
The possibilities of using a mixture of PDMS and phosphor in a wide range of industry
applications
Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek and Carlos Marques

Citation: Rendeiro R, Jargus J, Nedoma J, et al. The possibilities of using a mixture of PDMS and phosphor in a wide
range of industry applications. Opto-Electron Adv 7, 240133(2024).

https://doi.org/10.29026/oea.2024.240133

Received: 2 June 2024; Accepted: 19 August 2024; Published online: 20 September 2024

Related articles
High-speed visible light communication based on micro-LED: A technology with wide applications in next
generation communication
Tingwei Lu, Xiangshu Lin, Wenan Guo, Chang-Ching Tu, Shibiao Liu, Chun-Jung Lin, Zhong Chen, Hao-Chung Kuo, Tingzhu Wu
Opto-Electronic Science    2022  1,  220020        doi: 10.29026/oes.2022.220020

Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography
Liuyang Yang, Yanpeng Li, Fang Fang, Liangye Li, Zhijun Yan, Lin Zhang, Qizhen Sun
Opto-Electronic Advances    2022  5,  200076        doi: 10.29026/oea.2022.200076

More related article in Opto-Electronic Journals Group website  

http://www.oejournal.org/oea  OE_Journal  @OptoElectronAdv

https://www.oejournal.org/oea/
https://doi.org/10.29026/oea.2024.240133
https://www.oejournal.org/article/doi/10.29026/oes.2022.220020
https://www.oejournal.org/article/doi/10.29026/oes.2022.220020
https://doi.org/10.29026/oes.2022.220020
https://www.oejournal.org/article/doi/10.29026/oea.2022.200076
https://doi.org/10.29026/oea.2022.200076
https://www.oejournal.org/article/doi/10.29026/oea.2024.240133#relative-article
https://www.oejournal.org/article/doi/10.29026/oea.2024.240133#relative-article
http://www.oejournal.org/oea


DOI: 10.29026/oea.2024.240133                        CSTR: 32247.14.oea.2024.240133

The possibilities of using a mixture of PDMS and
phosphor in a wide range of industry
applications
Rodrigo Rendeiro 1, Jan Jargus2, Jan Nedoma2, Radek Martinek3 and
Carlos Marques 1,4*

A mixture of polydimethylsiloxane (PDMS) doped with phosphor particles can be found across diverse industries having
different  applications.  This  mixture  plays  a  particularly  important  role  in  the  field  of  lighting,  white  light-emitting  diodes
(LED's), flexible display devices, anti-counterfeiting (AC) solutions, luminescence thermometers and many types of sen-
sors. The field of mechanoluminescence and biomedical are booming and there is also potential for visible light commu-
nication (VLC).  In this  comprehensive review, the basic characteristics of  PDMS and a list  of  selected phosphors suit-
able for creating a mixture of PDMS and phosphor are presented. The summary and a detailed overview of the imple-
mented applications of this perspective mixture over the last decade is presented as well.
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Introduction
The combination of phosphor and polydimethylsiloxane
(PDMS) is constantly finding new possibilities for its ap-
plication in many areas of human activity and industrial
production.  This  is  due  to  the  fact  that  the  mixture  of
phosphorus and PDMS has many advantageous proper-
ties. PDMS is an elastomeric polymer first synthesised in
the 1950s by Wacker Chemies and the first main use was
the  encapsulation  of  electronic  components,  acting  as  a
dielectric insulator, protecting the components from me-
chanical shocks and other environmental factors within a

large  temperature  range.  Due  to  its  high  elasticity  and
stability  of  its  properties,  PDMS  is  widelly  used  as  me-
chanical sensor1,2.

In  1998,  a  patent  describing  the  use  of  PDMS  mixed
with  phosphorus  materials  for  the  optical  encapsulation
of  LED's  was  filled.  In  this  patent,  PDMS  is  referred  as
the best alternative to the conventional alternative at the
time,  polymethylmethacrylate  (PMMA),  polycarbonate,
optical  nylon,  transfer  molded  and/or  cast  epoxy  have
been  used  for  encapsulation.  However,  these  materials
suffered  degradation  of  the  optical  characteristics  over 
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time, contrary to PDMS3. Epoxy-based resins tend to yel-
low over time due to high temperature exposure and ab-
sorption  of  ultraviolet  (UV)/blue  light4.  Depending  on
the  choice  of  phosphor,  it  is  possible  to  obtain  the  de-
sired  range  of  excitation  and  converted  wavelengths.  A
downconversion or upconversion phosphor can be more
suitable for a particular application. In the case of upcon-
version, the excitation wavelength is longer than the con-
verted one, and the opposite is true for downconversion.
For  combination  with  phosphor,  it  is  preferable  to  use
clear polydimethylsiloxane, e.g. Sylgard 184 type. Thanks
to the clear color, light losses of both excitation and con-
verted light are minimized. PDMS is a chemically stable
substance with remarkable resistance to thermal and ox-
idative degradation and is also resistant to UV and radia-
tion.  PDMS has  the ability  to  withstand long-term tem-
peratures in the range of approximately −50 °C to 200 °C
and can withstand even higher  temperatures  for  a  short
time.  Due  to  its  bonds,  it  has  high  adhesion  and  is
strongly hydrophobic. PDMS elastic modulus can be be-
tween 1.32 and 2.97 MPa and tensile strength from 3.51
to  5.13  MPa,  depending  on  the  manufacturing  method.
It also has excellent electrical insulation properties, is re-
sistant to various chemicals, does not cause corrosion of
other materials and has gas permeability.  PDMS devices
usually  have  repeatability  while  being  easy  to  manufac-
ture and cost-effective,  as with replica moulding. PDMS
is  biocompatible,  with  reported  uses  in  microfluids,
biomodels,  organ-on-a-chip  platforms,  blood  analogues
and membranes for filtering2,5,6. The connection of phos-
phor  and  PDMS  therefore  leads  to  considerable  resis-
tance of this mixture to the chemical and physical effects
of  the external  environment.  At the same time,  it  main-
tains flexibility in setting the wavelength ranges of excita-
tion and converted light.  In addition,  it  is  a  flexible  and
self-supporting mixture that exhibits sufficient mechani-

cal  resistance in  many areas  of  use7−14.  Among the most
important  are  the  area  of  white-LED's  and  solid-state
lighting,  for instance15−18.  Other important areas include
anti-counterfeiting (AC) solutions19−22,  temperature sen-
sors  or  thermoluminescence23−26 and  mechanolumines-
cence including also biomedical applications27−30. In par-
ticular, mechanoluminescence has recently experienced a
great  boom.  The  mixture  of  PDMS  and  phosphor  finds
application  in  many  sensor  and  detection
applications31−34, Fig. 1 summarizes some of the different
applications,  discussed  in  more  detail  in  the  next  sec-
tions, where the mixture of PDMS and phosphor materi-
als can be found.

The areas where the blend is  most matured are solid-
state lighting, specially white-LED's and AC solutions. In
contrast, the application in sensing, where the use of the
blend has a strong perspective in different areas, has yet
to  be  totally  explored.  Some  of  the  explored  areas  in
sensing  include:  pH sensor,  bio-sensor  (mechanical,  us-
ing  the  mechanoluminescence  capabilities  and  thermal,
using  the  thermoluminescence  capabilities),  metal
and/or  gaseous  particles  detector,  X-ray  and  UV  detec-
tion, etc. And there are certainly opportunities and chal-
lenges  in  the  field  of  visible  light  communications
(VLC)35−37. However, many phosphors are used in sever-
al areas, and therefore in some cases it is not easy to de-
termine the most important area of application of a giv-
en phosphor,  for  example38−40,  which highlights  the  ver-
satility of PDMS and phosphor blends.

It  is  known that  a  phosphor  consists  of  a  host  crystal
(host  lattice)  and  a  luminescence  center  (activator),  so
these two components influence the resulting properties
of the phosphor. In Table 1 some of the typical host ma-
trix,  typical  activator  ions  and  respective  emissions  are
showcased.

Ce3+Different properties of phosphors with  activator
 

Thermometry

LED color engineering

Optical sensors PDMS:phosphor Metal particles detection

Anti-counterfeiting solutions

Bio-sensorspH sensor

Anti bio-fouling agents

Photovoltaics

Solid-state lighting

Fig. 1 | Some applications of PDMS:phosphor, highlighting the heterogeneity of applications where the blend has potential uses.
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Gd3+

Y3+

Ce3+ YAG : Ce3+ Al3+

Gd3+

Ce3+

located in different types of host crystals (Fluorides, Oxy-
halides,  Aluminates,  Silicates  and  others)  are  known50.
Introducing  ions, which are larger and thus have a
increased crystal  field than  causes a  red shift  of  the

 emission  in .  A  substitution  of 
ions for the larger  shifts the spectrum in the other
direction, due to the weaker crystal field of the 51,52. 

Typical manufacturing process of PDMS and
phosphor mixture
The  process  of  preparing  the  PDMS  phosphor  mixture
has several stages. Due to its suitable physical and chemi-
cal  properties,  PDMS type  Sylgard  184  (Dow company)
is  very  often  used.  There  are  many  types  of  PDMS,  but
Sylgard 184 type PDMS is used very often in practice. It
will therefore be presented a possible recommended pro-
cedure  manufacturing  process  of  PDMS  and  phosphor
mixture  for  Sylgard  184.  For  other  types  of  PDMS,  the
procedure  can  be  similar,  however,  there  can  be  some
specific differences. Sylgard 184 is a two-component sili-
cone  elastomer  that  consists  of  a  "base"  and  a  "curing
agent"  with  a  recommended  mixing  ratio  of  10∶1
(base∶curing  agent)  by  weight.  After  mixing  these  two
components,  the  mixture  is  usually  stirred  briefly  and
intensively.
As a result of mixing, a large number of air bubbles form
in the mixture,  which must  be removed.  To remove the
bubbles, either a vacuum chamber is used, or they are al-
lowed  to  leave  on  their  own.  To  improve  and  speed  up
the process of spontaneous bubble removal, this mixture
can be temporarily placed in a refrigerator (e.g. at a tem-
perature  of  around  5  degrees  Celsius).  Then  comes  the
phase  of  mixing  PDMS and  phosphor  in  a  precisely  se-
lected  mass  ratio,  when  the  required  amount  of  PDMS
and powdered phosphor is weighed on precise scales and
mixed together, while this mixture is placed in a suitable

container, e.g. into a test tube.
Next,  the  process  of  homogenization  of  the  PDMS

phosphor  mixture  occurs.  This  process  can  be  imple-
mented with the help of an ultrasonic bath, or a mechan-
ical  shaker,  or  a  combination  of  both  of  these  options.
However, longer-term use of the ultrasonic bath can lead
to more intense heating of the PDMS phosphor mixture,
which  then  leads  to  faster  unwanted  thermal  curing  of
the mixture. To delay this thermal curing, it is advisable
to place the test  tube with the PDMS phosphor mixture
and the shaker in a cooling box (e.g. with a temperature
of around 5 degrees Celsius).

It is advisable that this process of mechanical shaking
of  the  PDMS  phosphor  mixture  takes  place  for  at  least
2–3 hours.  However,  with the use of  a  cooling box,  it  is
then  possible  to  extend  the  shaking  time  of  the  PDMS
phosphor  mixture  to  10  hours.  It  seems  appropriate  to
place  the  test  tube  with  the  weighed  PDMS  phosphor
mixture in a shaker that combines the possibility of rota-
tional  and  vibrational  movement,  which  can  be,  for  ex-
ample,  a  rotary  shaker  of  the  Multi  Bio  RS-24  type
(Biosan company).

After  the  end  of  the  phase  of  homogenization  of  the
PDMS  phosphor  mixture,  it  is  necessary  to  place  the
PDMS phosphor mixture in the desired place.  Thin lay-
ers  of  PDMS  phosphor  mixtures  are  often  created  on
suitable surfaces (e.g. microscope slides, wafers, etc.) us-
ing  spin  coating  or  dip  coating  techniques.  Sometimes
the possibility of pouring PDMS phosphor mixtures into
a suitably shaped container is also used.

Then comes the final phase, which is the thermal cur-
ing of the PDMS phosphor mixture. Surfaces with an ap-
plied layer of  PDMS phosphor or containers into which
this  mixture  was  poured  are  placed  in  an  oven,  where
they  are  thermally  cured.  The  specified  thermal  curing
time is dependent on temperature and may also depend

 

Table 1 | Phosphor Blends of PDMS:host matrix:activator ion and respective wavelengths of emission.
 

Host matrix Activator ion Main emission peak (nm) Refs.

YAG Ce 547 ref.41

YAG Eu 480 ref.42

YAG Ce,Gd 571 ref.43

ZnS Cu 516 ref.44

ZnS Mn 585 ref.45

ZnS Ag 450 ref.46

BaLa2ZnO5 Tb 545 ref.47

BaLa2ZnO5 Dy 487 ref.48

BaLa2ZnO5 Eu 705 ref.49
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on  the  volume  of  the  PDMS  phosphor  mixture,  on  the
mass ratio of PDMS : phosphor, on the type of phosphor
used,  etc.  The  following  values  are  given  in Table 2 for
pure PDMS type Sylgard 184 (without phosphor). In ad-
dition to the above, each researcher working with a mix-
ture  of  PDMS  phosphors  can  have  their  own  specific
production  processes  of  combining  PDMS  with  phos-
phors,  as  well  as  customized  equipment  such  as  their
own home-made shaker etc.
 
 

Table 2 | Cure time and temperature for PDMS type Sylgard 18453.
 

Time (min) Temperature (°C)

10 150

20 125

35 100

 

YAG:Ce3+

YAG:Ce3+

YAG:Ce3+

YAG:Ce3+

The price of the PDMS phosphor mixture depends on
the  price  of  its  components  and  on  the  weight  ratio  of
PDMS and phosphor. In the case of the most used PDMS
type Sylgard 184, the price for 1 kg of Sylgard 184 can be
around 160 euros. The price of the frequently used phos-
phor  for  white-LED  and  solid-state  lighting
can  be,  for  example,  around  9  euros  per  gram  of

. Using the spin coating technique, it is possi-
ble  to  apply  a  sufficient  layer  on  the  central  part  of  the
standard microscope slide with an amount of 0.2 g of the
PDMS  phosphor  mixture.  In  the  case  of  a  considerably
large  weight  ratio  of PDMS∶phosphor 2∶1,  the  total
price for 0.2 g of the PDMS∶phosphor mixture (Sylgard
184: ) applied to the central part of the micro-
scope slide can be approx. 0.62 euros (approx. 0.02 euros
for PDMS and 0.6 euros for phosphor). Figure 2 displays
a  photograph  from  a  microscope  slide  containing  the
mixture PDMS and .
 
 

Fig. 2 | Photograph  of  a  microscope  slide  containing  emitting
samples  with  PDMS and  YAG:Ce3+ (main  emission  peak  at  555
nm)  on the  left  side  and the  samples  on the  right  side  contain
PDMS, YAG:Ce3+ and CaS:Eu2+ (main emission peak at 650 nm),
using  as  excitation  source  blue  light.  Figure  reproduced  from

ref.37, under a Creative Commons Attribution International License.

However,  in  the  case  of  using  another  application
technique  on  a  microscope  slide,  e.g.  the  dip  coating
technique,  the  total  price  of  the  mixture  PDMS  phos-
phor applied to a microscope slide will probably be much
higher. This will be caused by the need to mix a large vol-
ume of  the  PDMS phosphor  mixture  into  the  container
into  which  the  microscope  slide  will  be  immersed,  and
logically  most  of  the  PDMS  phosphor  mixture  will  re-
main unused. So the use of the Dip coating technique for
applying the PDMS phosphor layer can be quite cost-in-
efficient.

On the other hand, the application of the PDMS phos-
phor  layers  using  the  spin  coating  technique  also  pro-
duces  waste.  This  is  created  by  the  excess  of  the  PDMS
phosphor mixture being transposed onto the inner walls
of the spin coater thanks to the forces acting during the
rotation of the layer. Even so, the application of layers of
the PDMS phosphor mixture using the spin coating tech-
nique is  much more cost-effective in contrast  to the dip
coating technique.

Producing  very  small  volumes  of  PDMS  phosphor
mixture samples can also be generally cost-inefficient, as
it  is  practically  difficult  to  homogeneously  mix  a  very
small  volume  of  PDMS  phosphor  mixture  and  at  the
same time transfer it to the requested location. E.g. larg-
er  volumes,  on  the  order  of  milliliters,  are  better  mixed
in the test tube, however, part of this volume will remain
inefficiently used due to adhesion to the walls of the test
tube.

In section Applications - PDMS and phosphor some of
the most reported applications such as, white-LED's and
solid-state  lighting,  anti-counterfeiting  solutions,  tem-
perature  sensors,  thermoluminescence,  mechanolu-
miniscense  and  bio-medical  are  reviewed,  with  some  of
its  mechanisms  and  manufacturing  methods  being  ex-
plored.  In  section Discussion  and  future  perspectives
some of the advantages and disadvantages of using these
mixtures are reviewed, as well as future developments. 

Applications - PDMS and phosphor

PDMS : phosphor

PDMS : phosphor

The  combination  of  PDMS  and  phosphorus  creates  a
mixture  that  finds  application  in  many  industries.  The
four  main  areas  of  application  of  the 
blend  were  mentioned  in  the  introduction  and  will  be
detailed  in  the  following  subsections.  In  addition,  there
are  many  other  possibilities  of  using  the

 mixture, which will be mentioned in a
separate subsection.
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PDMS : phosphor

Individual  applications  are  determined  depending  on
the  specific  type  of  phosphorus.  When  using  powdered
phosphorus,  it  is  common practice  to  create  a  homoge-
neous  mixture  of  PDMS  and  phosphorus  with  an  ad-
justable  weight ratio. PDMS serves as a
binder, mechanical protection and is important from the
point  of  view  of  guiding  the  excitation  radiation  to  the
luminescence  centers.  For  flexible  bio-sensors  its  bio-
compatibility  and  hyperelasticity  are  some  highlighted
features.  In  the  case  of  specific  applications,  such as  gas
detection,  its  permeability  allows  to  better  sense  these
environments. 

White-LED's and display technology

PDMS : phosphor
The  most  important  area  for  the  use  of  the

 mixture is the area of white-LED's and
solid-state lighting. These are often phosphors excited by
narrowband UV radiation or blue light present in the op-
tical  packaging  of  the  chip.  In  the  case  of  phosphores-
cent white-LED's, the weight ratio of the mixture is care-
fully engineered in a way that part of the excitation ener-
gy  (UV  or  blue)  is  converted  into  a  long-wave  broad-
band  component  and  part  maintains  the  short-wave
component. The combination of these components caus-
es  the  emission  of  white  light.  Usually,  this  coating  can
be either applied mixed in the optical packaging silicone
(as in typical commercial white-LED's) (see Fig. 3(a)), on
the surface of the LED chip (see Fig. 3(b)) or on the sur-
face  of  the  optical  packaging  (see Fig. 3(c)).  Using  the
second method reduces backscatering of blue light from
the  phosphor  to  the  chip,  causing  reabsorption  and
reducing  the  overall  luminescence  efficiency.  However,
in  commercial  applications,  the  costs  due  to  extra
processing  make  the  first  a  more  viable  commercial

application54.

YAG:Ce3+

BaMgAl10O17 : Eu2+ Ba2SiO4 : Eu2+ CaAlSiN3 : Eu2+

YAG:Ce3+

YAG : Ce Y3Al5O12 : Ce3+

The  most  common  phosphor  blends  for  white  phos-
phor  LEDs  are  (yellow  emitter  activated
mainly by 440–480 nm light, with an absorption peak at
460  nm)  or  a  combination  of  blue/green/red  phosphors
(activated  with  360–410  nm  light),  such  as

/ / 5 6 .
 is  a  commercial  solution  widely  used  for

white-LED's  and  solid-state  lighting.  Some  authors  use
different  variants  of  the  designation  of  this  phosphor
( ; ;  YAG phosphor).  The  com-
bination of  blue/green/red phosphors can offer  superior
color  quality  in  exchange  for  a  more  complex  design  of
the coating and less efficient power source.

Many  issues  of  phosphors  in  these  applications  are
temperature quenching and degradation. Several protec-
tive  measures  can  be  taken  to  reduce  these  issues,  such
as,  forming  protective  surface  layers  against  moisture
and  high  temperature  in  fluoride  and  sulphide  based
phosphors;  surface  coating  in  silicate  and  oxide  based
phosphors increases its Photoluminescence (PL) efficien-
cies;  surface  passivation  treatment  in  nitrite  and  oxyni-
tride  based  phosphors,  reducing  thermal  degradation of
PL intensity57.

PDMS : phosphor

To  note  that  this  technique  was  already  employed  in
fluorescent  lamps,  with  the  latter  using  as  excitement
source  the  UV  produced  by  the  eletric  discharge  in  gas
enclosed into vacuum tubes. The main criterion to apply
a phosphor into an LED for white light is that they must
show  strong  absorption  in  UV/near-ultraviolet  (NUV)
while  having  an  efficient  emission  in  the  region  of  visi-
ble light. The combination of  allows to
easily achieve a white tone using a single LED, contrast-
ing  with  the  red-green-blue  (RGB)  solution,  which

 

a b cProximate distribution Proximate conformal distribution Remote distribution

d>a

a

Phosphor

Reflector cup

Encapsulant

Phosphor

LED chip

Phosphor layer

Phosphor layer

Semiconductor
SemiconductorSemiconductor

Fig. 3 | Schematic diagram of LED packaging. (a) Proximate phosphor configuration, where the phosphor is homogeneously distributed across

the optical packaging host. (b) Proximate conformal phosphor configuration, with the phosphor deposited on the LED surface. (c) Remote phos-

phor configuration, with the layer of the phosphor on the surface of the host matrix. Figure reproduced with permission from ref.55, Sage Publications.
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requires 3 LEDs (working with different voltages) in the
same optical  encapsulation.  The  fore  mentioned further
reduces packaging costs, size and consumption.

PDMS : phosphor

In  ref.58 a  comparison  study  using  both  technologies
concluded the luminous efficacy of a phosphor-white de-
vice  typically  equals  more  than  twice  the  efficacy  of  the
corresponding  RGB  combination.  The  blue  LED  with

 encapsulation  unlocked  illumination
worldwide  with  a  reduced  energy  consumption,  lumi-
nous  efficiency,  durability  and  more  eco-friendly  com-
pared with previous illuminating technologies59.

PDMS : phosphor
The  solid-state  lighting  area  also  includes  display  de-

vices. The main importance of the  lay-
er  in  the  case  of  display  devices  lies  in  flexible  lumines-
cent  films  and  backlight  function.  The  first  exploits  the
flexibility and stretchability of PDMS. The latter exploits
the  variation of  the  light  emitted by  the  phosphor,  con-
trolling  the  intensity  of  the  illuminating  LED.  Despite
being  a  matured  technology  with  good  quantum  yield
while  maintaining  high  thermal  and  chemical  stability,
the size  of  the phosphor particles  is  in the micron level,
increase difficulties in integrating these coatings with mi-
cro-LED pixels from displays, affecting color conversion
efficiency and uniformity of the devices60−66.

BaLa2ZnO5 : Tb3+

PDMS : phosphor

A green (545 nm) phosphor, ,  acti-
vated  with  255  nm  light,  color  purity  of  91.03%,  quan-
tum efficiency of 49.72% and decay lifetime of 0.520 ms
is  reported  in  ref.47.  The  author  suggests  a

 combination  for  flexible  displays  use,
with  chemical  stability  in  environments  such  as  water,
but also alkali and acid solutions. Figure 4(a) is a series of
photographs  of  the  manufactured  films  under  daylight
and  UV  light,  with  the  latter  having  a  strong  PL  effect.
The author explores the behavior of the films under me-
chanical stress (Fig. 4(b) and 4(c)) as well as its flexibility
(Fig. 4(d)),  also  suggesting  applications  in  anti-counter-
feiting  applications  and  dermatoglyphics,  further  ex-
plained in the next subsections.

Some reported phosphors used for the purpose, as well
as metrics related to this subset are listed in Table 3. Cor-
related  color  temperature  (CCT)  is  a  widely  used  index
to correlate the temperature of an ideal black-body radia-
tor to that of the light source. The color rendering index
(CRI)  compares  the  colors  in  artificial  light  to  the  sun-
light or standartized light source67.

Changing the host matrix has influence on the behav-
ior  of  the  phosphor  material.  For  the  same  powder  of
phosphor,  the  reported  CCT  was  4433  K,  6044  K  and

PDMS : phosphor

6413 K, for epoxy resin, PDMS and PMMA43. A low CRI
is related to a deficiency in red light, which usually tends
to increase the CCT (higher CCT represents colder light,
more  close  to  blue)78.  Applying  the  PDMS  coating  al-
lowed for it to maintain its characteristics over 300 h ex-
posure, contrary to the reference without the encapsula-
tion,  which after  120 h had lost  nearly  50 percent  lumi-
nescence68.  Another  common  application  for

 is  in  head-up  displays  (HUD),  where
the  transparency  of  PDMS  allows  for  a  transparent  dis-
play,  not  interfering with the field of  view of  the driver,
while  the  phosphor  projection  displays  information  for
the driver. 

Anti-counterfeiting solutions
PDMS : phosphorIn this area, the  mixture is mainly used

in the form of AC markers, which are invisible in visible
light,  but  are  clearly  visible  when  excited  by  UV  radia-
tion.  The  production  of  these  security  tags  is  low-cost,
and using standard screen printing techniques, it is pos-
sible to apply them to surfaces such as metal, fabric, pa-
per,  and  others38.  These  techniques  generally  imply  lay-
ing  the  ink  into  a  hollow  patterned  screen  and  subse-
quent curing of the ink in the material to be marked.

These mixtures are usually prepared with a powdered
PDMS mixed with deionized water, where the phosphor
is dissolved using ultrasonic baths to ensure uniform dis-
persion.  The  solutions  are  then  degassed  using  vacuum
to  remove  bubbles  and  cast-dried  to  form the  transpar-
ent  AC  marker,  as  can  be  seen  in Fig. 5(a).  In Fig. 5(b)
several  printed  markers  are  tested  under  different  envi-
ronmental  conditions,  such  as  different  surfaces,  long
term storage, photo-stability and thermal treatment. Ta-
ble 4 contains some of the most reported mixtures from
the  last  decades  with  applications  in  anti-counterfeiting
solutions, using phosphor materials emitting at different
wavelengths, combined with PDMS.

La2MoO6 : Sm3+A mixture of PDMS and  is reported
in  ref.38 emitting  at  601  nm  with  excitation  light  of  365
nm  and  a  quantum  yield  of  66.2%.  In  this  application
characteristics  such  as  chemical  and  environmental  sta-
bility  are  required.  These  materials  must  withstand
chemical  exposures and still  ensure durability and relia-
bility. In ref.57 the stability of the suggested AC marker is
demonstrated by evaluating the degradation in different
solvents and bleaches such as ethanol, acetone, detergent
and  hydrogen  peroxide  The  printed  security  pattern
must  maintain its  phosphorescence during the life  cycle
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of the object to be protected by the AC marker. The pho-
to-stability  must  endure  prolonged  UV  exposure  and
thermal  stress.  Ensuring  all  these  parameters  enables  to
use  these  materials  as  consistent,  hard  to  replicate  au-
thentication methods. 

Temperature sensors and thermoluminescence
There are many phosphors that  exhibit  a  significant de-
pendence  of  luminescent  behavior  on  temperature.

Y2O2S : Er,Yb

There are several ways to perform temperature measure-
ments  using  thermoluminescence,  including  fluores-
cence  intensity  ratio  (FIR),  luminescence  lifetime  and
emission  peak/band  width  (ref.23).  Reference98 reports  a
green  emitting  phosphor  (550  nm)  composed  of

 mixed with PDMS to form a light, flexible
thin  film  thermometer.  This  very  cost-effective  device
was tested in electronic circuit boards and achieved deci-
mal  accuracy  for  specifically  engineered  temperature
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Fig. 4 | (a)  Photographic  images  of  the  BaLa2ZnO5:Tb3+/PDMS  composite  folding  films  under  daylight  and  UV  light.  (b)  The

BaLa2ZnO5:Tb3+/PDMS composite film was under applied mechanical stress and photographed before and after applying the mechanical stress

under UV 270 nm light. (c) PL spectra of films after applying mechanical stress. (d) The flexibility of films under different weights (250, 500, and

750 gm). Figure reproduced with permission from ref.47, Elsevier.
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ranges.  The  device  uses  a  upconversion  mechanism,
emitting high-energy photons by fusing low-energy pho-
tons99, as visible in Fig. 6.

Typically  in  cells  or  biological  tissues,  UV  excitation
may cause interfering luminescence from the surround-
ing  medium,  affecting  measurements,  in  contrast  to  IR
excitation, which stimulates visible fluorescence only on
the target phosphor98. In the case of upconversion phos-
phors,  temperature  can  be  measured  using  FIR  relation
with  temperature,  as  in  ref.101 where  its  use  is  suggested
in silicon chips, where the difference in value for the cali-

bration measurements  can be related with the low ther-
mal conductivity of PDMS (0.23 W/mK), especially com-
pared with the silicon chip (167.00 W/mK).

PDMS : phosphor

±
±

Temperature  can  also  be  measured  by  analysing  the
decay  times  of  the  phosphorescent  state.  The  tempera-
ture increase decreases the decay times and the rise time
of the emissions as reported in ref.98. A 
mixture  is  reported  in  ref.26 with  thermometry  applica-
tions and previous reported  0.05 °C resolution and tar-
get of  0.03 °C, using a single layer deposited using spin
coating,  which  can  further  reduce  manufacturing  costs

 

Table 3 | Phosphors combined with PDMS for white-LED's and solid-state lighting.
 

Phosphor blend λExcitation  (nm) CCT (K) CRI Ref

MgTiO3 : Mn4+ + YAG:Ce3+ blue (445) 4518@0.15 mA 68.5 ref.17

CsPbBr3 + CsPbBr0.75I2.25 blue (445) 6038 ref.68

Ca2Y(Nb,Sb)O6 : Mn4+ UV (291) 5534@30 mA 80.30 ref.69

CYN : Eu3+ NUV (395) 5583@50 mA 88.30 ref.70

CGN : Eu3+ NUV (395) 4436@50 mA 85.45 ref.70

CLN : Eu3+ blue (445) 5485@50 mA 80.03 ref.70

CsPbX3(X = Cl,Br, I) blue (445) 5901–3194 ref.71

BODIPY− based organic molecules blue (445) 4200@150 mA 95 ref.72

red and green CdSe/ZnS QDs UV (291) 6389@50 mA 63.3 ref.73

K3La(VO4)2 : Dy3+/Eu3+ NUV (309) 3813–1713 ref.74

YAG:Ce3+ blue (470) 4200 ref.75

YAG:Ce3+ CaAlSiN3 : Eu2++ blue (455) 5000–3000@350 mA 70–80 ref.76

YAG:Ce3+ CaS:Eu2+, blue (445) 3014–4187@500 mA 95.3–92.8 ref.36

CaMoO4 CaMoO4 : Dy3+, UV (297) 5877 ref.77

Y(OH)3 : Eu3+ NUV (365) 3900–3600 60 ref.78

SrMoO4 : [Eu3+]/[Tb3+] UV (290) 4338 ref.79

carbon dots (CDs) NUV (350) 6649 96 ref.16

Ba3Lu4O9 : Bi3+,Eu3+ UV (365) 5870–1834 ref.80

YAG:Ce,Gd blue (455) 6044 82 ref.43

red/yellow phosphor blue (465) 6905–3432 66.26–81.50 ref.81

Sr2.765Gd0.09AlO4F : 0.1Eu3+ UV (285) 1748 56 ref.82

Sr2.795Y0.07AlO4F : 0.1Eu3+ UV (285) 1793 54 ref.82

CsPbBr3 CsPbBrI2, NUV (375) 6113@15 mA ref.83

red CdSe/ZnS QDs NUV (400) 5742 ref.84

YAG:Ce3+ NUV (425) 34002–6905 ref.85

YAG:Ce3+ blue (450) 6119–5163@200 mA ref.86

YAG:Ce3+  + glass beads blue (455) 6300@0.35 mA 83 ref.87

YAG:Ce3+ Sr2Si5N8 : Eu2+ + blue (478) 8000–2900@0.35 mA 82–54 ref.88

YAG phosphor blue 5300–4800@120 mA ref.89

CrO2 YAG phosphor + blue (450) 6275–4807@80 mA ref.90

YAG:Ce3+ blue OLED 4200 ref.75

YAG:Ce3+ blue (470) 6700–5666 ref.41

CaWO4 Gd2(WO4)3 : Eu3+, UV (254) 6737–1779 ref.91
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when  optimized.  A  device  achieving  repeatability
and  cyclic  temperature  measurement  with  the  worst
resolution  recorded  being  0.0011%.K  and  the  best

0.00436%.K (423 K) in the temperature range of 353–523
K is reported in ref.24, so for short-term it can withstand
higher  temperatures  than  the  specified  by  the  manufac-
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Table 4 | Phosphors combined with PDMS for AC solutions.
 

Phosphor Ref. Phosphor Ref.

La2MoO6 : Sm3+ ref.38 BaGd2ZnO5 : Ho3+ ref.40

CaF2 : Er3+ ref.19 CaAl12O19 : Eu2+/3+ ref.20

BaGd2ZnO5 : Sm3+ ref.92 Ba2LaTaO6 : Mn4+ ref.22

SrAl2O4 : Eu2+,Dy3+ ref.21 Li8CaLa2Ta2O13 : Eu3+ ref.93

CaSrSb2O7 CaSrSb2O7 : Bi3+, ref.94 Sr2YSbO6 : Eu3+ ref.95

Ca2−xNb2O7 : xPr3+ (x = 0.00075, 0.001, 0.002, 0.003, 0.004) ref.96 Ca2Nb2O7 : Er3+/Pr3+ ZnS : Cu2+, ref.97

SrAl2O4 : Tb3+/M (M = Li+,Na+,K+,Ca2+,Bi3+), ref.39
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turer, however is not recommended since it can alter the
intrinsic characteristics of PDMS. Table 5 contains some
reported mixtures with applications in temperature sen-
sors  and thermoluminescence.  PDMS Sylgard  184  has  a
temperature range specified by the manufacturer as −50
°C to 200 °C, limiting its use to this operational range.
 
 

Ion 2(A)

Ion 1(S) Ion 3(S)

E1

G1 G1

E1

G1

Fig. 6 | Diagram of  the  upconversion mechanism where  the  en-
ergy absorbed by ion 1 and 3 (E1) is transferred to ion 2 which
then emits a photon with higher energy than the ones absorbed
when returning to the fundamental state (G1). Figure reproduced

with permission from ref.100, Elsevier.

  

Bio-medical applications
The mixture of  PMDS and phosphor can be a hot topic
for  biosensors  due  to  several  key  reasons  like  enhanced
sensitivity (where Phosphor materials can exhibit strong
and  stable  phosphorescence,  which  can  be  highly  sensi-
tive to changes in the environment. This makes it possi-
ble to detect low concentrations of biological targets with
high  sensitivity;  and  the  combination  of  PDMS  with
phosphor can amplify the detection signal, making it eas-
ier  to  detect  small  changes  in  the  biosensor's  environ-
ment). Secondly, both PDMS and phosphors are chemi-
cally stable materials, which helps in maintaining the in-
tegrity  and  functionality  of  the  biosensor  over  time  as
well as these materials can also provide thermal stability,
ensuring  that  the  biosensor  performs  reliably  across  a
range  of  temperatures.  Third  point,  PDMS  is  a  flexible
and stretchable  polymer,  which  can  be  useful  for  devel-
oping  wearable  biosensors  or  sensors  that  need  to  con-
form to irregular  surfaces5.  The PDMS matrix  enables  a

strain  sensing  in  a  wide  range  of  strain,  spanning  up  to
several  hundred  percent  in  comparison  to  the  conven-
tional  rigid  matrix  composites  and  ceramic-based
mechanoluminescence  (ML)  sensors106.  It  is  reported
that  the  mixture  of  PDMS  with  ML  phosphors  is  suit-
able for monitoring of human motions107. Mechanolumi-
nescence usually implies applying pressure to a previous-
ly excited ion releases a trapped hole to the valence band
of  the  material.  This  trapped  hole  can  recombine  with
the ion leading to a  unstable state.  When returning to a
stable state the ion will emit the extra energy in the form
of phosphorescent light, which can be correlated with the
applied pressure27,28. Figure 7(a) illustrates  a  ML process
example.

In this way, such mixture can be used in various types
of  biosensors,  including  optical,  electrochemical,  and
mechanical  sensors,  providing a broad range of applica-
tions108,109. Not less important is biocompatibility feature:
both PDMS and certain phosphor materials are biocom-
patible,  making  them safe  for  use  in  direct  contact  with
biological  tissues  and  fluids.  This  biocompatibility  en-
sures  that  the  sensors  do  not  induce  adverse  biological
responses,  which is  critical  for in  vivo applications.  Due
to the high elasticity of PDMS (and therefore the PDMS
phosphor  mixture),  at  relatively  small  compressive  and
tensile forces acting on the PDMS (or the PDMS phosphor
mixture),  there  are  negligible  changes  in  the  compres-
sion or  stretching of  the  PDMS or  the  PDMS phosphor
mixture. Hence, this high elasticity is the main factor for
the  easy  and  highly  efficient  use  of  mechanolumines-
cence  in  the  mixture  of  PDMS  and  ML  phosphor.  And
this key feature is then easily used in many pressure and
tensile biosensors. Customizable properties (by adjusting
the ratio of PDMS to phosphor, the mechanical properties
of the sensor can be tuned to meet specific requirements,
such as elasticity and hardness) and optical tuning, such
as emission wavelength and intensity, can be adjusted by
choosing  different  types  of  phosphors,  allowing  for  the
customization  of  the  sensor  for  specific  applications.

 

Table 5 | Phosphors combined with PDMS for temperature sensors or thermoluminescence.
 

Phosphor Ref. Phosphor Ref.

LuNbO4 : Eu3+/Sm3+ ref.24 La2O2S:Eu ref.26

Ca2Sb2O7 : Eu3+ ref.25 La3Ta0.8Sb0.2O7 : 0.04Bi3+, zSm3+(0 ≤ z ≤ 0.03) ref.23

SrWO4 : [Er3+]/[Yb3+] ref.99 NaNbO3 : Pr3+ hexagonal boron nitride nanosheets, ref.102

Y2O2S : Er,Yb La2O2S : Yb,Er, ref.98 La2O2S:Eu ref.103

La2O2S:Eu ref.104 NaGdTi2O6 : Pr3+,Er3+ ref.105
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PDMS : phosphor

SrAl2O4 : Eu2+,Dy3+

ZnGa2O4 : Cr3+

SrAl2O4 : Eu2+

Both  PDMS  and  phosphors  are  relatively  inexpensive
materials, which can help in reducing the overall cost of
biosensor  production.  For  scalable  manufacturing,  the
fabrication  process  for  PDMS-based  biosensors  is  scal-
able,  allowing  for  mass  production  and  wider  adoption
in  various  fields.  Phosphorescent  signals  typically  have
longer  lifetimes  compared  to  fluorescent  signals,  which
can  help  in  reducing  background  noise  and  improving
the  signal-to-noise  ratio  in  biosensor  readings.  As  last
point,  PDMS  is  commonly  used  in  microfluidic  devices
due  to  its  ease  of  molding  and  bonding.  Integrating
phosphor materials into PDMS can create advanced mi-
crofluidic  biosensors  with  enhanced  detection  capabili-
ties.  New  bio-medical  applications  of 
blends are being published every year, showcasing that it
is  a  high interest  topic  both for  industrial  and academi-
cal  communities.  According  to  ref.110 ML  also  occurs  if
the device is  stretched, allowing its  application into ten-
sion  sensors.  A  pressure  sensor  measuring  from  1  MPa
to  30  MPa  using  PDMS:  was  re-
ported by ref.27 with ML intensity linear relation with the
pressure  applied,  visible  in Fig. 7(b).  These  devices  are
bio-compatible and flexible, allowing its application into
the  human  tissues  or  flexible  fabrics110.  Mechanolumi-
nescence  has  also  been  used  in  Photothermal  Therapy,
where  tumor  cells  are  selectively  destroyed  without  af-
fecting normal tissues, using photothermal agents. These
agents  usually  have  persistent  luminescent,  such  as,

 and  are  activated  using  mechanolumi-
nescent , remotely actived using ultrason-
ic  waves.  A  device  capable  of  multicolor  fluorescence
imaging  is  reported  in  ref.111.  This  device  uses  PDMS
light-guide plates to guide the transmitted light from the
light source only to the fluorescent samples. PDMS host

PDMS : phosphor

PDMS : phosphor

matrix can be doped with phosphors to enhance the PL
intensity of the signal, obtaining higher contrast imaging
of the samples. This technology can also be used to mon-
itor  in  real-time  drug  releases  in  specific  targets112.

 based devices can be used to detect tu-
mor  biomarkers,  metabolites,  biomolecules,  and  other
signal parameters from living cells. Luminescent proper-
ties of nanoparticles gained notoriety as potential in cell
stimulation  and  tissue  growth,  providing  more  efficient
tissue engineering strategies112. Table 6 comprises several
works in ML using different  mixtures. 

Other selected applications
PDMS : phosphorOne  of  the  possibilities  of  using  the 

mixture is in the area of reducing biological pollution in
marine  infrastructure,  heavily  affected  by  bio-foulings.
Diatoms,  unicellular  algae,  are  known  to  be  one  of  the
major bio-fouling agent. A mixture of PDMS and Water-
proof long afterglow phosphors (WLAP) is used to influ-
ence  the  physiological  activity  of  diatoms.  WLAP  ab-
sorbs and stores energy from daylight, which then emits
weak fluorescence  at  night,  which  limits  the  physiologi-
cal activities of diatoms. According to ref.126, with the use
of  PDMS  and  WLAP,  attachment  reduction  rate  was
34.5% compared with the blank control sample and a di-
atom removal rate after wash of 42.3%.

PDMS : phosphor

As  referred  in  subsection White-LED’s  and  display
technology,  white  emitting  LEDs  using  phosphor  coat-
ings is  widely  used as  illumination,  however,  for  certain
applications other spectrums are required, such as plants
growing. Therefore, the mixture of  can
also  be  engineered  to  emit  in  specific  wavelengths  pre-
ferred by the plants. With this approach the efficiency of
indoor growing can be further optimized, because all the
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Sr2ScSbO6 : Mn4+

x 2−x 4
2+ ≤ ≤

light emitted can be in fact the required and absorbed by
the plant. A mixture using  is reported
in  ref.127 with  an  emitting  peak  at  697  nm  if  under  365
nm UV light  excitation,  matching  with  the  far-red  light
photosensitive pigment of the plant. According to ref.128,
using  313  nm  and  380  nm  exciting  light  in
Rb K CaPO F:Eu (0  x  2), which emitted in 495
nm  and  665  nm,  increased  the  growth  rate  of  Chlorella
12.2% when compared with the control group. Plants re-
quire  UV  and  blue  wavelengths  which  can  degrade  the
host material after long exposure, requiring the host ma-
trix to be resistant to these radiation, such as PDMS129.

PDMS : phosphor

The  phosphor  capabilities  can  also  be  harnessed  to
modulate  the  emitted  light  by  varying  the  alternating
current  frequency  applied  to  the  de-
vices and PDMS allows it to have stretchability. Accord-

ing  to  ref.130 a  device  built  with  PDMS:ZnS:Cu  emitted
green  (0.165,  0.320)  with  1  kHz  to  blue  (0.121,  0.131)
with  100  kHz.  A  device  where  varying  the  current  fre-
quency from 100 Hz to 500 Hz changes the color coordi-
nates  from  (0.24,  0.42)  to  (0.23,  0.32)  is  reported  in
ref.131,  with  ZnS:(Cu,  Cl)  as  phosphor  material.  In Fig.
8(a) is  possible  to  observe  the  schematic  diagram of  the
device, AC source and emission.

Another potential application is in Visible Light Com-
munication (VLC), which according to ref.86 can replace
Wi-Fi  in  the  future,  being  able  to  combine  illumination
and communication. A device capable of optical commu-
nications is reported in ref.35,  using as information units
a  multi-color  display,  activated  by  pressure  on  the  cop-
per outer  layer.  The author suggests  to  use the different
emitted  colors  to  code  data  to  be  transmitted,  as  visible

 

Table 6 | Phosphors combined with PDMS for mechanoluminiscence.
 

Phosphor Ref. Phosphor Ref.

silver nanowire(AgNW) SrAl2O4 : Eu2+,Dy3+, ref.27 BaSi2O2N2 : Eu2+ ref.28,110

β− KMg(PO3)3 : Tb3+ ref.29 ZnS : Cu ZnS : Mn, ref.35

Gd3Ga5O12 : A(A = Eu3+,Tb3+,Bi3+) ref.30 ZnS : Mn : Eu ref.113

ZrO2 : Ti4+ ref.114 Lu3Al5O12 : Ce3+ ref.115

SrZnSO : Bi3+ ref.116 ZnS : Cu ref.117,118

Ca2Nb2O7 : Er3+/Pr3+ ZnS : Cu2+, ref.97 SrAl2O4 : Eu,Dy ref.119

SrAl2O4 : Eu2+,Dy3+ ref.120 Sr4Al14O25 : Eu2+,Dy3+ ZnS : Cu, ref.121

ZnS : Cu ref.122 ZnS : Cu Sr2MgSi2O7 : Eu2+,Dy3+ dye/Sr4Al14O25 : Eu2+,Dy3+, ref.123

ZnS : Mn ref.45 ZnS : Cu ref.124

ZnS : Al,Cu ZnS : Al,Cu,Mn, ref.125 ZnS : Cu ref.44

 

Emission

Glass

Glass

Emission

Indium thin oxide

ZnS+PDMS

Indium thin oxide

AC

source

a b

Fig. 8 | (a) Schematic of light emission from the mixed ZnS composite and PDMS with applied AC bias. (b) Schematic diagram of self-powered

optical communication system consisting of information inputs (instantly dynamic self-powered multi-color display), information acquisitions (cam-

eras),  information processing (MCU), and information display (display screens).  Four information units (00, 01, 10, and 11) and corresponding

states of multi-color self-powered ACEL system. Figure reproduced with permission from: (a) ref.131, under a Creative Commons Attribution Non-

Commercial License; (b) ref.35, Elsevier.
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in Fig. 8(b).
However, one issue related with using this technology

for communication is the decay time of the phosphor. In
optical communication the higher the bit rate and trans-
ferred  data  the  higher  the  frequency  at  which  the  light
must  be  modulated.  The  high  decay  times  of  the  phos-
phors limit its available bit rate132.

Carbon  dots  have  been  reported  to  react  with  metal
ions,  altering  its  luminiscence  when  excited  under  UV
light  and thus with potential  use in metal  sensing31.  Ac-
cording to  ref.133 several  carbon dots  obtained from dif-
ferent  biowaste  sources  are  evidenced to  have  phospho-
recent properties,  with each interacting in its  own man-
ner with the metal ions. The author also suggests this re-
lation to develop metal ion detectors.

2LuNbO6 : Tb3+

X-ray  photons  are  highly  energetic  and  typically  are
sensed  using  scintillators  and  charge-couple  device
(CCD) sensors. There is a need to use scintillators, which
convert the X-ray energy into visible photons, that can be
detected  by  a  photodetector,  as  a  CCD  sensor  or  Posi-
tive-Intrinsic-Negative  (PIN)  diode.  In  this  realm,
PDSM:phosphor mixtures are of high interest, due to the
cost-effective  X-ray  sensing  solution,  especially  when
compared  with  typicall  scintillators  made  of  crystals,
such  as  Cesium  Iodide  (CsI).  Photodetectors  for  visible
light are the most documented and matured, allowing for
a  high  resolution  very  cost-effective  sensing.  In  this  ap-
plication  the  higher  the  resolution  possible  the  better.
Resolution  is  thus  a  function  of  the  scintillator  and  the
photodetector.  A  flexible  scintillator  film  made  of
PDMS:Ba  is  reported  in  ref.134,  with  a
spatial resolution of 12.5 lp/mm, compared with a com-
mercial scintillator in Fig. 9(a).

NaBaScSi2O7
2+

Fiber  optical  pH  sensors  typically  use  as  detection
techniques  wavelength  or  amplitude  modulation.  The
first  is  based  on  refractive  index  changes  in  the  sensing
layers  of  the  optical  fiber,  usually  having  high  require-
ments for the coating and material properties. The latter
involves  measuring the  variation in  the  output  intensity
of  fluorescent  indicators.  A  sensor  manufactured  with
the mixture PDMS: :Eu  and, using ampli-
tude  modulation,  displayed  a  linear  response,  visible  in
Fig. 9(b) and  a  sensitivity  of  0.05/pH  in  a  range  of
6.86–9.18 pH135.

PDMS : phosphor

Tryptophan, which is  an amino acid,  plays an impor-
tant  role  in  the  production  of  serotonin,  melatonin,
niacin,  and  nicotinamide136.  Tryptophan  fluorescence
can be used to track cellular proliferation in events such
as  wounds closure,  neoplasm and others  chronic  condi-
tions  with  the  emission  peak  located  around  345  nm137.
However, in general, the transmission of optical fibers in
this  wavelength  range  is  lower.  The  author  suggests  us-
ing  a  junction  converting  the  peak
emission  to  a  450–650  nm  range,  improving  UV  emit-
ters monitoring137.

Metasurfaces  are  a  new  brand  of  optical  engineered
materials  which  use  sub-wavelength  structures  to  con-
trol the light, as if classical refractive optics, but with the
advantage of  being flat  and thin.  To manufacture  meta-
surfaces  is  thus  required  to  produce  structures  such  as
grooves  in  the  nanometer  scale.  A  combination  of
PDMS:phosphor  is  suggested  in  ref.33 for  a  metasurface
engineered flexible sticker with luminescent characteris-
tics.  These  films  can  found  applications  in  photovoltaic
panels. The upconversion mechanism overviewed in sec-
tion Temperature sensors and thermoluminescence as po-
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β 4
3+ 3+

tential  uses  in  photovoltaic  applications.  Commercial
photovoltaic  panels  are  manufactured  using  silicon,
which has lower absorption in the low-energy end of the
visible  spectrum,  with  trace  amounts  of  IR  photons  be-
ing  absorbed.  In  a  way  to  increase  efficiency  of  photo-
voltaic  panels,  ref.138 suggests  coating  the  panels  with
PDMS: -NaYF :Yb /Er ,  a  phosphor  with  peak
emission at 543.5 nm.

2

2+
3

R2

Another suggested application is a robust and cost-ef-
fective  sensor  for  analytes,  such  as  dissolved  CO ,  with
its  scheme  visible  in Fig. 10(a)34.  This  device  uses  a
phase-based  sensing  technique,  luminophore  referenc-
ing (DLR) using a film of PDMS:Ru(dpp)  used as ref-
erence  luminophore  and  other  fluorescent  indicator,
achieving a  = 0.993, as visible in Fig. 10(b). Combin-
ing bio-compatibility  and dissolved gas  detection allows
for real time monitoring in tissues, cell cultures or water
as reported in ref.139, achieving a low limit of detection of
0.01 mg/L, a high sensitivity of 16.9 and a short response
time (22 s).

Y2O2S:Er,Yb
An  application  in  heat  flux  sensing  is  suggested  in

ref.98.  The  PDMS:  mixture  can  be  intro-
duced  in  fluids,  with  the  phosphor  embedded  into  the
PDMS  matrix  to  form  small  sensing  clusters,  and  using
thermoluminescence,  previous  referred  in  section Tem-
perature sensors and thermoluminescence is thus possible
to map the heat flux along liquid solutions. Pressure-sen-
sitive  paints,  used  in  the  aerospace  industry  for  aerody-
namic studies of the aircraft are of great interest.  A ma-
trix  of  PDMS  with  Tetra  (pentafluorophenyl)porphine
(PtTFPP) was reported by ref.140 to have a short response
time and very low photo-degradation rate. Using the re-

PDMS : phosphor

PDMS : phosphor

mote  optical  sensing  capabilities  of 
films33 suggests  using  them  as  non-destructive,  remote,
instantaneous, and customizable sensors to identify geo-
metrical  defects  in  aerogels  and  elastomers,  materials
that serve as critical structural components while operat-
ing in extreme conditions,  such as  PDMS. Another well
investigated  use  of  these  misture  is  in  dermatoglyphics
studies. Dermatoglyphics is the scientific study of indica-
tors in the skin such as fingerprints. Using these materi-
als can enhance the ability to distinguish patterns and to
improve imaging qualities47. Table 7 summarizes some of
the  several  uses  where  a  blend of  was
applied. 

Discussion and future perspectives
PDMS : phosphor

PDMS : phosphor

The  mixture  has  many  advantages,
with  a  symbiotic  relationship  existing  and bringing sev-
eral  advantages.  The  optical  tunability  in  all  the  visible
spectrum  that  engineered  phosphorescent  materials
hosted  in  a  PDMS  matrix  offers  is  of  high  interest  in
many industries. It is a core technology for cleaner ener-
getic  transition  in  illumination  and  displays  solutions
worldwide and will continue to further help, for instance
in food production,  with higher efficiency indoor grow-
ing systems. PDMS is a well  known bio-compatible ma-
terial,  and  this  characteristic  as  well  as  its  polymeric
structure  giving  it  a  elastic  and  stretchable  form,  allows
for  several  bio-medical  applications,  such  as  sensors  or
bio-imaging. Another well documented advantage of us-
ing  based  solutions  is  the  easy  manu-
facturing with high repeatability  and cost-effective solu-
tions.  Some of  these characteristics  in phosphor materi-
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als are summarized in Fig. 11.
However,  despite  all  the  advantages  of  these  blends,

there  are  certain  issues  to  be  solved,  such  as  optical
quenching. As referred before, PDMS has a low thermal
conductivity, which can affect the measurements if  used
in thermometry applications but also affects its ability to
disperse heat.  This creates others problems also referred

such  as  temperature  quenching,  that  with  time  reduce
the  PL  intensity.  The  luminance  and  efficiency  of  the
phosphor over time is reduced due to poor thermal man-
agement  causing  crackings  in  the  interface  between  the
host  and the  phosphor55.  Its  temperature  range can also
be a limiting factor for the mixture if the application re-
quires  temperatures  lower  than −50 °C and higher  than
200 °C, or a use of a specifically tuned PDMS, since most
commercial available PDMS only withstand the referred
temperature.  The  mechanical  properties  of  PDMS  are
changed after introducing the phosphor, which may lead
to  increased  brittleness  or  reduced  flexibility.  Using
PMDS:phosphor blends requires a trade-off between me-
chanical robustness, and thus durability, and optical effi-
ciency, which needs to be engineered for the specific ap-
plication. If there is a phase separation or uneven distri-
bution  between  the  PDMS  and  the  phosphor  the  lumi-
nescence  will  be  non-uniform and the  performance will
be  reduced.  This  however,  is  a  feature  that  can  be  ex-
ploited for new anti-counterfeiting solutions.

On the other hand, it is very likely that many new ap-
plications will  be discovered in some areas,  especially in
the field of mechanoluminescence where new bio-medi-

 

Table 7 | Phosphors combined with PDMS for uses in various applications.
 

Area of application Phosphor Ref.

Biological antifouling Sr2MgSi2O7 : (Eu2+,Dy3+), Waterproof Long Afterglow Phosphors

(WLAP), Blue-Green (BG), Yellow-Green (YG), Sky Blue (SB) LAP
ref.126,141−144

Color change due to Biased AC
electric field

ZnS:(Cu, Al, Mn), Tetrapod-Like ZnO Whiskers, ZnS:(Cu, Cl) ref.131,130

Visible Light Communication (VLC) ZnS:Cu, ZnS:Mn, YAG:Ce, CaS:Eu, Red and Green CdSe/ZnS QDs, YAG:Ce ref.35−37,73,86,132

Plant growth LEDs Sr2ScSbO6:Mn4+/Li+, RbxK2−xCaPO4F:Eu2+(0 ≤ x ≤ 2), Sr9Ca(Li, Na, K)(PO4)7:Eu2+ ref.127,128,145

Heavy metal ions detection Carbon Dots (CD) ref.31

X-ray detection, imaging, X-ray
information storage

2LuNbO6 : Tb3+ Gd2O2S:Tb
La2O2S:Eu

Ba , , 2,5-Diphenyloxazole (PPO),
1,4-Bis(5-Phenyloxazol-2-yl)Benzene (POPOP), 

ref.134,146−148

pH sensor NaBaScSi2O7 2+ 4 3+ 4 3+:Eu , BaMoO :Eu , CePO :Tb ref.32,149

Optical fiber fluorosensor Eu-Activated Phosphors ref.137

LED color filter 3+ 3+ 3+ 3+ 3+ 3+ 3+SrWO4:[Sm /Dy ], CaMoO4, CaMoO4:Dy , BaMoO4:[Sm /Dy ], SrMoO4:[Eu /Tb ] ref.150,77,151,79

Metasurfaces Silicon Nanoparticles ref.152

Detection of geometric defects
in materials 2 2S 2La O :Eu, Mg3F GeO4 ref.33

Solar cells 2Si 2+ β 4 3+ 3+ 3+ 3+ β 4 3+ 3+(Ba, Sr) O4:Eu , -NaYF :Yb /Er  or Ho  or Tm , -NaYF :Yb /Er ref.153,154,138

Oxygen sensor 3 2Ru(dpp) Cl ref.155

Detection of dissolved
carbon dioxide

2+
3Ru(dpp) ref.34

Pressure-sensitive paint Platinum Tetra(pentafluorophenyl)porphine (PtTFPP) ref.140

Dermatoglyphics BaLa2ZnO5 : Tb3+ SrAl2O4 : Tb3+/M (M = Li+,Na+,K+,Ca2+,Bi3+), , ref.47,39

Heat flux sensor Y2O2S : Er,Yb La2O2S : Yb,Er, ref.98
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Fig. 11 | Capabilities  of  the PDMS:phosphor mixture  for  future
perspectives applications.
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PDMS : phosphor

cal  applications  are  reported  frequently.  Combining
mechanoluminescence  with  piezoelectricity  on  a  device
using  PDMS  as  host,  as  reported  in  ref.118,  provides  a
comprehensive  understanding  of  mechanical  events,
providing qualitative and quantitative information about
strain-related issues and use artificial intelligence (AI) to
further  optimize  the  device.  PDMS  alone  has  been  re-
ported to be used to manufacture bioinspired multifunc-
tional  flexible  optical  sensor  achieving  sub-millimeter
spatial  resolution  for  force  location  sensing,  plus  a  µN
resolution  in  force  assessment156.  Electronic  skin,  wear-
able  electronic  sensors  mimicking  the  functionalities  of
the  human  skin,  manufactured  using  PDMS  have  been
reported  by  ref.157.  These  new  bioinspired  sensors  can
leverage  3D printing  techniques  and  AI  to  manufacture
complex  structures  and  mixed  phosphors  can  help  to
boost  the  collected  signal  or  to  retrieve  information
about the health of the sensor. Here AI will speed the de-
velopment of sensor technology due to the complex cor-
relations and high-throughput of data in the biomedical
contexts,  as  p.e.  in  ref.2,  where  AI  is  used to  distinguish
between  signals  produced  by  different  pressure  and
movements  in  mechanoluminescence  devices.  In  some
areas, the  mixture has so far been little
used, e.g. in the area of VLC. Perhaps the challenge could
be  to  find  a  better  use  of  the  mixture
for this area as well, using different phosphor with differ-
ent energy levels to be able to expand the available range.
In  photovoltaics  area  new  explored  solutions  can  in-
crease the efficiency of new devices, as well as being able
to increase its longevity, with easy to manufacture PDMS
films. 

Conclusion

PDMS : phosphor

PDMS : phosphor

In this  comprehensive review,  all  known applications of
the  mixture  over  the  last  decade  have
been  presented.  Overviews  of  phosphors  used  for  indi-
vidual  applications  were  also  presented  here,  as  well  as
some  advantages,  disadvantages  and  trade-offs  of  using
these blends. We believe that this detailed breakdown of
phosphors  can  be  very  useful  for  further  research  work
related to the use of the  mixture.

To  conclude,  the  combination  of  PDMS  with  phos-
phorescent  materials  is  developing  and  booming  due  to
its unique optical and mechanical properties while being
easy to manufacture and cost-effective. Its versatility and
ability  to  combine  with  other  technologies  is  a  core  ad-
vantage.  Despite  having  some  issues  to  be  solved  it  is  a

standard  in  a  wide  range  of  industries  from  biomedical
to illumination, with significant potential applications to
be  discovered  using  new  processing  techniques  and  in-
novative  material  design,  while  managing  trade-offs  for
each particular application.
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