
Lensless complex amplitude demodulation based on deep learning in holographic
data storage
Jianying Hao, Xiao Lin, Yongkun Lin, Mingyong Chen, Ruixian Chen, Guohai Situ, Hideyoshi Horimai and
Xiaodi Tan

Citation: Hao JY, Lin X, Lin YK, Chen MY, Chen RX et al. Lensless complex amplitude demodulation based on deep
learning in holographic data storage. Opto-Electron Adv, 6, 220157(2023).

https://doi.org/10.29026/oea.2023.220157

Received: 30 September 2022; Accepted: 30 November 2022; Published online: 17 January 2023

Related articles
The detection method for grab of portal crane based on deep learning
Zhang Wenming, Liu Xiangyang, Li Haibin, Li Yaqian
Opto-Electronic Engineering    2021  48,  200062        doi: 10.12086/oee.2021.200062

Deep-learning-based ciphertext-only attack on optical double random phase encryption
Meihua Liao, Shanshan Zheng, Shuixin Pan, Dajiang Lu, Wenqi He, Guohai Situ, Xiang Peng
Opto-Electronic Advances    2021  4,  200016        doi: 10.29026/oea.2021.200016

All-optical computing based on convolutional neural networks
Kun Liao, Ye Chen, Zhongcheng Yu, Xiaoyong Hu, Xingyuan Wang, Cuicui Lu, Hongtao Lin, Qingyang Du, Juejun Hu, Qihuang Gong
Opto-Electronic Advances    2021  4,  200060        doi: 10.29026/oea.2021.200060

Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D
shape measurement
Yixuan Li, Jiaming Qian, Shijie Feng, Qian Chen, Chao Zuo
Opto-Electronic Advances    2022  5,  210021        doi: 10.29026/oea.2022.210021

More related article in Opto-Electron Journals Group website  

http://www.oejournal.org/oea  OE_Journal  @OptoElectronAdv

https://www.oejournal.org/oea/
https://doi.org/10.29026/oea.2023.220157
https://www.oejournal.org/article/doi/10.12086/oee.2021.200062
https://doi.org/10.12086/oee.2021.200062
https://www.oejournal.org/article/doi/10.29026/oea.2021.200016
https://doi.org/10.29026/oea.2021.200016
https://www.oejournal.org/article/doi/10.29026/oea.2021.200060
https://doi.org/10.29026/oea.2021.200060
https://www.oejournal.org/article/doi/10.29026/oea.2022.210021
https://www.oejournal.org/article/doi/10.29026/oea.2022.210021
https://doi.org/10.29026/oea.2022.210021
https://www.oejournal.org/article/doi/10.29026/oea.2023.220157#relative-article
https://www.oejournal.org/article/doi/10.29026/oea.2023.220157#relative-article
http://www.oejournal.org/oea


DOI: 10.29026/oea.2023.220157

Lensless complex amplitude demodulation
based on deep learning in holographic data
storage
Jianying Hao1,3, Xiao Lin1*, Yongkun Lin1, Mingyong Chen1,
Ruixian Chen1, Guohai Situ2, Hideyoshi Horimai3 and Xiaodi Tan1*

To increase the storage capacity in holographic data storage (HDS), the information to be stored is encoded into a com-
plex  amplitude.  Fast  and  accurate  retrieval  of  amplitude  and  phase  from the  reconstructed  beam is  necessary  during
data  readout  in  HDS.  In  this  study,  we  proposed  a  complex  amplitude  demodulation  method  based  on  deep  learning
from a single-shot  diffraction  intensity  image and verified  it  by  a  non-interferometric  lensless  experiment  demodulating
four-level amplitude and four-level phase. By analyzing the correlation between the diffraction intensity features and the
amplitude and phase encoding data pages, the inverse problem was decomposed into two backward operators denoted
by two convolutional  neural  networks (CNNs) to demodulate amplitude and phase respectively.  The experimental  sys-
tem is simple, stable, and robust, and it only needs a single diffraction image to realize the direct demodulation of both
amplitude and phase. To our investigation, this is the first time in HDS that multilevel complex amplitude demodulation is
achieved experimentally from one diffraction intensity image without iterations.
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 Introduction
According  to  the  prediction  of  the  International  Data
Cooperation  (IDC)  in  2018,  global  data  will  increase  to
175  ZB  by  2025  and  2142  ZB  by  20351.  Handling  this
enormous increasing  volume  of  data  based  on  the  cur-
rent  data  storage  techniques  is  challenging.  Compared
with conventional storage devices such as the flash, hard
disk drive (HDD), and magnetic tape, the optical storage
techniques  and  devices  such  as  blue-ray  optical  discs2,

optical glass storage3,4,  and HDS5−8 feature more advant-
ageous  properties  such  as  lower  energy  consumption,
stable  storage,  and  longer  lifetime  that  can  be  leveraged
for the long-term storage of big data. HDS handles digit-
al  information as  a  two-dimensional  (2D) array called a
data page  and  records  a  three-dimensional  (3D)  holo-
gram  in  light-sensitive  media6,7,9.  The  storage  density  is
determined by the hologram size,  number of  multiplex-
ing recordings,  and  single  data  page  capacity.  Conven-
tional  HDS  uses  a  binary  amplitude  data  page7,9−11,  and 
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the capacity of a single page is limited. With the develop-
ment  of  optical  devices  such  as  spatial  light  modulators
(SLMs), multi-level phase-modulated HDS12−15 and com-
plex-amplitude-modulated HDS16−18 that use the phase of
light to  encode  information,  have  been  proposed  to  in-
crease the  amount  of  information  in  one  data  page.  Al-
though phase encoding can improve the storage capacity
significantly, the  phase  information  cannot  be  read  dir-
ectly.  It  needs  to  be  computationally  retrieved  from  the
intensity  image  captured  by  a  detector.  To  demodulate
the  complex  amplitude  quickly  and  accurately  with  a
simple and stable system is the key for the HDS system to
keep  the  data  transmitting  rate  (phase  modulation  is
considered a special case of complex amplitude modula-
tion with a uniform amplitude of 1).

Some  researchers  have  attempted  to  decode  the  HDS
complex  amplitudes  via  different  methods.  Depending
on whether there is  interference in the retrieval process,
HDS data demodulation systems can be divided into two
types:  interferometric  and  non-interferometric.
Nobukawa proposed a complex-amplitude data page de-
modulation  method  based  on  digital  holography  and
realized two-level  amplitude  and  four-level  phase  de-
modulation16. Katano used two convolutional neural net-
works (CNNs) to retrieve the amplitude and phase from
four interferometric holograms17. Both these methods re-
quire a  reference  beam,  and the  reading  system is  com-
plicated  and  sensitive  to  environmental  vibrations.
Moreover, the multi-capture operation also decreases the
data  transfer  rate.  Lin  proposed  non-interferometric
phase demodulation based on an iterative Fourier trans-
form algorithm12,19.  The optical  system is  simplified,  but
the  data  transfer  rate  decreases  because  of  the  iterative
calculation in the retrieval process. Bunsen used the TIE
algorithm to  retrieve  the  complex amplitude from three
diffraction  intensity  images18.  It  requires  three  intensity
images  and  iteration  calculations  that  also  decrease  the
transfer  rate.  Horisaki  presented  a  method  for  single
shot,  complex-amplitude  imaging  that  can  retrieve  the
phase and  amplitude  from  a  single  intensity  image  dir-
ectly. However,  it  is  only  used  in  handwritten  digit  re-
cognition, where the distributions are relatively simple20.
The data reading of HDS requires a simple system to en-
sure both stable data transmission and fewer iterations to
improve the data transfer rate. In conventional methods,
it is  difficult  to  achieve a  balance between the transmis-
sion speed and stability.

In  recent  years,  we  have  witnessed  the  emergence  of

deep learning  that  demonstrates  great  potential  in  vari-
ous fields such as computer vision21, optical encryption22,
and  optical  computing23.  Since  the  pioneering  work  of
Sinha  et  al.24 on  the  recovery  of  phase  directly  from  a
single diffraction  intensity  image,  deep  learning  net-
works  have  been used  to  reconstruct  the  amplitude  and
phase  directly  from  a  hologram25−27 or  combined  with
physics  prior  to  retrieving  the  phase  from  a  diffraction
intensity  image28.  One  can  refer  to  a  recent  survey29 for
more  details.  In  the  existing  studies,  the  retrieval  of  the
complex amplitude from the  hologram still  needs  refer-
ence  beam.  The  system  is  complicated  and  not  suitable
for HDS.  Physical  prior-based  phase  retrieval  from  dif-
fraction intensity  does  not  need  reference  beam  but  re-
quires thousands of iterations to achieve phase demodu-
lation. Inspired by these studies, our previous work pro-
posed a non-iterative lensless phase demodulation meth-
od  based  on  deep  learning  and  embedded  data  used  in
HDS30. In this study, we further propose a complex amp-
litude  encoding  and  demodulation  method.  A  complex
amplitude encoding method with a higher capacity is de-
signed, and a lensless non-interferometric complex amp-
litude retrieval  system  is  established.  The  inverse  prob-
lem is decomposed into two backward operators related
to  amplitude  and  phase  and  represented  by  two  CNNs
separately. The four-level complex amplitude can be de-
modulated directly without interferometry and iteration.
The  experiment  verifies  its  feasibility  and  demonstrates
the potential of complex amplitude demodulation from a
single intensity image. The analysis of the diffraction fea-
tures and  encoded  data  pages  provide  guidance  for  fu-
ture research  on  deep  learning-based  complex  amp-
litude retrieval.

 Principle

 Complex amplitude modulation for HDS
A  schematic  of  complex  amplitude  modulated  HDS  is
shown in Fig. 1. Information storage and reading in HDS
include four processes: encoding, recording, reading, and
decoding. In  the  encoding  process,  information  is  en-
coded into amplitude and phase data pages to modulate
the  signal  beam.  In  the  recording  process,  the  signal
beam is  converged by Lens 1,  and it  subsequently inter-
feres  with  a  reference  beam.  The  interference  hologram
is recorded in the media. In the reading process, a recon-
structed beam is obtained at the focal plane of Lens 2 by
using a same reference beam to irradiate the media. The
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reconstructed beam contains the encoded amplitude and
phase information. In the decoding process, a detector is
placed  at  distance z from  the  reconstructed  beam  plane
to capture the diffraction intensity image. The complex-
amplitude  information  is  retrieved  from  the  intensity
image by the method proposed in this paper. The diffrac-
tion intensity  image  is  used  for  complex  amplitude  de-
modulation, which is captured directly without any lens,
so  it  is  called  a  lensless  complex  amplitude  decoding
system.

According to the theory of HDS, the wavefront of the
reconstructed beam  is  exactly  the  same  with  the  recor-
ded signal beam if the influence of the system and mater-
ial noise is ignored. Information reading is to obtain the
encoded  amplitude  and  phase  pages  from  a  single-in-
tensity image captured by the detector. The light field of
the reconstructed beam is defined by Eq. (1):
 

U (x, y; 0) = A (x, y; 0) exp (iφ (x, y; 0)) . (1)

The  position  of  the  reconstructed  beam  plane  (the
back focal of Lens 2 in Fig. 1) is defined as z = 0. The dif-
fraction field of U(x, y; z) over distance z is given by Eq.
(2):
 

U (x, y; z) =w ∞w
−∞

F (fX, fY; 0)Gexp (i2π (fXx+ fYy)) dfXdfY , (2)

G = exp
[
i
2π
λ

√
1− (λfX)2 − (λfY)2z

]where G is  the  transfer  function

, fX and fY  are  the

spatial frequencies in the x and y directions, respectively,
and F(fX, fY; 0) is the angular spectrum of U(x, y, 0) , that
is the Fourier transform of U(x, y, 0) shown in Eq. (3):
 

F (fX, fY; 0) =
w ∞w

−∞

U (x, y; 0) exp (i2π (fXx+ fYy)) dxdy .

(3)
The  intensity  of  the  light  field  at  distance z is ex-

pressed by Eq. (4): 

I (x, y; z) = |U (x, y; z) |2 = H (U (x, y; 0)) . (4)

Because of diffraction, the intensity I(x, y; z) recorded
by the detector has a certain pattern, as shown in Fig. 1.
The  operator H(·)  denotes  the  mapping  function  that
relates  the  complex  amplitude U(x, y; 0)  and  intensity
image I(x, y, z).

 Complex amplitude encoding and Fresnel
diffraction

, · · · ,

According to the Huygens–Fresnel  diffraction principle,
the constructive and destructive interference of coherent
light caused by diffraction produces an intensity pattern
in  the  irradiance  result I(x, y; z)31.  A  simple  theoretical
model  was  developed (Fig. 2)  to  describe  the  diffraction
process  in  HDS demodulation.  In  this  model,  each data
point  on  the  SLM is  regarded  as  a  divergent  point  light
source.  As  light  propagates  forward,  the  secondary
sources corresponding to different data points are super-
imposed on each other to form a new light field. The fur-
ther  the  propagation,  the  stronger  the  diffraction  effect.
An  appropriate  distance z = d can  be  found,  where  the
intensity I related to a data point P is mainly determined
by the eight surrounding data points (Pp, p = 1  8).
Because  of  the  amplitude  and  phase  difference  between
data  points P and Pp,  there  is  a  diffraction  pattern  that
has  a  clear  correlation  with  the  encoded  amplitude  and
phase data. Both the original amplitude features and the
new  feature  resulting  from  the  phase  difference  are
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Fig. 1 | Conceptual diagram of HDS with complex-amplitude-modulated data page.
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included in this diffraction pattern.
In order  to  analyze  the  relationship  between  the  dif-

fraction pattern and the amplitude-phase data numeric-
ally,  we  set  the  complex  amplitude  data  as  four-level
phase (π/6, 2π/3, π, 3π/2) and amplitude (0.7, 0.8, 0.9, 1)
randomly. The phase values are randomly selected from
[0, 2π] at unequal intervals. It is different from the tradi-
tional encoding rule in HDS, which will  be explained in
the  second  half  of  this  Section.  The  complex  amplitude
encoding  page  and  intensity  image  are  shown  in Fig.
3(I).  Phase-only encoding and amplitude-only encoding
are  also  shown  in Fig. 3(II) and Fig. 3(III),  respectively,
to facilitate  the  analysis  of  the  diffraction  pattern  fea-
tures. The diffraction distance z = 2 mm. The cross-sec-
tion at the position of the red line in the intensity images
is  shown  in Fig. 3(j).  The  intensity  image  in Fig. 3(I)
shows that  the  complex-amplitude-based  pattern  con-
sists of both the amplitude-related and phase-related fea-
tures. The phase-related feature is manifest in the intens-
ity  distribution  resulting  from  light  propagation,  as
shown in Fig. 3(II). The amplitude-related feature in Fig.
3(III) is  the  original  amplitude  distribution  that  is  still
distinguishable  under  the  condition  of  this  diffraction
distance.

Figure 4(a) and Fig. 4(b) is  the  2D  and  3D  contour
map of the intensity in Fig. 3(c), respectively. Fig. 4(c) is
the cross-section of the red line in Fig. 4(a). Correspond-
ing  to  the  four  data  points,  four  diffraction  regions  are
generated. The mean diffracted intensity of each data re-

gion  in Fig. 4(c) is consistent  with  the  amplitude  distri-
bution. Within each data point region, the intensity vari-
ation  due  to  diffraction  is  a  phase-dependent  feature.
Therefore, it is feasible to detect the amplitude and phase
features  separately.  Here,  the  amplitude-related  features
in the diffraction intensity are clearly visible and directly
related  to  the  original  amplitude.  The  relationship
between  the  phase-related  features  and  the  diffraction
pattern requires further analysis.

{(P, Pp), p = 1, 2, . . . , 8}

Pp

{(ϕ,ϕp), p = 1, 2, . . . , 8}

Δϕp ϕ
ϕp

ϕ

ϕ

Based  on  the  simplified  theoretical  model  in Fig. 2,
 is defined as a symbol that con-

sists  of  one  central  data  point P and  its  eight  adjacent
data  points .  If  only  the  phase  is  considered,  then the
symbol is simplified as . Sever-
al  examples  of  different  symbols  are  shown  in Fig. 5(I).
Figure 5(II) are  the  corresponding  diffraction  intensity
images.  The  general  architecture  of  a  symbol  consisting
of 3 × 3 data points is shown in Fig. 5(k). Fig. 5(l) is the
intensity profile on the red line in the intensity distribu-
tion Fig. 5(f–j). Two rules can be observed in Fig. 5. First,
the diffraction pattern characteristics  are decided by the
phase  difference  between  the  central  data  point 
and  its  adjacent  points . Second,  the  diffraction  pat-
tern characteristics are not directly decided by the abso-
lute  value  of  the  central  point . To  build  the  relation-
ship  between  the  diffraction  intensity  and  central  phase
value ,  the  relationship  between the  diffraction feature
and symbol is important.

Therefore, when designing the phase encoding rule for
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Fig. 2 | Simplified theoretical model of diffraction process in HDS demodulation.
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ϕi, i = 1, 2, · · · , n
{Sϕ=ϕi,

i = 1, 2, · · · , n}

Sϕ=ϕi =
{(

Δϕp|(ϕ = ϕi)
)
, p = 1, 2, · · · , 8, i = 1, 2, · · · , n

}
ϕ = ϕi

Δϕp= ϕp − ϕ

ϕi

HDS, the  phase  difference  should  be  paid  more  atten-
tion  to.  With n-level  phase  encoding  rule
{ }，each phase  value  can  be  represen-
ted by a symbol set . The symbol set

 

consists of n8 symbols with the architecture as shown in
Fig. 5(k).  The  means the central  data  point  value
in  the  symbols.  is  the  phase  difference
between  the  central  data  point  and  its  adjacent  data
points. For  each  phase  data  point,  the  diffraction  pat-
terns are determined by the structure of the related sym-
bols.  To  infer  the  phase  of  a  central  data  point  from

Sϕ=ϕi Δϕp

Sϕ=ϕi

the intensity image, the corresponding symbols in the set

 should be distinguishable.  This implies that  in

each symbol set  should be different.

Δϕp

Δϕp

Sϕ=ϕi

As  an  example,  we  analyzed  and  compared  the  four-

level  phase  encoding  (0,  π/2,  π,  3π/2)  of  conventional

phase-modulated HDS15,16 and (π/6, 2π/3, π, 3π/2) in this

study. The phase difference  under these two encod-

ing rules are summarized in Table 1 and Table 3. All val-

ues  of  were  set  to  [–π, π].  Meanwhile,  we summar-

ized the number of symbols in each symbol set  and

calculated the repetition probability defined as:
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Pij =
Nij

Ni
, (5)

Nij

Sϕ=ϕi Sϕ=ϕj Ni

Ni = n8

where  is  the  number  of  symbols  that  belong to  both
 and , and  is the total number of symbols in a

set, .  The repetition probabilities  associated with
the two encoding rules are shown in Table 2 and Table 4.

ϕ = ϕi

Δϕp

Sϕ=ϕi

{
Δϕp |(ϕ = ϕi), p = 1, 2, . . . , 8, i = 1, 2, . . . , n

}
ϕ = ϕi

Pij
Sϕ=ϕi Sϕ=ϕj

ϕi

ϕi

Δϕp

From Table 1,  it  can  be  seen  that  for  each  encoded
value ,  the  possible  generated  phase  differences

 are  same.  This  means  that  under  the  encoding
rule  (0,  π/2,  π,  3π/2),  all  symbols  in  set

=  of

different  central  phase  values  are  absolutely  the
same. The repetition probabilities  of all symbols in set

 and  are  100%,  as  shown in Table 2. This  im-
plies  that  under  the  encoding  rule  (0,  π/2,  π,  3π/2),  the
diffraction patterns corresponding to different  are the
same, so the phase value  cannot be inferred from the
pattern of the diffraction intensity.  For comparison, un-
der the encoding rule (π/6, 2π/3, π, 3π/2), the phase dif-
ference  becomes distinguishable,  as  shown in Table

ϕ = ϕi

3.  Therefore,  the  repetition  probabilities  of  the  symbol
set in Table 4 are also significantly reduced. It is possible
to establish a relationship between the diffraction intens-
ity pattern and the phase value .

This assumption  was  verified  by  the  method  intro-
duced in Section Deep learning-based complex amplitude
demodulation. A simulated experiment was conducted to
generate  datasets  under  two  encoding  rules  (0,  π/2,  π,
3π/2)  and (π/6,  2π/3,  π,  3π/2).  Two CNNs were  used to
detect patterns  in  diffracted  intensity  images  and  estab-
lish  relationships  with  amplitude  and  phase  data  pages,
respectively. The core of the CNN is the convolution ker-
nel, which is used to extract features of different scales in
the input image. The hyperparameters of the CNN is set
same  as  the  experiment  discussed  in  Section Experi-
ments. During the training, the mean square error (MSE)
losses  represents  the  gap  between  the  predicted  and  the
true value of the two cases are shown in Fig. 6(a) and Fig.
6(b). The red and black lines represent the losses for the
test  and  training  sets,  respectively.  The  smaller  the  loss
function  value,  the  closer  the  predicted  result  is  to  the
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ground truth value.  A detailed description of  the neural
network  geometry  and  training  is  provided  in  Section
Deep  learning-based  complex  amplitude  demodulation
and Experiments.  As  shown  in Fig. 6(a), the  loss  func-
tion values of  the training and test  sets  do not converge
after a brief plunge as the training progresses. Upon con-
tinued  training,  the  training  loss  began  to  decrease,

whereas the test loss increased, indicating that the model
training resulted in overfitting. Under the encoding rule
(0, π/2,  π,  3π/2),  the  model  failed  to  establish  the  rela-
tionship between the diffraction intensity and phase data
page. However, as shown in Fig. 6(b), as the training pro-
gresses, the losses of both the training and test sets drop
rapidly  and  approach  zero.  This  implies  that  the  CNN

 
Table 1 | Possible phase difference ∆ϕp=ϕp–ϕ under encoding rule (0, π/2, π, 3π/2).

 

ϕCentral phase value 
ϕpAdjacent phase value 

0 π/2 π 3π/2

0 Δϕp|0 = 0 Δϕp|0 =π/2 Δϕp|0 =π Δϕp|0 = −π/2

π/2 Δϕp|π/2=−π/2 Δϕp|π/2 = 0 Δϕp|π/2=π/2 Δϕp|π/2=π

π Δϕp|π=π Δϕp|π/2=π/2 Δϕp|π/2=0 Δϕp|π/2=π/2

3π/2 Δϕp|3π/2=π/2 Δϕp|3π/2=π Δϕp|3π/2=–π/2 Δϕp|3π/2=0

 
Sϕ=ϕ i Sϕ=ϕ jTable 2 | Probability that any two sets  and have the same symbol under encoding rule (0, π/2, π, 3π/2).

 

Δϕp|(ϕ = ϕj)
Δϕp|(ϕ = ϕi)

Δϕp|0 Δϕp|π/2 Δϕp|π Δϕp|3π/2

Δϕp|0 - 100% 100% 100%

Δϕp|π/2 100% - 100% 100%

Δϕp|π 100% 100% - 100%

Δϕp|3π/2 100% 100% 100% -

 
Table 3 | Possible phase difference ∆ϕp=ϕp–ϕ under encoding rule (π/6, 2π/3, π, 3π/2).

 

ϕCentral phase value 
ϕpAdjacent phase data 

π/6 2π/3 π 3π/2

π/6 Δϕpπ/6 = 0 Δϕp|π/6 = π/2 Δϕp|π/6 = 5π/6 Δϕp|π/6 = −2π/3

2π/3 Δϕp|2π/3 = −π/2 Δϕp|2π/3 = 0 Δϕp|2π/3 = π/3 Δϕp|2π/3 = 5π/6

π Δϕp|π = −5π/6 Δϕp|π = −π/3 Δϕp|π = 0 Δϕp|π = π/2

3π/2 Δϕp|3π/2 = 2π/3 Δϕp|3π/2 = −5π/6 Δϕp|3π/2 = −π/2 Δϕp|3π/2 = 0

 
Sϕ=ϕ i Sϕ=ϕ jTable 4 | Probability that any two sets  and  have the same symbol under encoding rule (π/6, 2π/3, π, 3π/2).

 

Δϕp|(ϕ = ϕj)
Δϕp|(ϕ = ϕi)

Δϕp|π/6 Δϕp|2π/3 Δϕp|π Δϕp|3π/2

Δϕp|π/6 - 0.39% 0.39% 0.0015%

Δϕp|2π/3 0.39% - 0.0015% 0.39%

Δϕp|π 0.39% 0.0015% - 0.39%

Δϕp|3π/2 0.0015% 0.39% 0.39% -

Hao JY et al. Opto-Electron Adv  6, 220157 (2023) https://doi.org/10.29026/oea.2023.220157

220157-7

 



can not only fit the data of the training set appropriately,
but can also be generalized to the test set. In other words,
the deep learning model can correctly represent the rela-
tionship between the diffraction intensity and phase data
page under the encoding rule of (π/6, 2π/3, π, 3π/2).

The results in Tables 1–4 and Fig. 6 show the signific-
ant difference  in  phase  encoding  between  the  conven-
tional iterative method based on physical  processes15,16,32

and the data-driven deep learning method in this study.
In  this  study,  we  only  compare  two  encoding  rules  and
explain why the conventional encoding is not suitable for
our  deep learning method.  It  is  worth  emphasizing  that
the  encoding  rule  (π/6,  2π/3,  π,  3π/2)  is  feasible,  but  is
not necessarily the optimal rule.  In fact,  the optimal en-
coding rules for lensless phase retrieval methods require
further research which is beyond the scope of the present
study.

 Deep learning-based complex amplitude
demodulation

H−1(·)
H−1

A (·) H−1
φ (·)

From  the  analysis  in  Section Complex amplitude  encod-
ing and Fresnel diffraction,  the amplitude and phase can
be related  to  different  features  of  the  diffraction  intens-
ity. Therefore, operator  in Eq. (4) can be split in-
to two operators,  and , as shown in Eq. (6). 

A(u, v) = HA
−1(I(u, v)),

ϕ(u, v) = Hϕ
−1(I(u, v)), (6)

A(u, v) ϕ(u, v)

H−1
A (·) H−1

φ (·)

where  is  the  amplitude  data  page,  and  is
the  phase  data  page. I(u,v) is  the  intensity  matrix  cap-
tured by the detector.  The complex amplitude demodu-
lation problem is decomposed to solve the inverse func-
tions  and .
H−1

A (·) H−1
ϕ (·) and  can be  obtained  by  solving  an  op-

timization problem of the form shown in Eq. (7): 

C̃(u, v) = argminC ||HC(C)− I||2 + αΦ(C), (7)

A (u, v)
ϕ (u, v) H−1

A (·)
H−1

ϕ (·) HC(·)
Φ
α

where C is used to represent the amplitude  or the
phase ,  depending  on  whether  the  or

 is being optimized.  is the forward operator,
I is  the  measurement  intensity  image,  is the  regular-
izer expressing prior information, and  is the regulariz-
ation parameter that controls the relative strength of the
two terms in the optimization function.

H−1
C (·)

H−1
A (·)

H−1
ϕ (·)

{(In,An) n = 1, · · · ,N}
{
(
In,φn

)
n = 1, · · · ,N}

H−1
C

The deep learning-based approach to solve this  prob-
lem involves learning a mapping function  from a
large number of labeled datasets. Two CNNs are used to
represent  the  inverse  function  operators  and

 and  are  trained  separately  using  the  intensity-
amplitude  training  dataset  and
intensity-phase  training  dataset .
The  main  underlying  convolution  operations  of  CNN
extract features of different scales from the input image.
Neural network training optimizes the parameters of op-
erator . In this study, the object function is defined by
Eq. (8): 

H−1
C,learn = argmin

H−1
C,θ,θ∈Θ

∑N

n=1
L
(
Cn,H−1

C,θ

{
In }) + ψ (θ) , (8)

H−1
C

Θ
L (·)

Cn H−1
C,θ {In}

ψ (θ)

(In,An)
(
In,ϕn

)

where  is defined by a set of parameters that includes
the  weights  and  biases,  and  is  the  set  of  all  possible
parameters in the neural  network.  is the loss func-
tion used to measure the error between  and ,
and  is  a  regularizer  employed  on  the  parameters
with  the  aim  of  avoiding  overfitting.  The  structure  and
hyperparameter  settings  of  the  two  networks  are  the
same.  After  training  using  datasets  and 
separately,  two  CNN models  with  different  weights  and
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biases  were  obtained.  Once  the  CNNs  are  trained,  the
complex-amplitude data  page  can  be  demodulated  dir-
ectly from the diffraction intensity image.

I (u, v)
A (u, v) ϕ (u, v)

In this study, the architecture of the neural networks is
set  as  Unet,  as  shown in Fig. 7. Unet  is  a  fully  convolu-
tional  network  with  an  encoder–decoder  architecture33.
The input of the network is the diffraction intensity im-
age  and  the  output  is  the  amplitude  data  page

 or phase data page  depending on wheth-
er the  model  is  trained  as  an  intensity-amplitude  or  in-
tensity-phase  model.  We  use  rectified  linear  units
(ReLU),  that  is,  ReLU(x)  =  max  (0, x)  as  the  activation
function, following  the  convolutional  layers  and  Sig-
moid, that is, S(x) = (1 + e x )−1 in the output layer34.

The entire process of the complex amplitude demodu-
lation  is  shown  in Fig. 8.  In  the  training  process,  the
training datasets  of  the  intensity-amplitude  and  intens-
ity-phase  were  fed  into  CNN1  and  CNN2,  respectively,
to optimize the two models. In the test process, the amp-
litude  and  phase  data  pages  were  retrieved  by  trained
CNN1 and CNN2 from a single diffraction intensity im-
age  directly.  Subsequently,  the  corresponding  complex-
amplitude data were obtained by hard decision from the

complex-amplitude data page.

 Experiments

 Experimental setup

λ = 532  nm

To verify the proposed method, an experimental  optical
system was set up, as shown in Fig. 9. A laser beam with
a  wavelength  (MSL-FN-532)  irradiated  on
SLM1 (CAS MICRPSTAR, FSLM-HD70-A/P, pixel pitch
8 μm) after collimation and expansion. P1 and P2 are lin-
ear polarizers. P1 is horizontally polarized, and P2 is ver-
tically  polarized  to  achieve  amplitude-only  modulation
for  SLM1.  The  amplitude  data  page  was  loaded  into
SLM1  to  modulate  the  amplitude  of  the  incident  light.
Subsequently,  the  amplitude-modulated  light  passed
through  two  4-f  systems  composed  of  lens  L2,  L3,  L4,
and  L5,  and  irradiated  on  SLM2  (CAS  MICRPSTAR,
FSLM-2K70-VIS, pixel pitch 8 μm). The phase data page
was loaded  into  SLM2 to  modulate  the  phase.  An aper-
ture  was  used  to  filter  out  the  unmodulated  beam.
HWP1  and  HWP2  were  used  to  adjust  the  polarization
state of the light to meet the requirements of SLMs. The
last 4-f  system,  composed  of  lens  L6  and  L7,  is  the  re-
cording  and  reading  system  of  the  HDS.  The  media
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should  be  placed  on  the  back  focal  plane  of  lens  L6,  as
shown in Fig. 9(a). In this experiment, we did not intro-
duce media.  We researched the retrieval performance at
different diffraction distances through simulated experi-
ments and chose z=2 mm as the diffraction distance for
the physical experiment. The reproduced beam obtained
at the back focal plane of lens L7 continued to propagate
for a distance z = 2 mm and the diffraction intensity was
captured  by  CMOS  (CHUM-131M-150,  pixel  pitch  4
μm).  The calibration curves  of  the  amplitude and phase
SLM  are  shown  in Fig. 9(c) and Fig. 9(d).  The  intensity
image captured by CMOS is shown in Fig. 9(e).

 Data preparation and neural network training
The complex amplitude data page and its corresponding
diffraction intensity image are shown in Fig. 10. The data
page was a 32 × 32 data matrix. Each data point was rep-
resented by 10 × 10 pixels of the SLMs. The pixel matrix
of the amplitude and phase data page was 320 × 320. The

physical size of the beam on SLM2 was 2.56 × 2.56 mm.
Owing to the expansion of the propagating beam caused
by  diffraction,  the  linear  size  of  the  beam  indicated  on
the CMOS was slightly larger than 2.56 mm, correspond-
ing to the pixel matrix on the CMOS that was larger than
640 × 640. Therefore, we chose 768 × 768 of the diffrac-
tion intensity images and shrank it to 384 × 384 by down
sampling. The amplitude and phase data pages with 320
× 320  pixels  were  enlarged  to  384  ×  384  pixels  by  pad-
ding  zero,  to  maintain  consistency  with  the  diffraction
intensity image. The amplitude and phase encoded pages
were randomly  generated  and  uploaded  to  the  experi-
mental  system  to  obtain  the  corresponding  diffraction
intensity  images.  Approximately  11  h  was  consumed  to
capture  9731 intensity  images.  Among them,  8993 pairs
of  the  intensity-amplitude  dataset  were  used  to  train
CNN1 and 8993 pairs of intensity-phase pages were used
to train CNN2. A total of 738 pairs of images were used
to test the generalization of the neural networks.
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L (·)The  loss  function  in Eq.  (8) is  defined  as  MSE,
expressed as 

MSE = min
1

JWH

J∑
j=1

W∑
u=1

H∑
v=1

(
C̃j (u, v)− Cj (u, v)

)
,

(9)

C̃(u, v)

C(u, v)

where W and H are  the  width  and  height  of  the  data
page,  respectively,  and J = 4 is  the minibatch size in the
stochastic  gradient  descent  (SGD)  method35.  is
the  amplitude  or  phase  data  page  predicted  from the jth

diffraction  intensity  image Ij,  and  is the  corres-
ponding  ground truth.  The  detailed  hyperparameters  of
the  neural  network  training  are  shown  in Table 5.  The
program was implemented in Python 3.6 using PyTorch.
NVIDIA  Quadro  RTX5000  was  used  to  accelerate  the
computation. Approximately 13 h was consumed to op-
timize a single network.

 Experimental results and discussion

 Results
A diffraction  image  was  randomly  chosen  from the  test
set  to  retrieve  the  complex  amplitude  using  the  trained
CNN1 and CNN2. The predicted data pages and ground
truth are shown in Fig. 11. Both the amplitude shown in
Fig. 11(c) and  the  phase  shown  in Fig. 11(f) were re-
trieved from the diffraction intensity image in Fig. 11(a).
Fig. 11(d) and Fig. 11(g) show  the  differences  between
the predicted results and the ground truth (amplitude in

Fig. 11(b) and  phase  in Fig. 11(e)),  respectively.  For  the
pixels with a small difference in the reconstructed image,
a hard decision was used to correctly classify them. The
points with a larger gap, shown as red data in Fig. 11(d)
and Fig. 11(g), will be the error points after hard decision.

The  marginal  histogram  of  the  total  1024  (32  ×  32)
complex-amplitude data  points  decoded  from  the  re-
trieved  amplitude  and  phase  data  pages  in Fig. 11,  is
shown  in Fig. 12.  The  data  points  are  divided  into  16
complex-amplitude  categories  (four-level  amplitude  by
four-level  phase)  by  hard  decision.  The  data  points  in
different  categories  are  represented  by  different  colored
dots. The  coordinates  of  each  point  represent  the  de-
coded values. Each arrow indicates the direction of error
for an erroneous data point from the ground truth posi-
tion to  the  retrieved  position.  For  example,  the  blue  ar-
row  indicates  that  the  retrieved  value  of  a  data  point  is
(π/6, 0.45) whose ground truth is (π/6, 0.7). It will be cat-
egorized as error data after hard decision. The histogram
indicates the distribution of the retrieved data. From the
data point  distribution  and  marginal  histogram,  the  re-
trieved  data  are  highly  concentrated,  and  most  of  the
data  points  are  close  to  the  ground  truth.  Only  eight
points (0.7%) on the complex-amplitude data page were
decoded incorrectly.

 Discussion

 Accuracy
To  evaluate  the  accuracy  of  the  proposed  method,  we
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SLM1. (b) Phase data page uploaded on the phase SLM2. (c) Diffraction intensity image captured by the CMOS at a diffraction distance of 2 mm.

 
Table 5 | Neural network training hyperparameters.

 

Loss function MSE

Training epochs 50

Learning rate 10-4

Batch size 4

Optimizer Adaptive moment estimation36

Active function ReLU for hidden layer; Sigmoid for output layer34
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used the peak signal-to-noise ratio (PSNR)37:
 

PSNR = 10log10·

(
(2n − 1)2

1
WH

∑W
u=1

∑H
v=1

∥∥C̃j (u, v)− Cj(u, v)
∥∥2
)

,

(10)
The structural similarity index (SSIM) is given by38

 

SSIM =
(2μC̃μC + c1)(2σC̃C + c2)

(μ2
C̃ + μ2

C + c1)(σ2C̃ + σ2C + c2)
, (11)

μf, f ∈
{
C, C̃

}
σ2f

σC̃C C̃ C c1 c2

where , is the mean of the image f, and  is
the variance;  is  the  covariance of  and ;  and 
are the regularization parameters.

PSNR was  used  to  evaluate  the  quality  of  the  recon-
structed image. A high PSNR value is preferred. A PSNR
higher than 40 dB indicates that the image quality is con-
siderably  close  to  that  of  the  original  image.  The  SSIM
was used to measure the structural  similarity  of  the two
images, and the best value was 1. The average PSNR and
SSIM  between  the  retrieved  amplitude  and  phase  data
pages and the ground truth in the training and test sets,
respectively,  were  calculated.  The  results  are  shown  in
Fig. 13.  The retrieved image accuracy of  the test  set  was
lower compared with that of the training set, as expected
based  on  the  deep  learning  principles.  The  PSNR  and
SSIM of  the  phase  test  set  were  41  and  0.997,  respect-
ively,  better  than  the  amplitudes  of  34  PSNR  and  0.993
SSIM.

Furthermore, to verify the robustness of the proposed
method,  all  the 738 intensity  images in the test  set  were
demodulated. The calculated bit error rate (BER = num-
ber  of  error  data/total  number  of  data*100%)  is  plotted
in Fig. 14. Figure 14(a) and Fig. 14(b) shows the BER dis-
tribution of the predicted amplitude and phase, respect-
ively.  The  results  show  that  the  retrieved  results  have  a
certain degree of  randomness,  but  the BERs of  both the
amplitude  and  phase  data  were  below  3%.  The  average
BER of the amplitude test data was 0.65%, and the phase
was  0.5%.  The phase-decoded data  were  relatively  more
accurate than the amplitude-decoded data.

 Error analysis
We retrieved all the intensity images in the training and
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test  datasets  and  superimposed  the  error  map  into  one
image  to  show  the  spatial  distribution  of  the  error.  The
results  are  shown  in Fig. 15.  Row  (I)  in Fig. 15 presents
the result of the training dataset and row (II) presents the
test  dataset.  The 1st and 3rd columns in Fig. 15 represent
the amplitude  and  phase  accumulation  of  the  pixel  dif-
ference  between  the  retrieved  data  pages  and  ground
truth, respectively. A region of 3 × 3 points has been ran-
domly  selected,  enlarged,  and  displayed.  The  grayscale
distribution of the cross-section of the red line has been
drawn.  From  the  enlarged  area  in Fig. 15(a),  within  a
data  point,  the  error  in  the  edge  region  of  the  retrieved
amplitude data is larger, whereas the error in the middle
region is  smaller.  The error  for  the  retrieved phase  data
points in Fig. 15(c) is the opposite—higher in the middle
and lower  at  the  periphery.  This  is  because  the  amp-
litude is  derived  from  the  original  amplitude  distribu-
tion  features  in  the  intensity  map,  whereas  the  phase  is
derived  from  the  diffraction  features  generated  by  light
diffraction. Near field diffraction enhances phase charac-
teristics and weakens amplitude characteristics. This en-
hancement  of  phase-related  features  and  the  weakening
of amplitude-related  features  mainly  occur  in  the  re-
gions adjacent to the data points (refer to Fig. 3 and Fig.

4).  The  error  generated  can  be  explained  based  on  the
principle of complex amplitude retrieval proposed in this
study  and  cannot  be  eliminated.  However,  it  does  not
generate bit errors after hard decision decoding. The 2nd

and 4th columns in Fig. 15 show the error data points dis-
tributions  of  the  whole  demodulated  amplitude  and
phase page, respectively. From Fig. 15(f) and 15(h), both
the errors of the amplitude and phase data are higher in
the central  area of the data page.  The error has a strong
relationship  with  the  noise  distribution,  as  observed  in
the  intensity  map shown in Fig. 15(e). Owing to  the  in-
fluence of  uneven light  beams,  interference  fringes  gen-
erated by the  multi-reflection of  the  optical  system,  and
thermal noise of the optical devices, the captured intens-
ity  map  shows  uneven  brightness  and  darkness.  This
noise has a greater influence on amplitude retrieval. This
error is  due  to  the  experimental  noise  and  can  be  re-
duced by improving the experimental accuracy.

 Conclusion
In this paper, a complex amplitude demodulation meth-
od based on deep learning is  proposed that  can retrieve
both  the  amplitude  and  phase  from  a  single-shot  near
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field diffraction intensity image. By analyzing the correl-
ation between the near field diffraction and the encoded
data  pages,  the  inverse  problem  of  solving  the  complex
amplitude  from  the  intensity  map  is  decomposed  into
two  inverse  problems  of  retrieving  the  amplitude  and
phase  and  represented  by  CNN  respectively.  After  the
CNNs’ training  is  completed,  the  amplitude  and  phase
data pages  can  be  directly  reconstructed  from a  diffrac-
tion intensity image. To the best of our knowledge, this is
the  first  study  to  have  retrieved  the  complex  amplitude
data  page  from a  single  intensity  image  using  a  non-in-
terferometric system and verified it experimentally, relat-
ive  to  the  current  demodulation  technique  in  HDS.  In
addition,  the  study  of  diffraction  features  based  on  the
encoding rule  provides  a  new  perspective  on  the  re-
search of deep learning applications in the field of com-
putational  imaging.  As  an  end-to-end  deep  learning
method,  in  actual  use,  a  large  amount  of  experimental
data is still needed to be collected to train the neural net-
work. However, we found that by exploiting the relation-
ship  of  the  diffraction  pattern  to  the  encoded  data,  the
amount of data required to train the network can be fur-
ther  reduced.  In  the  future,  we  will  continue  to  study
how to train the neural network with a small amount of
training  data  by  designing  the  structure  of  the  encoded
data page.
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