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Racemic dielectric metasurfaces for arbitrary
terahertz polarization rotation and wavefront
manipulation
Jie Li1,2, Xueguang Lu3, Hui Li2, Chunyu Song2, Qi Tan2, Yu He1,
Jingyu Liu6, Li Luo1, Tingting Tang1, Tingting Liu4, Hang Xu 2*,
Shuyuan Xiao4*, Wanxia Huang3*, Yun Shen5*, Yan Zhang6,
Yating Zhang2 and Jianquan Yao2*

Dielectric chiral metasurface is a new type of planar and efficient chiral optical device that shows strong circular dichro-
ism or optical activity, which has important application potential in optical sensing and display. However, the two types of
chiral optical responses in conventional chiral metasurfaces are often interdependent, as their modulation of the ampli-
tudes and phases of orthogonal circularly polarized components is correlated, which limits the further progress of chiral
meta-devices. Here we propose a new scheme for independently designing the circular dichroism and optical activity of
chiral metasurfaces to further control the polarization and wavefront of transmitted waves. Inspired by mixtures of chiral
molecular isomers, we use the dielectric isomer resonators to form “super-units” instead of single meta-atoms for chiral
responses  in  terahertz  band,  which  is  called  racemic  metasurface.  By  introducing  two  levels  of  Pancharatnam-Berry
phases  between  meta-atoms  and “super-units”,  the  polarization  rotation  angle  and  wavefront  of  the  beam can  be  de-
signed  without  the  far-field  circular  dichroism.  We  demonstrate  the  strong  control  ability  on  terahertz  waves  of  this
scheme through simulation and experiments. In addition, this new type of device with near-field chirality but no far-field
circular dichroism may also have important value in optical sensing and other technologies.
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Introduction
The arbitrary control of light waves or photons is a core

topic for modern optics and photonics, and it is also the

foundation  of  optical  devices  and  systems1.  In  recent

decades,  the  rapid  development  of  ultrafast  laser,  quan-

tum optics, Fourier optics and other fields has promoted 
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the new applications of laser and terahertz wave such as
communication, imaging, and advanced manufacturing2.
However,  with  the  growing  demand  for  diversified  and
intelligent optical systems, the number and complexity of
optical  devices  are  increasing,  posing  higher  require-
ments for their integration level and optical field control
dimension.  Traditional  optical  devices  such  as  lenses,
wave  plates  and  polarizers  are  bulky  and  highly  depen-
dent on the characteristics of their constituent materials.
It  is difficult for a single device to achieve multi-dimen-
sional  manipulation  of  light,  and  many  optical  compo-
nents  require  precise  processing  or  human  experiences.
In  the  past  decade,  nanophotonics  and  metasurfaces
have provided an important alternative solution for this
problem3−5. The planar and ultra-thin structures of opti-
cal  metasurfaces  are  conducive  to  the  efficient  integra-
tion  of  multiple  devices,  and  their  preparation  methods
are in line with the progress of modern micro/nano pro-
cessing  technology6,7.  More  importantly,  dual- or  even
multi-parameters  control  of  light  such  as  amplitude,
phase,  polarization and wavefront  can be achieved via  a
single  meta-device8−10.  It  provides  important  ways  for
emerging fields such as manipulation of photon state11,12,
light  control  in  momentum  space13,14,  and  micro-nano
laser sources15,16.

Chiral  nanophotonics is  an important part  of  the mi-
cro-nano optics, and its achievements have covered light
sources17,18,  optical  devices  and  photodetectors19−22.  The
chiral  optical  responses  in  metasurfaces  include  optical
activity (OA) and circular dichroism (CD), which are ob-
tained through intrinsic or extrinsic chirality23,24. Electro-
magnetic  resonances  can be selectively  excited by circu-
larly polarized light in chiral meta-atoms to generate op-
tical  chirality  much  greater  than  free  space  wave  at  the
micro-nano scale, which have been applied in biochemi-
cal  sensing25,  circularly  polarized  light  detection26,  opti-
cal display27, and other scenarios28. Combined with Pan-
charatnam-Berry  (P-B)  phase,  its  polarization  sensitive
far-field control capability can be used for multi-channel
holography,  full  space  beam  focusing  and  dynamic  po-
larization modulation29−33. The optical activity and circu-
lar dichroism of intrinsic chiral meta-atoms can be con-
sidered as originating from differences in real and imagi-
nary  parts  of  their  equivalent  refractive  indices  (caused
by electromagnetic mode in subwavelength scale) for left
and right circularly polarized (LCP and RCP) waves, re-
sulting in differences in their phase and amplitude34. For
a  single  chiral  meta-atom,  achieving  controllable  OA

without CD in far-field region by adjusting structural pa-
rameters is difficult, as the rotation of polarization angle
are  often  accompanied  by  changes  in  the  amplitude  of
the  orthogonal  circularly  polarized  components,  i.e.
changes in ellipticity35. How to obtain arbitrary polariza-
tion rotation without CD using chiral metasurfaces while
designing other optical parameters simultaneously is still
an  attractive  topic.  Specifically,  chiral  metasurfaces  in
terahertz band can achieve novel applications such as dy-
namic  polarization  manipulation  and  biochemical
sensing36−44.

In this paper,  we propose a new method for arbitrary
polarization rotation and wavefront manipulation based
on racemic dielectric metasurfaces,  inspired by the mix-
ture of chiral molecular isomers. Without loss of general-
ity,  we  demonstrate  an  example  of  all-silicon  meta-de-
vice  in  the  terahertz  band.  By  combining  a  pair  of  iso-
mers with mirror patterns to form a "super-unit" instead
of a single chiral meta-atom, arbitrary polarization rota-
tion  angles  are  obtained  while  maintaining  almost  con-
stant  ellipticity.  At  the  same time,  relative  phase  shift  is
introduced  between  the  "super-units"  based  on  P-B
phase, and the wavefront of the transmitted wave is also
can be designed. In addition, the racemic dielectric meta-
surfaces  can  still  be  excited  for  enhanced  chiral  near-
field, but it does not show circular dichroism in the far-
field  region.  We  do  not  choose  metal  meta-atoms  here,
mainly considering that dielectric metasurfaces can pro-
vide  high  transmission  efficiency  while  stimulating
strong  chiral  responses,  and  are  more  conducive  to  the
independent  existence  of  chiral  near-field  near  the  two
isomers. This novel characteristic may not only plays an
important  role  for  light  field  manipulation,  but  also  has
the  potential  to  be  applied  in  the  sensing  of  chiral  bio-
chemical substances. 

Results and discussion
The new scheme for polarization and wavefront manipu-
lation  based  on  racemic  dielectric  metasurface  is  shown
in Fig. 1.  Here,  meta-devices  in  the  terahertz  band  are
used as demonstration examples,  and we can design the
transmitted wave for a specific wavefront (such as beam
deflection,  focusing  and  vortex  generation)  with  arbi-
trary  polarization  rotation  angle.  A  basic  unit  of  a
racemic metasurface consists of a pair of S-shaped chiral
isomers,  totaling  four  chiral  meta-atoms  as  a “super-
unit”. The metasurface is an all-silicon device, with both
the  substrate  and  upper  structure  composed  of  high
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resistance silicon (ρ>20000 Ω). The geometrical parame-
ters  are  shown  in  the  figure,  with  substrate  thickness
H1=300  μm,  resonance  unit  height H2=200  μm,  period
P=216  μm,  and  other  in-plane  dimensions L1=72  μm,
L2=60 μm, W1=36 μm, W2=56 μm. All the samples we will
demonstrate in the subsequent sections are composed of
30×30 "super-units" or 60×60 chiral meta-atoms.

The prerequisite for above functions is to obtain suffi-
cient  transmission  circular  dichroism  (TCD)  in  chiral
meta-atoms. By simulating and optimizing the S-shaped
structure, we have found the size values listed earlier. We
calculated four transmission coefficients  using commer-
cial software, as shown in Fig. 2(a) and 2(b), where the il-
lustrations represent the corresponding unit shapes. The
transmitted and incident terahertz waves can be correlat-
ed by the Jones matrix of meta-atoms45:  (

Ex
t
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t

)
=

(
txx txy
tyx tyy

)(
Ex
i

Ey
i

)
= T

(
Ex
i

Ey
i

)
, (1)

Ex,y
i,jwhere are  different  incident  and  transmitted  polar-

ized electric fields, ti,j(i,j=x,y) are transmission coefficients
in  linear  polarization  basis.  Based  on  the  simulation  re-
sults of transmission matrix T, we calculate the transmis-
sion matrix for circularly polarized waves  (

tRR tRL
tLR tLL

)
=

1
2

(
txx + tyy + i(txy − tyx) txx − tyy − i(txy + tyx)
txx − tyy + i(txy + tyx) txx + tyy − i(txy − tyx)

)
,

(2)

where ti,j(i,j=R,L) are  transmission  coefficients  in  circular
polarization basis. The red unit shows strong TCD at the
frequency of 1 THz, and the tRL component in its trans-
mission  coefficients  has  the  maximum  value  while  the
other  quantities  are  very  small.  The  situation  for  a  blue
unit is exactly opposite, with its tLR component showing
the maximum value. In addition, we also need the select-
ed  structure  to  be  used  for  standard  chiral  geometric
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Fig. 1 | (a) Arbitrary polarization rotation and wavefront control capability of the device, such as beam deflection, focusing and vortex generation

with different polarization rotation angles. (b) The array structure of a meta-device consisting of "super-units", where the chiral meta-atoms are ro-

tated with different angles. (c) The composition of a "super-unit", where the red and blue parts respectively represent two different chiral meta-

atoms (enantiomer A and enantiomer B, Ent A and Ent B). (d) The geometric parameters of the chiral meta-atoms, which are applicable to both

Ent A and Ent B.
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phase, as not all chiral meta-atoms can obtain P-B phase
through rotation29−33. Figure 2(c) shows the transmission
amplitude  (tRL component)  and  rotation  angle  of  the
aforementioned  red  unit  after  in-plane  rotation  around
its geometric center. The step size of the rotation angle θ
is 22.5 degrees. Obviously, these curves only show slight
fluctuations  and  remained  above  0.6  at  the  peak  of  the
curve.  More  intuitively,  we  extracted  the  transmission
amplitude and phase at different rotation angles at a fre-

quency of 1 THz and displayed them in Fig. 2(d). It  can
be observed that the phase change satisfies good lineari-
ty,  and  we  have  obtained  the  standard  chiral  geometric
phase.  On  the  other  hand,  the  spin  selective  transmis-
sion  is  mainly  due  to  the  high-order  electric  multipole
excited by specific circularly polarized terahertz waves in
chiral  meta-atoms,  which  exhibit  significant  backward
scattering. To prove this, we present the electric field dis-
tribution  of  the  "red"  meta-atoms  under  LCP  and  RCP
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Fig. 2 | (a, b) Circularly polarized transmission coefficients of the chiral enantiomers. (c) The transmission component tRL of the meta-atoms with

different rotation angles. (d) The transmission amplitude and phase of chiral meta-atoms with different rotation angles at the operating frequency

of 1 THz. (e) The localized electric field excited by LCP and RCP waves of meta-atoms with different rotation angles.
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waves excitations in Fig. 2(e), where there is a significant
electric field enhancement when RCP waves are incident,
while  LCP  waves  are  almost  unable  to  excite  localized
strong electric fields. More importantly, this selective en-
hancement  can  be  almost  maintained  when  the  meta-
atoms undergo in-plane rotation, which is also the direct
reason for the appearance of chiral geometric phases.

We  prepared  the  metasurface  samples  mentioned  in
Fig. 2(a) and 2(b) using  standard  UV  lithography  and
ICP  (Inductively  Coupled  Plasma)  etching  techniques.
The  samples  with  a  same  size  of  1.4  cm  ×  1.4  cm  are
composed of meta-atoms without rotation (θ=0°). Scan-
ning electron microscope (SEM) images of the structure
(red  unit)  are  presented  in Fig. 3(a),  and  several  photos
from  different  perspectives  and  magnifications  demon-
strate the standardization of our sample preparation. We
use  a  home-built  polarization  resolved  terahertz  time-
domain spectroscopy (PTDS) system to measure the chi-
ral  transmission  spectra  of  the  samples,  which  contains
four  metal  wire  grid  polarizers  based  on  the  standard
TDS system.  As  shown in Fig. 3(b),  by  rotating  polariz-
ers  P2 and  P3 to  45°  and –45°  as  new  reference  frames,
four linearly polarized transmission coefficients are mea-
sured and then the circularly polarized transmission ma-
trix  are  calculated  according  to Eq.  (2).  In  the  optical

path,  P1 and  P4 are  used  to  improving  the  polarization
purity  and  enhancing  measurement  accuracy,  where  P2

and  P3 are  used  for  polarization  projection.  More  de-
tailed  operating  methods  and  theoretical  basis  can  be
seen in the Supplementary information Section 2. Figure
3(c) and 3(d) show  the  final  experimental  results,  with
the sample structures shown in red and blue patterns, re-
spectively. The four circularly polarized transmission co-
efficients  are in good agreement with the simulation re-
sults  in Fig. 2,  and there is  a  slight  shift  in  the peak fre-
quency,  which may be  a  deviation generated  during  the
sample etching process.

Then  we  will  demonstrate  the  function  of  "super-
units". Based on the transmission coefficients in Fig. 2(a)
and 2(b), we calculated the transmission circular dichro-
ism TCD of  the  two  mirror  units  using  the  following
equation: 

TCD = |tRL|2 + |tLL|2 − |tLR|2 − |tRR|2 . (3)

It can be seen in Fig. 4(a) and 4(b) that the peak value
of  enantiomer  A  in  the  curve  is  positive,  with  a  maxi-
mum value close to 0.4. On the contrary, the peak value
of enantiomer B is around −0.4. This already means high
chirality efficiency, after all, terahertz waves show signifi-
cant  reflection  losses  at  the  air-silicon  interface.  It  is
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Fig. 3 | (a) Scanning electron microscopy (SEM) images of the chiral metasurface sample, the scale bar is 200 μm. (b) Schematic diagram of the

polarization resolved terahertz time-domain spectroscopy system. (c, d) Measured results of the circularly polarized transmission spectra for two

chiral metasurfaces.
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interesting that  when we combine the two enantiomers,
the  new  "super-unit"  in Fig. 4(c) becomes  a  racemic
structure  without  circular  dichroism  because  it  has  a
mirror  symmetry  axis.  Meanwhile,  we present  the  near-
field  excitation  of  the  three  units  mentioned  above  at  1
THz in Fig. 4(d−f). Compared with a single chiral meta-
atom,  the  chiral  near-field  excited  in  hybrid  structures
has slightly weakened, but still maintains significant spin
selectivity,  providing  assurance  for  the  manipulation  of
transmitted waves.

In fact, enantiomers A and B serve as circular polariz-
ers in the hybrid structure. When we introduce geomet-
ric phase by rotating the meta-atom, the transmitted or-
thogonal  circularly  polarized  components  combine  to
form  a  controllable  rotated  linearly  polarized  wave,
which means the symmetry of the racemic structure has
been  disrupted.  This  can  be  analyzed  from  the  classical
polarization theory. Assuming that the transmitted com-
ponents  of  two  chiral  isomers  are  RCP and  LCP waves,
with  an  initial  phase  of  0  and  a  rotation  angle  of  red
meta-atoms β.  The  two  orthogonal  components  can  be

written by a Jones matrix as46: 

EL =
1
2

[
1
i

]
exp(iφL),ER =

1
2

[
1
i

]
exp[i(φR + 2β)] ,

(4)
where φR and φL are  phase  shifts  of  circularly  polarized
components  caused  by  the  metasurface.  The  Jones  vec-
tor  of  the  terahertz  wave  synthesized  after  passing
through a metasurface can be written as 
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Obviously, the rotation angle of the synthesized linear-
ly  polarized wave is  equal  to the in-plane rotation angle
of  the  chiral  unit,  which  provides  a  very  convenient
method for polarization manipulation. Of course, the ro-
tation angle of unit here is a relative value, and different
absolute  angles  can  be  used  to  design  the  transmitted
wavefront. We have shown three examples in Fig. 4(g−i),
assuming that the rotation angle of the red unit is β. The
incident wave in the simulation is horizontally polarized
(along the x-axis). The figure provides unit diagrams for
each scenario and the polarization state of the transmit-
ted wave, when β=0°, the polarization state of the trans-
mitted wave is consistent with that of the incident wave.
When β=45° or β=90°, the polarization state of the trans-
mitted wave rotates by a corresponding angle.

Based on the above results, we can now achieve the fi-
nal functionality of the meta-device. Firstly, we simulate
the  polarization  rotation  performance  of  a  "super-unit"
with a relative rotation angle of 90 degrees,  as shown in
Fig. 5(a). The incident x-polarized terahertz wave is effi-
ciently converted into y-polarized at near f=1 THz. Based
on  the  structure  shown  in Fig. 5(a),  we  assume  that  the
angles  at  which  the  red  and  blue  chiral  meta-atoms  ro-
tate clockwise and counterclockwise, respectively, are β1,
then the relative phase shift obtained by the super-unit is
φ=2β1.  We  refer  to  the  relative  phase  between  super-
units  as  the  second-order  Pancharatnam-Berry  phase  to
distinguish  the  phase  shift  between  the  red  and  blue
units mentioned earlier (first-order Pancharatnam-Berry
phase). Figure 5(b) shows  several  different  scenarios.
Without loss of generality, we take focusing beams as an
example  to  demonstrate  the  functions  of  our  metasur-
face. Figure 5(c) shows the phase profile required for fo-
cusing, calculated by the following equation: 

φ(x, y) = −2π
λ
(
√

x2 + y2 + f2 − f) . (7)

In  our  design,  the  focal  length  is f=15  mm,  and  the
pixel  size  is  432  μm  ×  432  μm,  with  a  total  of  30  ×  30
phase points. Through full wave simulation of the meta-
surface,  the  obvious  focusing  effect  of  incident  plane
waves  on  the  focal  plane  is  observed. Figure 5(d) shows
the  simulation  results  in  the xoz plane,  where  the  inci-
dent wave is x-polarized and the y-polarized component
in the transmitted wave is significantly stronger. Similar-
ly,  in Fig. 5(e) and 5(f),  we  present  the  electric  field  in-
tensity  of  the x- and y-polarized  waves  in  the xoy plane
(actual focal plane is z=14 mm), respectively. This result

presents the focused beam while the polarization plane is
rotated  90  degrees.  In  the  experiment,  we  prepared  all-
silicon  metasurfaces  using  the  method  that  is  same  as
Fig. 3. Figure 5(g) shows  SEM  images  for  the  sample,
with white boxes marking some of the super-units. Final-
ly, we conduct the measurement of focused beam using a
terahertz  near-field  system,  scanning  terahertz  electric
fields for both x- and y-polarized components in the fo-
cal  plane.  The  experimental  results  (at  1.08  THz)  are
shown  in Fig. 5(h) and 5(i),  which  are  basically  consis-
tent  with  the  simulation  results.  Additionally,  we  calcu-
late the focusing efficiency based on the data in Fig. 5(f)
and 5(i), the results indicate that the efficiency values for
simulation and experiment  are ηs=45.9% and ηe=25.7%,
respectively.  The  focusing  efficiency  of  our  racemic
metasurface  is  not  as  high  as  many  other  reports,  after
all,  we use four meta-atoms as a phase pixel.  The differ-
ence  between  the  two  efficiency  values  may  be  mainly
caused  by  the  low  signal-to-noise  ratio  of  the  measure-
ment results. The near-field TDS system we use is shown
in Fig. 5(j),  consisting of terahertz emitter,  lens,  polariz-
er  and  microprobe.  The  detection  of  different  polariza-
tion components in the transmitted beam is achieved by
replacing  the  microprobe.  The  above  results  effectively
demonstrate  the  powerful  terahertz  wave  manipulation
ability of racemic metasurfaces. In addition, as the enan-
tiomers  in  the “super-units” provide  left- and  right-
handed  circularly  polarized  components  with  specific
phase differences,  the racemic metasurface may serve as
a new polarization multiplexing method for devices such
as multifunctional meta-lenses and holographic plates, as
well as for vector beam generation. 

Conclusions
In  conclusion,  we  have  demonstrated  a  new scheme for
polarization  and  wavefront  control  of  terahertz  wave
based on racemic dielectric metasurfaces, both on simu-
lation  and  experiment.  To  alleviate  the  interference  be-
tween  CD  and  OA  in  ordinary  chiral  metasurfaces,  we
use the combination of  chiral  isomers to form a "super-
unit"  instead  of  using  a  single  meta-atom  as  the  mini-
mum  working  unit.  Firstly,  we  obtained  an  S-shaped
structure with strong chiral response through parameter
optimization  and  processed  two  isomer  samples  for  ex-
perimental  verification. We built  a polarization resolved
TDS  system  to  complete  transmission  spectrum  mea-
surement. Then, we mix and arrange the validated chiral
meta-atoms  to  form  a  new  working  unit  and  introduce
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P-B  phase  between  the  atoms  (which  is  called  the  first-
order geometric phase) to obtain a polarization rotation
angle. To design the wavefront of the transmitted beam,
we next introduced an additional P-B phase between the
super-units,  i.e.  second-order  geometric  phase.  We  fur-
ther  validated the  wavefront  control  function of  the  hy-
brid  metasurface  through  simulation  of  the  whole  sam-

ple  and  measurement  of  the  transmitted  focused  beam
within  the  focal  plane.  Our  scheme  effectively  unlocks
the  CD  and  OA  of  chiral  metasurfaces  while  maintain-
ing the  wavefront  design and also  separates  the  correla-
tion between near-field and far-field chirality of a meta-
device, which is of great significance for optical field ma-
nipulation  and  chiral  sensing.  In  terms  of  light  field
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manipulation,  simultaneous  control  of  chiral  near-field
and far-field can be used for image encryption and mul-
tiplexing  display.  For  optical  sensing,  Racemic  metasur-
faces can enhance the chirality of the analyte while elimi-
nating  background  signals,  making  sensing  more
accurate.
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