sun B, Pan W B, et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface[J]. Sci Rep, 2017, 7(1): 42302. doi: 10.1038/srep42302 |
[243] | Huang C, Zhang C L, Yang J N, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Adv Opt Mater, 2017, 5(22): 1700485. doi: 10.1002/adom.201700485 |
[244] | Zhang X G, Tang W X, Jiang W X, et al. Light‐controllable digital coding metasurfaces[J]. Adv Sci, 2018, 5(11): 1801028. doi: 10.1002/advs.201801028 |
[245] | Yang W H, Qu G Y, Lai F X, et al. Dynamic bifunctional metasurfaces for holography and color display[J]. Adv Mater, 2021, 33(36): 2101258. doi: 10.1002/adma.202101258 |
[246] | She Y, Ji C, Huang C, et al. Intelligent reconfigurable metasurface for self-adaptively electromagnetic functionality switching[J]. Photonics Res, 2022, 10(3): 769−776. doi: 10.1364/PRJ.450297 |
[247] | Huang C, Zhao B, Song J K, et al. Active transmission/absorption frequency selective surface with dynamical modulation of amplitude[J]. IEEE Trans Antennas Propag, 2021, 69(6): 3593−3598. doi: 10.1109/TAP.2020.3037813 |
[248] | Huang C, Pan W B, Ma X L, et al. Multi-spectral metasurface for different functional control of reflection waves[J]. Sci Rep, 2016, 6(1): 23291. doi: 10.1038/srep23291 |
[249] | Yan L B, Zhu W M, Wu P C, et al. Adaptable metasurface for dynamic anomalous reflection[J]. Appl Phys Lett, 2017, 110(20): 201904. doi: 10.1063/1.4983782 |
[250] | Cui T, Bai B F, Sun H B. Tunable metasurfaces based on active materials[J]. Adv Funct Mater, 2019, 29(10): 1806692. doi: 10.1002/adfm.201806692 |
[251] | Estakhri N M, Alù A. Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces[J]. IEEE Antennas Wirel Propag Lett, 2014, 13: 1775−1778. doi: 10.1109/LAWP.2014.2371894 |
[252] | Yang Y H, Jing L Q, Zheng B, et al. Full‐polarization 3D metasurface cloak with preserved amplitude and phase[J]. Adv Mater, 2016, 28(32): 6866−6871. doi: 10.1002/adma.201600625 |
[253] | Huang C, Yang J N, Wu X Y, et al. Reconfigurable metasurface cloak for dynamical electromagnetic illusions[J]. ACS Photonics, 2018, 5(5): 1718−1725. doi: 10.1021/acsphotonics.7b01114 |
[254] | Xu S, Dong F Y, Guo W R, et al. Cross-wavelength invisibility integrated with various invisibility tactics[J]. Sci Adv, 2020, 6(39): eabb3755. doi: 10.1126/sciadv.abb3755 |
[255] | Liao J M, Ji C, Yuan L M, et al. Polarization-insensitive metasurface cloak for dynamic illusions with an electromagnetic transparent window[J]. ACS Appl Mater Interfaces, 2023, 15(13): 16953−16962. doi: 10.1021/acsami.2c21565 |
[256] | Ma Q, Bai G D, Jing H B, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light Sci Appl, 2019, 8(1): 98. doi: 10.1038/s41377-019-0205-3 |
[257] | Ma Q, Hong Q R, Gao X X, et al. Smart sensing metasurface with self-defined functions in dual polarizations[J]. Nanophotonics, 2020, 9(10): 3271−3278. doi: 10.1515/nanoph-2020-0052 |
[258] | Lin C H, Chen Y S, Lin J T, et al. Automatic inverse design of high-performance beam-steering metasurfaces via genetic-type tree optimization[J]. Nano Lett, 2021, 21(12): 4981−4989. doi: 10.1021/acs.nanolett.1c00720 |
[259] | Zhang X G, Sun Y L, Yu Q, et al. Smart Doppler cloak operating in broad band and full polarizations[J]. Adv Mater, 2021, 33(17): 2007966. doi: 10.1002/adma.202007966 |
[260] | Jia Y T, Qian C, Fan Z X, et al. In situ customized illusion enabled by global metasurface reconstruction[J]. Adv Funct Mater, 2022, 32(19): 2109331. doi: 10.1002/adfm.202109331 |
[261] | Huang M, Zheng B, Li R C, et al. Evolutionary games‐assisted synchronization metasurface for simultaneous multisource invisibility cloaking[J]. Adv Funct Mater, 2024, 34(36): 2401909. doi: 10.1002/adfm.202401909 |
[262] | Qian C, Jia Y T, Wang Z D, et al. Autonomous aeroamphibious invisibility cloak with stochastic-evolution learning[J]. Adv Photonics, 2024, 6(1): 016001. doi: 10.1117/1.AP.6.1.016001 |
[263] | Ma T G, Wang H Z, Guo L. OptoGPT: a foundation model for inverse design in optical multilayer thin film structures[J]. Opto-Electron Adv, 2024, 7(7): 240062. doi: 10.29026/oea.2024.240062 |
Electromagnetic cloaking technology has emerged as a pivotal area of research, transcending its original objective of minimizing the electromagnetic scattering cross-section of objects. It has significant implications for military equipment cloaking, electromagnetic protection, and the development of invisible sensors. This comprehensive review delves into the diverse principles underlying cloaking structures, their operating conditions, and key performance metrics. It clarifies distinctions between radar cloaking and perfect cloaking, as well as the concepts of full-space versus carpet cloaking. Fundamental cloaking mechanisms, such as light bending and scattering cancellation, are examined, providing insights into the strategies that manipulate electromagnetic waves to achieve invisibility. The paper also consolidates the theoretical approaches, material classifications, and optimization strategies commonly employed in the design of cloaking structures. It offers a synthesis of the critical theoretical studies and experimental advancements in the field of cloaking, both domestically and internationally. The exploration of cloaking structures has broadened to encompass a spectrum of physical domains beyond electromagnetic and optical waves, including acoustic waves, thermal flows, static magnetic fields, chemical potentials, and mechanical and elastic waves. The advent of structures capable of addressing multiple physical fields concurrently heralds a new era in cloaking technology, where multi-physical field cloaking structures are poised to become a cornerstone of future progress. Especially promising are the prospects of multi-physical field zero-space media and topological optimization strategies, which may unlock new potential for cloaking across different physical phenomena. The integration of smart optics and advanced materials is set to give future cloaking technology the agility to adapt its operational modalities in response to varying environmental conditions. This adaptive, intelligent cloaking is anticipated to be a breakthrough, with artificial intelligence algorithms potentially playing a central role in the design of multi-modal intelligent cloaking systems. While the ambition to achieve cloaking that is universally effective, broadband, bi-polarized, omni-directional for three-dimensional, electrically large objects remains a challenging horizon, the convergence of novel materials and artificial intelligence is expected to catalyze further breakthroughs in cloaking technology. These interdisciplinary innovations are projected to enhance the efficacy and sophistication of cloaking, thereby heightening their applicability and value across a spectrum of practical scenarios. The future of electromagnetic cloaking is bright, with ongoing research and technological evolution set to expand its capabilities and solidify its relevance in modern science and technology.
The structures of carpet cloaking. (a) Schematic of full-space cloaking; (b) Schematic of carpet cloaking [40]; (c) The carpet cloaking is designed in a SOI wafer consisting of silicon and silica layers, where C1 is the gradient index cloaking and C2 is a uniform index background [41]; (d) The carpet cloaking designed from non-resonant metamaterial cells (left subfigure) and the relationship between unit cell geometry and effective index (right subfigure) [42]; (e) Scanning electron microscope images of the carpet cloaking designed from silicon nanopillars distributed in SOI wafers (top subfigure) and different densities of silicon pillars etched on SOI wafers (bottom subfigure) [40]; (f) Schematic diagram of the three-dimensional microwave carpet cloaking [43]; (g) Blueprint of the 3D carpet cloaking structure, with the 3D cone of light shown in red corresponding to the NA = 0.5 microscope lens [44]; (h) The triangular carpet cloaking is made of two calcite prisms glued together [45]; (i) Cross-sectional schematic of the cloaking implemented in a silicon nitride waveguide on a low-index nanoporous silicon oxide substrate [46]; (j) Experimental sample of a non-magnetic smart metamaterial invisibility cloaking, and the inset shows the effective dielectric constant curve versus Jacobian value [47]; (k) A planar electromagnetic wave at 1 GHz frequency passes through the carpet cloaking designed from Zn-Ni-Fe composites (blue) and air (white), surrounded by a background of polytetrafluoroethylene [48]; (l) Photographs of the 3D non-Euclidean metasurface carpet cloaking, with insets showing details of the closed metallic rings [49]; (m) Photograph of the full-polarization trapezoid conformal-skin cloaking sample, with the inset illustrating the phase profile along the central x-axis [50]; (n) Photographs of a sample of the carpet cloaking designed from cured resin cells (left subfigure) and a sample of cured resin cells (right subfigure) [51]
Schematic diagram of TO and TO-based cloaking. (a) Relationship between reference space (left subfigure) and real space (right subfigure) in TO [1]; (b) Sphere cross-section of the spherical-shell cloaking [1]; (c) Microwave cloaking structure designed by split-ring resonators [74]; (d) For the cylindrical cloaking structure with λ = 623.8 nm, the right subfigure shows a small fraction of the cylindrical cloaking, i.e., the nanowires are all perpendicular to the cylinder’s inner and outer interfaces [75]; (e) Concentric layer cloaking structure with alternating layers of medium A (blue) and B (grey) [76]; (f) Schematic of infrared cloaking structure sector based on split-ring resonators [77]; (g) Photograph of the cloaking structure realized by copper split-ring resonators embedded in a dielectric medium [78]; (h) Photograph of the cloaking structure realized by split-ring resonators and metal strips [79]; (i) Diagram of the experimental setup for testing cloaking performance: a cat sits in the cloaking structure, and a projector projects a film through the cloaking device onto a screen behind the cloaking device, and parts of the cloaking device can be seen without shadows [80]; (j) Diagram of the experimental setup used for infrared cloaking [81]; (k) Schematic of multiple antenna environment and the proposed method to coupling reduction (top left subfigure), with antenna 1 radiating in free space (top right subfigure), and antenna 1 radiating in the presence of a cylindrical antenna (antenna 2) (bottom left subfigure), with antenna 2 being covered by a designed cloaking structure (bottom right subfigure) [82]; (l) Schematic diagram of an effective simplified cubic cloaking structure in three orthogonal directions in three-dimensional space [83]; (m) Diagram of the experimental sample with several copper bars and two aluminum plates [84]; (n) Omnidirectional metamaterial cloaking structure and its metamaterial cell design [85]; (o) Refractive index distribution of the full-space omnidirectional cloaking structure designed with metal plates and dielectrics [86]; (p) Schematic of the cloaking structure with sub-wavelength dielectric channels to achieve a refractive index gradient from 1 to 10, and a uniform dielectric core surrounded by metal plates [87]; (q) Schematic diagram of the metamaterial cloaking structure for omnidirectional cloaking [88]; (r) Diagram of the experimental sample of a multi-band cloaking structure with metal sheets and two types of dielectrics [89]; (s) The two left subfigures show photographs of fabricated four-layer space-compressed TO metamaterial samples, and the right subfigure shows a schematic view of the ideal cloaking based on the designed full-parameter spatial-compression TO metamaterial and the Fabry-Pérot layer [90]
Schematic of the OCM-based cloaking. (a) Propagation of light in the cloaking device, yellow line is the light, the brightness of the green background indicates the refractive index contour, and the invisible region is shown in black [91]; (b) Refractive index profile of the cloaking structure that can be used in electro-acoustic double fields [92]; (c) Simulation results of two different incident TE polarized waves on two different mapping cloaking structures [93]; (d) Optimized refractive index profile (left subfigure) and electric field distribution pattern (right subfigure) based on logarithmic conformal transformation [94]; (e) The left subfigure shows the refractive index profile and the ray trajectory of the cloaking structure based on the non-Euclidean transformation, and the right subfigure shows the electric field distribution generated by a Gaussian beam with an incidence angle of π/4 rad on the cloaking structure [95]; (f) In three dimensions, some rays turn out to perform two loops in hyperspace that appear in physical space as light wrapped around the invisible interior [96]; (g) Invisibility effect with Eaton lens: An Eaton lens is placed in the lower sheet to guide back the incident light, giving the outer region the invisibility effect represented by a black hole. The left and right subfigures show the electric field distributions corresponding to the l = 2 and 40 orders harmonic eigenmodes of the Eaton lens, respectively[97]; (h) Bidirectional cloaking performance simulation, the boundary of the white area represents the reflector [98]
Schematic of the cloaking based on geometrical optics. (a) Schematic diagrams of the cloaking with two L-shaped water tanks and two L-shaped mirrors on the left and right, respectively [101]; (b) Demonstration of the principle of quasi-axial invisibility using four optical lenses [102]; (c) The cloaking consists of polarizers and mirrors that are attached on glass plates [103]; (d) 2D digital integral cloaking setup [104]
Schematic of the cloaking structures based on plasmonic shells. (a) The geometry of the double-shell cloaking structure depicted in the inset, and the four curves in the figure represent the total scattering efficiency for each of the four cases [109]; (b) Schematic of a silicon nanowire (grey) hooked up by two gold electrodes (yellow) [32]; (c) Photographs of the assembled cloaking structure on the test cylinder with end caps (top subfigure); cross-section of the assembly with the end caps removed (bottom left subfigure); a shell segment edge with copper tape used to form the metallic strip for the metamaterial cloaking (bottom right subfigure) [110]; (d) The left subfigure represents a dielectric object reveals its presence to an external observer by scattering the light. The diagram on the right indicates that a shell made from metallic nanoparticles scatters the same amount of light as the core but π out-of-phase. This suppresses the scattered field. It therefore makes the object undetectable [111]; (e) Schematic representation of an infinitely long non-magnetic cylinder with dielectric constant εc and radius a, coated with a magneto-optical active cylindrical shell with magnetic permeability μ0 and radius b>a [112]; (f) Schematic representation of a dielectric sphere with complex dielectric constant wrapped in a graphene shell [113]; (g) The dielectric sphere is covered with silver ellipsoids of different distributions and orientations [114]; (h) Illustration of the atomically thin graphene layer of surface conductivity σ coating a nano-sized scattering cylinder of relative permittivity εd, where the environment medium has a permittivity ε [115]; (i) Schematic illustration of the difference in light scattering between 3D bare nanospheres (left subfigure) and spheres coated with AuNPs (right subfigure) [116]; (j) Schematic representation of zirconium nitride (ZrN) core-shell nanowires under oblique incidence [117]
Schematic diagram of cloaking based artifical structural materials. (a) Examples of patterned metallic geometries that may realize a mantle cloaking[119]; (b) Diagram of the graphene metasurface [122]; (c) The mesh-grid FSS geometry [122]; (d) Schematic diagram of a dual-band cylindrical mantle cloaking [129]; (e) Schematic of a general multilayer infinitely long cylindrical structure [36]; (f) The top subfigure shows the schematic diagram of the different layers of the mantle cloaking patch antenna, and the bottom subfigure shows the three-dimensional view of two co-frequency interleaved cloaking arrays [127]
Schematic diagram of invisible sensors. (a) Basic principle of invisible sensors [29]; (b) Plasmonic shell used to achieve the cloaking effect simulation of the near-field scanning optical scanning microscope probe [31]; (c) Photographs of silicon nanowires surrounded by wrapped gold coating (covered) and silicon nanowires alone (bare) under confocal microscope [32]; (d) The left subfigure shows two antennas without the cloaking structure, and the right subfigure shows a scatter-cancelling cloaking structure around one antenna [34]; (e) Schematic (left subfigure) and physical photograph (right subfigure) of the simultaneous cloaking of two antennas using a metasurface [35]; (f) Photogragh of broadband cloaking of a dipole antenna using a metasurface [36]; (g) Cloak of a scanning microscope probe using a scatter-cancelling cloaking mechanism: a conventional probe (top subfigure) and a probe with the introduction of slotted microstructures (bottom subfigure) [37]
Schematic diagram of cloaking structures based on optimization algorithm with experimental verification. (a) Sample view of the six-layer cylindrical cloaking structure and the calculated scattered electrical energy distribution around the bare PEC core and the PEC with the cloaking (yellow ringed area) [170]; (b) "Eyelid"-shaped cloaking made of Teflon (white) with the central cloaking region replaced by an aluminum disk [138]; (c) Photograph of a sample cloaking structure made of acrylonitrile-butadiene-styrene [176]; (d) Schematic of a cloaking structure made of dielectric PLA dielectric square columns [171]; (e) Photograph of a sample invisibility cloaking structure made using conventional printed circuit board technology [195]; (f) Transmissive metasurface cloaking consisting of two planar metasurfaces labelled Layer 1 and Layer 2 used to hide an internal object, e.g. a cat [196]