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Fast source mask co-optimization method for
high-NA EUV lithography
Ziqi Li1,3, Lisong Dong1,3,4, Xu Ma2 and Yayi Wei1,3,4*

Extreme ultraviolet (EUV) lithography with high numerical aperture (NA) is a future technology to manufacture the integ-
rated circuit  in  sub-nanometer  dimension.  Meanwhile,  source  mask  co-optimization  (SMO)  is  an  extensively  used  ap-
proach for advanced lithography process beyond 28 nm technology node. This work proposes a novel SMO method to
improve the image fidelity of high-NA EUV lithography system. A fast high-NA EUV lithography imaging model is estab-
lished first, which includes the effects of mask three-dimensional structure and anamorphic magnification. Then, this pa-
per develops an efficient SMO method that combines the gradient-based mask optimization algorithm and the compress-
ive-sensing-based source optimization algorithm. A mask rule check (MRC) process is further proposed to simplify the
optimized mask pattern.  Results  illustrate that  the proposed SMO method can significantly  reduce the lithography pat-
terning error, and maintain high computational efficiency.

Keywords: computational  lithography; high-NA  EUV  lithography; source-mask  co-optimization; lithography  imaging
model
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 Introduction

R = k1λ/NA
k1 λ

NA

Extreme ultraviolet (EUV) lithography with high numer-
ical aperture (NA) is a future technology to manufacture
very  tiny  layout  patterns  on  the  cutting-edge  integrated
circuits (IC)1,2. The resolution R of lithography system is
given  by  the  Rayleigh’s  equation3,4:  ,  where

 is  a  process-dependent  factor,  is  the  wavelength  of
light  source,  and  is  the  numerical  aperture  of  the
projection  system.  Currently,  high-NA  (NA=0.55)  EUV
lithography system  can  be  used  to  fabricate  the  IC  pat-
terns  with  7  nm  critical  dimension  (CD)  on  the  wafer.
Figure 1 shows  the  projection  systems  for  the  1.35NA
deep  ultraviolet  (DUV) immersion  lithography,  0.33NA

EUV lithography,  and  0.55NA  EUV  lithography,  re-
spectively2.  Many  unique  designs  are  implanted  in  the
high-NA EUV lithography system, including the reflect-
ive mask,  reflective  optics  system,  anamorphic  projec-
tion system and drilled mirror1,2.

Except  for  the  special  designs,  the  prominent  mask
three-dimensional  (3D)  effect  in  EUV  lithography  will
reduce  the  image  fidelity  and  cause  the  patterning  shift
through  focus5−7. Specifically,  the  complicated  interac-
tion  between  EUV electromagnetic  waves  and  mask  3D
structures will  significantly  influence  the  complex  amp-
litude of the mask diffraction near-field (DNF). Other ef-
fects,  like  aberration  and  flare,  can  also  impact  the 
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lithography imaging performance8, which are beyond the
scope of this work.

k1

On  the  other  hand,  the  source-mask  co-optimization
(SMO)  is  an  important  method  to  improve  the  image
quality  in  advanced  lithography  process  beyond  28  nm
technology node3,4. The concept of SMO was first intro-
duced  in  20029.  Compared  with  the  optical  proximity
correction (OPC) technology, SMO optimizes the source
and mask jointly, which increases the degrees of optimiz-
ation freedom. By reducing the factor  in the Rayleigh’s
equation,  SMO  can  significantly  improve  the  imaging
resolution of lithography system, thus further expanding
the process window and improving the yield10,11.

Up to now, most of researches in this field proposed to
study the SMO methods for DUV lithography,  and sev-
eral  pervious  works  focused  on  the  SMO  methods  for
EUV  lithography.  A  gradient-based  SMO  method  for
0.33NA  EUV  lithography  was  proposed  in  ref.12,  where
the thin-mask model was used to calculate the image, so
that the mask 3D effect was ignored. In another study13,
the  cost  function  of  SMO  included  a  resist  sensitivity
penalty term  to  increase  the  image  contrast  and  expos-
ure latitude. In ref.14, an SMO method was developed for
the  0.33NA  EUV  lithography  system,  where  a  heuristic
algorithm and  an  analytical  thick-mask  model  were  ap-
plied to solve the optimization problem. However,  most
of  those  works  failed  to  consider  the  complicated  mask
3D effects under the partially coherent illumination con-
dition.  In addition,  those works were proposed for  low-
NA (NA=0.33)  EUV lithography systems,  which  cannot
take  into  account  the  characteristics  of  high-NA  EUV

lithography systems.
In  this  work,  an  SMO  method  is  proposed  for  the

high-NA EUV  lithography  system.  To  efficiently  simu-
late the mask 3D effects under partially coherent illumin-
ation, a decomposed learning based thick-mask model is
implanted  in  the  lithography  imaging  model.  Several
convolution filters are pre-calibrated from the DNF data-
base.  Given  a  mask  layout,  it  is  firstly  decomposed  into
several local  segments  according  to  its  geometric  fea-
tures. The local thick-mask DNFs are then calculated by
convoluting the  segment  patterns  with  the  correspond-
ing  filter  kernels.  Finally,  all  of  the  local  DNF segments
are put together to assemble the entire thick-mask DNF.
Then,  a  fast  high-NA  EUV  lithography  imaging  model
with  pupil  obstruction  is  established,  where  the  above
mentioned thick-mask model is implanted.

Based  on  the  fast  high-NA EUV lithography  imaging
model, a  gradient-based  mask  optimization  (MO)  al-
gorithm  is  developed.  Based  on  the  low-pass  filtering
property of the imaging system and the convolution fea-
ture of  the  thick-mask model,  the  gradient  of  aerial  im-
age  with  respect  to  the  mask  pattern  can  be  calculated
analytically.  Using  the  GPU  device  to  implement  the
convolution operations, the MO algorithm can be accel-
erated about  10  times.  Meanwhile,  a  compressive  sens-
ing  (CS)  algorithm  is  applied  to  construct  the  optimal
source pattern with high imaging performance. Combin-
ing  the  source  optimization  (SO)  and  MO  algorithms,
the SMO  method  for  high-NA  EUV  lithography  is  de-
veloped.  Simulations  show  that  the  proposed  SMO
method can significantly improve the lithography image

 

Incident light

Transmissive

mask

Transmissive

projection system

Immersion medium

1.35NA DUV 0.33NA EUV 0.55NA EUV

Wafer plane

Reflective

projection system

Reflective maska b

c

Fig. 1 | Sketches of  the projection systems for  the (a)  1.35NA DUV immersion lithography,  (b)  0.33NA EUV lithography,  and (c)  0.55NA EUV

lithography.
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fidelity by  reducing  about  70%  patterning  error.  Mean-
while, the  proposed  method  also  shows  high  computa-
tional  efficiency,  which  is  critical  for  its  further
applications.

 Imaging model for high-NA EUV
lithography
This  section  describes  the  imaging  model  of  high-NA
EUV lithography  system.  First,  the  anamorphic  magni-
fication  and  central  pupil  obstruction  of  the  projection
system  are  discussed.  Then,  a  fast  learning-based  thick-
mask  model  is  introduced.  Combining  all  of  the  above-
mentioned effects, the Abbe’s imaging model of high-NA
EUV  lithography  system  is  constructed.  The  proposed
model is compared with a commercial software to verify
its accuracy.

Figure 2(a) illustrates  the  transfer  process  of  a  layout
pattern from the reflective mask to the wafer in the high-
NA EUV lithography tool. First, the mask pattern should
be  modified  according  to  the  magnification  factors.  On
the mask stage,  the incidence EUV light  is  diffracted by
the  mask,  and  then  generates  the  DNF,  which  further
propagates through the projection system. Then, the aer-
ial image is formed on the wafer. Finally, the resist is ex-
posed by the aerial  image on the wafer plane, where the
layout contour is obtained after the development of resist.

 Projection system with anamorphic magnification
and pupil central obstruction
The high-NA  EUV  lithography  tool  adopts  the  projec-
tion  system  with  anamorphic  magnification  and  pupil

central obstruction. The anamorphic projection system is
used  to  separate  the  incoming  and  outgoing  light
paths2,15,16. The magnification is ×8 in y-direction, and ×4
in x-direction. Meanwhile, the workflow of the proposed
imaging model is shown in Fig. 2(b), where the effect of
anamorphic magnification is  involved in the calculation
of mask DNF.

Another feature of the high-NA EUV lithography sys-
tem  is  the  drilled  optical  design  on  the  second-to-last
mirror in the projection system, as illustrated in Fig. 1(c).
The drilled optics can be represented as the pupil central
obstruction,  and  the  partial  coherence  factor  (σ)  of  the
obstruction on the pupil plane is 0.2115.  The obstruction
may lead to the loss of some frequency components, sub-
sequently  affects  the  lithography  imaging  quality17. Fig-
ure 3(a) shows the  source  plane of  high-NA EUV litho-
graphy system,  where  the  green  cross  at  the  spatial  co-
ordinate (0, 0) denotes the central source point,  and the
yellow cross at the spatial coordinate (−0.3, 0) denotes an
adjacent  source  point. Figure 3(b) sketches  the  imaging
processes under these two source points, respectively. On
the  left  of Fig. 3(b),  the  red  rings  represent  the  pupil
areas  with  central  obstructions.  In Fig. 3(b),  the  upper
row  shows  the  imaging  under  the  central  source  point.
For the “L-shape” pattern, a significant loss of frequency
components occurs  due  to  the  central  obstruction,  res-
ulting in an aerial image with poor fidelity. On the other
hands,  the  imaging  process  of  the  other  source  point  is
shown in the lower row, where more frequency compon-
ents are captured by the pupil, leading to an aerial image
with  superior  quality.  In  a  word,  the  pupil  central
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obstruction  degrades  the  imaging  quality  of  the  source
points located at the central area, which further impacts
the optimized source pattern.

 Modelling of mask 3D effect
The mask 3D effect is a prominent effect that impacts the
DNF  distribution,  and  further  affects  the  imaging  in  all
EUV  lithography  tools5−7.  The  thick-mask  DNF  can  be
calculated  with  rigorous  electromagnetic  field  (EMF)
simulators20,21. However,  those  methods  are  computa-
tionally  intensive,  which  is  unacceptable  for  the  SMO
method. Therefore, to efficiently simulate the DNF with
mask  3D  effect,  a  decomposed-learning  thick-mask
model is applied in this work7.

In  general,  the  thick-mask  model  assumes  that  the
mask structure is a shift-invariant system within a local-
ized area, whose input is the mask pattern, while the out-
put is the corresponding DNF. Therefore, the local DNF

can  be  calculated  as  the  convolution  between  the  mask
segment and a filter: 

E3D = C3D ⊗M, (1)

C3D

⊗ E3D

where M denotes  the  binary  mask  segment,  is  the
convolution filter,  is the convolution symbol, and 
is the calculated DNF of the mask segment. Based on the
pre-established  DNF  database,  the  convolution  filter  of
each feature and rotation can be inversely calculated.

Figure 4 depicts the process to calculate the DNF of a
given  thick  mask  pattern. Figure 4(a) displays  an  “L-
shape” mask pattern as an instance. The mask pattern is
first decomposed into segments according to its geomet-
ric  feature (i.e.  convex,  concave,  and edge),  as  shown in
Fig. 4(b).  Subsequently,  as  illustrated  in Fig. 4(c),  all  of
the mask  segments  are  convoluted  with  their  corres-
ponding filters to calculate local DNFs. Finally, all of the
local  DNFs  are  composed  together  based  on  the
weighted  stitching  algorithm  in  ref.18,19,  and  the  global
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thick-mask DNF is obtained, which is shown in Fig. 4(d).
The global DNF can be expressed as: 

E3D =

4∑
l=1

Cedge,l ⊗Medge,l +

4∑
l=1

Cconv,l ⊗Mconv,l

+

4∑
l=1

Cconc,l ⊗Mconc,l, (2)

where the subscript l denotes the rotation in 0°, 90°, 180°,
or  270°;  the  subscript  edge,  conv,  conc denote  the edge,
convex corner, and concave corner, respectively.

The thick-mask model mentioned above can simulate
the EUV  DNF  with  mask  3D  effect  accurately  and  effi-
ciently.  More  importantly,  the  convolution-based  thick-
mask  model  can  be  integrated  into  the  gradient-based
MO algorithm intrinsically.

 Abbe’s imaging model
Abbe’s imaging model is widely used to calculate the aer-
ial  image  of  lithography  system1,3,4, which  can  be  ex-
pressed as: 

I = 1
Jsum

∑
xs

∑
ys

(J(xs, ys)|Hxsys ⊗ (Bxsys ⊙ Exsys
3D )|2), (3)

Exsys
3D

(xs, ys)

Bxs,ys ⊙
Hxs,ys

J(xs, ys)
Jsum

where  denotes  the  mask  DNF  generated  by  the
source  point  ,  which  can  be  calculated  using  the
above-mentioned  thick-mask  model.  The  scaler  matrix

 is  the  mask  diffraction  matrix,  and  denotes  the
element-wise product.  is the equivalent filter of the
projection system under the specific source point, where
the center obstruction of  the high-NA EUV lithography
is taken into account.  stands for the source point
intensity, and  is a normalized factor.

A sigmoid function is further used to approximate the
threshold  effect  of  resist,  so  that  the  gradient  of  cost
function exists during the optimization: 

sig(x) = 1
1+ exp[−a(x− tr)]

, (4)

where tr is  the  process  threshold,  and a is  a  coefficient
that  dictates  the  steepness  of  the  sigmoid  function.  In
this  work,  the  threshold tr is set  as  0.3,  and  the  coeffi-
cient a in the sigmoid function is set as 20.

In order to validate the accuracy of the proposed ima-
ging  model,  the  aerial  image  results  calculated  by  the
proposed model (left) and a commercial software (right)
are compared in Fig. 5(a). The aerial images of mask pat-
terns with 13 nm CD and 9 nm CD generated by a circu-
lar  illumination  (initial  state  in  Section Results  of  the

SMO method) are illustrated from top to bottom. Figure
5(b) illustrates  the  cross  sections  of  the  aerial  images
along  the  red  line  for  the  two  mask  patterns.  The  RMS
errors  of  aerial  images  with  13  nm  and  9  nm  CD  are
0.011  and  0.014  respectively,  whose  detailed  definition
can  be  found  in  ref.7.  It  is  observed  that  the  proposed
model  achieves  commendable  computational  accuracy
compared  to  the  commercial  software.  On  the  other
hand,  the  RMS  error  increases  to  0.041  for  curvilinear
mask with 13 nm CD. The error is mainly caused by the
thick mask model, and the accuracy of the imaging mod-
el is still acceptable.

 The SMO method for high-NA EUV
lithography
In this section, the proposed SMO method for high-NA
EUV  lithography  is  introduced  in  detail.  The  gradient-
based MO algorithm and the CS-based SO algorithm are
discussed respectively. The whole SMO workflow is con-
structed by combining the MO and SO algorithms.

 Gradient-based MO algorithm
The purpose of the MO algorithm is to find the optimal
mask pattern, which can improve the similarity between
the  target  pattern  and  the  resist  pattern.  Therefore,  in
this study, the cost function F is  set as the square of the
L2-norm of  the distance between the final  resist  pattern
R and the target pattern Z: 

F = ∥Z− R∥22 , (5)

where the cost function F can be used to assess the ima-
ging quality.

M ∈ ℜN×NLet  denotes the optimal mask pattern such
that  the  cost  function  in Eq.  (5) is  minimized.  The  MO
problem can be thus formulated as: 

M = argmin
M∈ℜN×N

F. (6)

In  this  work,  the  binary  EUV  mask  is  studied,  where
the reflective area is represented as 1, and absorbed aera
is 0. In order to reduce the bound-constrained optimiza-
tion  problem  in Eq.  (6) to  an  unconstrained  one,  the
parametric  transformation  in  ref.22 is  adopted  in  this
work: 

M = f(Ω) = 0.5(1+ cosΩ) , (7)

where the Ω is the transformation parameter.
Owing to the shift-invariant nature of  the thick-mask

model  and  the  imaging  model,  the  calculation  of  aerial
image  gradient  is  fundamentally  based  on  convolution.
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∇F(Ω)
The steepest  descent (SD) algorithm is  used to optimize
the mask pattern, and the gradient  can be calcu-
lated as follow: 

∇F(Ω) = ∂F
∂R · ∂R

∂I · ∂IM · ∂M
∂Ω

=
a
Jsum

f ′(Ω)

⊙
∑
xs

∑
ys

J(xs, ys)×
∑
f

∑
l

Re

{
(Bxsys)

∗

⊙
[
(Hxsys ⊗ Cxsys

l,f )
∗T ⊗ (Exsys

wafer,l,f ⊙ Λl,f)
]}

,

(8)

Λl,f = (Zl,f − Rl,f)⊙ Rl,f ⊙ (1− Rl,f)

Exsys
wafer,l,f (xs, ys)

Exsys
wafer,l,f = Hxsys ⊗ (Bxsys ⊙ Cxsys

l,f ⊗Ml,f)

where  the  ,  and  the
 denotes the electric field generated by the 

source point on the wafer plane, which can be calculated
as:  .  Subscripts l
and f denote the rotation and feature category of the pat-
tern respectively.

ΩmAssuming the  is the optimized result after mth it-
eration, then at the (m+1)th iteration: 

Ωm+1 = Ωm − sΩ∇F(Ω), (9)

sΩwhere the  is the step length. The SD algorithm is ter-
minated  when  the  iteration  number m reaches the  pre-
scribed upper limit.

Mb

M

In general,  the above optimization procedure leads to
a grayscale mask. Therefore, the final binary mask  is
the binary quantization of the  : 

Mb = Γ(M− tm), (10)

tm Γ(·) = 1where the  =0.5 is  the global  threshold.  if  the

Γ(·) = 0argument is larger than 0, while  otherwise.
It  should  be  noticed  that,  in  the  gradient  calculation,

the  filter  kernels  of  mask  3D  model  and  aerial  image
model are convoluted together. Thus, those filter kernels
under  different  source  points  can  be  pre-calculated  to
improve  the  computational  efficiency.  Additionally,  the
gradient  calculation  is  also  the  most  time-consuming
step in the MO algorithm. By migrating the convolution
operation to GPU devices, the speed of gradient calcula-
tion can be impressively improved, achieving approxim-
ately tenfold acceleration.

 CS based SO algorithm
In this work, the CS algorithm is applied to solve for the
optimal  source  pattern  with  high  imaging
performance23,24. Firstly, the aerial image model is trans-
ferred into the form of matrix multiplication: 

I = ICCJ, (11)

I ∈ ℜN2×1 J ∈ ℜNS
2×1

ICC ∈ ℜN2×NS
2

where  and  denote  the  vectorized
representations  of  the  aerial  image  and  source  pattern,
respectively.  The  notation  represents  the
illumination cross coefficient (ICC) matrix indicating the
mapping  form  the  source  pattern  to  the  aerial  image,
which can  be  calculated  by  the  above-mentioned  ima-
ging model.

J
Ψ ∈ ℜNS

2×NA

NA ⩾ NS
2 J = ΨΘ Θ ∈ ℜNA×1

Suppose  the  vectorized  source  pattern  can  be
sparsely  represented  in  a  certain  basis 
(  ), thus  where  is the sparse
coefficient vector.  Then,  the  SO  problem  can  be  refor-
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Fig. 5 | The comparison of the proposed imaging model and a commercial software. (a) The aerial images of the mask patterns with 13 nm

CD and 9 nm CD that are calculated by the proposed model (left) and commercial software (right), and (b) the cross sections of the normalized

aerial images along the red line.
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mulated as 

Θ̂ = argmin
Θ

∥Θ∥1s.t. ΦZ = ΦI

=ΦICCJ = ΦICCΨΘ (12)
Φ ∈ ℜL×M

Z

Θ̂

where  (L<M) is a projection matrix to reduce
the dimensionality of the linear constraint equations, and

 denotes the vectorized target pattern. In this work, the
linearized  Bergman  algorithm  is  adopted  to  solve  the
problem  in Eq.  (12) due  to  its  high  efficiency23,25.  After

obtaining the optimized coefficient vector , the optim-
ized source can be calculated by: 

Ĵ = ΨΘ̂ , (13)
from which the optimized source pattern can be further
restored.

 Flow of the proposed SMO method
The flow chart in Figure 6(b) illustrates the primary pro-
cedure of the SMO method. The thick mask DNF filters
and the imaging filters, as described in Section 2, are pre-
calculated, so  that  filters  can  be  reused,  and  the  effi-
ciency of the algorithm can be improved. The algorithm
then initializes,  where  the  initial  mask  pattern  is  desig-
nated as the input layout, and the initial source pattern is
defined as a full pupil illumination with normalized dose.

The source  is  optimized  via  the  CS  based  SO  al-
gorithm afterwards,  whose  procedural  outline  is  depic-

ted in Fig. 6(a). The mask pattern is loaded, and the cor-
responding  ICC matrix  is  calculated  using  the  high-NA
EUV lithography  imaging  model.  Next,  the  critical  re-
gion of the pattern is sampled to reduce the dimensional-
ity of  the  SO  problem.  The  linearized  Bergman  al-
gorithm  is  then  commenced,  iterating  until  it  reaches  a
predetermined iteration  limit.  Finally,  the  sparse  coeffi-
cient  is  obtained,  and  the  optimized  source  pattern  is
further reconstructed from it.

Following  the  SO  algorithm,  the  gradient-based  MO
algorithm starts, and its flow chart is shown in Fig. 6(c).
The  optimized  source  pattern  is  initially  loaded.  Then,
the  gradient  of  cost  function  is  calculated  based  on  the
Eq.  (8),  and  the  mask  pattern  is  updated  following  the
direction of steepest gradient. The iteration terminates as
it  reaches the prescribed limit.  Finally,  the mask pattern
is optimized.

The proposed SMO method is  developed by combin-
ing  the  SO  and  MO  algorithm.  Consecutive  rounds  of
both algorithms iteratively proceed,  aiming to minimize
the cost function. Finally, the optimized mask and source
pattern are obtained.

 Results and discussion

 Results of the SMO method
In this section, the results of the proposed SMO method
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Fig. 6 | The flowcharts of (a) the SO algorithm, (b) the main SMO method, and (c) the MO algorithm.
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are  provided  and  discussed.  All  of  the  simulation  codes
are implemented by MATLAB, and the computations are
carried  out  on  a  computer  with  Intel(R)  Core(TM)  i7-
10870H CPU, 2.20 GHz, 32.0 GB of RAM, and NVIDIA
GeForce RTX 3070 Laptop GPU. The optimization of the
mask patterns  with  different  CDs  are  studied.  The  al-
gorithms are tested on seven layout patterns in this work.
Figure 7(a) shows the seven testing layouts, and Fig. 7(b)
illustrates  the  sketch  of  a  mask  pattern  with  different
CDs. The resolution of the layouts is 1 nm, and lateral di-
mensions of layouts in 13 nm, 9 nm, 7 nm CDs are 300
nm,  200  nm,  and  150  nm,  respectively.  Notices  that,  all
dimensions are  in  the  wafer  scale.  Meanwhile,  the  sig-

moid  function  in Eq.  4 is  applied  for  the  resist  model.
Due to the length limit of this paper, only results of pat-
tern #1 and pattern #2 are illustrated in detailed, and the
results for all of the seven layouts are listed in tables.

Figures 8, 9,  and 10 present  the  optimization  results
for two patterns with various CDs. Results of pattern #1
are  shown  on  the  left,  while  results  of  pattern  #2  are
shown on the  right.  For  each simulation,  the  initial  and
optimized mask patterns, source patterns, and resist im-
ages are displayed.

In Fig. 8(a), the  optimized  resist  image  shows  tre-
mendous  improvement  in  imaging  quality  compared  to
the initial  resist  image.  The  value  of  loss  function  de-
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Fig. 7 | The Illustration of (a) the seven testing layout patterns, and (b) scaling down of a mask pattern.
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Fig. 8 | The optimization results obtained by the proposed SMO method. (a) and (b) show the results of pattern #1 and pattern #2 with 13

nm CD.
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Fig. 9 | The optimization results obtained by the proposed SMO method. (a) and (b) show the results of pattern #1 and pattern #2 with 9 nm

CD.
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creases from 3155 to 760. Meanwhile, the corresponding
optimization  results  of  pattern  #2  with  13  nm  CD  are
shown  in Fig. 8(b),  noting  a  reduction  of  loss  function
from 2450 to 568. Table 1 lists the initial losses, post-op-
timization  losses,  and  computation  times  for  different
testing  patterns  with  13  nm  CD.  The  proposed  SMO
method can reduce the loss by 73% in average, and takes
about 160 s for calculation.

Figure 9(a) shows a marked reduction of loss function
value from 3146 to 685, and Fig. 9(b) shows a decline of
the loss from 1694 to 487. Table 2 lists  the initial  losses,
post-optimization losses, and computation times for dif-
ferent  testing  patterns  with  9  nm  CD.  The  proposed
SMO method can reduce the loss by 71% in average, and
takes 155 s for calculation.

Figure 10(a) and 10(b) show  the  optimization  results
with 7 nm CD. It  is  observed that  the initial  source and
mask can hardly  print  any pattern on the  resist.  On the
other  hand,  the  loss  function  for  pattern  #1  decreases
from  2297  to  905  after  the  optimization,  and  the  loss
function for pattern #2 with 7 nm decreases from 1523 to
616  after  the  optimization.  Despite  of  the  improvement
of imaging  fidelity,  the  optimized  patterns  are  still  sub-
optimal for the IC fabrication. These results suggest that
high-NA  EUV  lithography  with  single  patterning  is
hardly to manufacture arbitrary patterns with 7 nm CD.
Instead, high-NA  EUV  lithography  with  multiple  pat-
terning or  other  advanced patterning techniques  should
by applied for the fabrication of such small features.

Table 3 summarizes  the  initial  losses,  post-optimiza-
tion  losses,  and  computation  times  for  different  testing
patterns with 7 nm CD. The proposed SMO method can
reduce  the  loss  by  63%  in  average,  and  takes  167  s  for
calculation.

It is  noted  that  all  of  the  computational  times  men-
tioned above  are  performed  on  GPU  device.  As  a  com-
parison,  the  SMO method will  take about  1300 s  to  run
on the CPU device. Therefore, using GPU device can ac-
celerate  the  SMO  method  by  tenfold,  which  is  valuable
for its applications.

In addition,  for  all  of  the  layout  patterns  with  differ-
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Fig. 10 | The optimization results obtained by the proposed SMO method. (a) and (b) show the results of pattern #1 and pattern #2 with 7

nm CD.

 

Table 1 | Initial  losses,  optimized  losses,  and  runtimes  of  the
SMO method based on different testing layouts with 13 nm CD.
 

Pattern No. Initial loss Optimized loss Calculation time/s

1 3155 760 168

2 2450 568 159

3 2680 791 159

4 3202 974 161

5 2558 623 153

6 2630 638 161

7 2104 695 152

 

Table 2 | Initial  losses,  optimized  losses,  and  runtimes  of  the
SMO method based on different testing layouts with 9 nm CD.
 

Pattern No. Initial loss Optimized loss Calculation time/s

1 3146 685 155

2 1694 487 162

3 2211 668 150

4 2968 1085 161

5 2004 659 141

6 2486 772 167

7 1687 461 153

 

Table 3 | Initial  losses,  optimized  losses,  and  runtimes  of  the
SMO method based on different testing layouts with 7 nm CD.
 

Pattern No. Initial loss Optimized loss Calculation time/s

1 2297 905 163

2 1523 616 162

3 1791 568 165

4 2819 1106 176

5 1739 565 168

6 1875 823 187

7 1433 524 154
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ent  CDs,  the  source  points  located  in  the  center  pupil
area  yield  poor-fidelity  aerial  images.  Therefore,  the  SO
algorithm  inherently  designates  lower  intensities  to  the
central source area. This observation is attributed to the
central pupil  obstruction  of  the  high-NA  EUV  projec-
tion system, which has been discussed in Section Projec-
tion  system  with  anamorphic  magnification  and  pupil
central obstruction.

 Results of the MRC process
The mask  rule  check  (MRC) is  an  important  process  to
improve  the  manufacturability  of  the  designed  layout.
Meanwhile,  the  constrain  of  mask  pattern  complexity
will  also  degrade the  imaging inevitably.  In  this  section,
we proposed an MRC process to simplify the optimized
mask pattern after the SMO.

Firstly, the mask pattern is simplified preliminarily by
reducing  Harr-wavelet  complexity  penalty26.  Then,  the
MRC process starts, including down-sampling the mask,
eliminating small  isolated  holes  and  protrusions,  con-
verting  all  irregular  sub-resolution  assist  features
(SRAFs)  into  rectangles.  Notice  that,  the  anamorphic
magnification of  high-NA  EUV  system  should  be  con-
sidered in the MRC process. In this work, we assume the
beam size of a multi-beam mask writer is 16 nm27, so that
it  should be converted to 4 nm in x-direction and 2 nm
in y-direction in the wafer scale.

Figure 11 shows  the  results  of  the  MRC  process. Fig-

ure 11(a) shows  the  target  pattern  and  an  optimized
source  pattern  from  top  to  the  bottom.  The  optimized
mask pattern and its corresponding resist pattern are dis-
played  in Fig. 11(b),  where  the  imaging  loss  is  757.  On
the other hands, the mask pattern after MRC and its res-
ist  pattern  are  shown  in Fig. 11(c),  where  the  imaging
loss  increase  to  926.  It  is  shown  that,  the  MRC  process
can significantly reduce the complexity of the mask pat-
tern, and its negative impact to the imaging is acceptable.

 Conclusion
This work proposed an SMO method for high-NA EUV
lithography system. Firstly, the imaging models for high-
NA EUV  lithography  was  established,  where  the  ana-
morphic  magnification,  pupil  central  obstruction  and
mask  3D  effect  were  considered.  The  accuracy  of  the
imaging model was verified based on the comparison to
a commercial software. Then, the SMO method for high-
NA EUV lithography system was developed by combin-
ing  the  CS-based  SO  algorithm  and  the  gradient-based
MO algorithm. An MRC process is further conducted to
simplify  the  optimized  mask  pattern.  Simulation  results
showed that  the  proposed  SMO method can  reduce  the
imaging loss by 70% on average for different testing lay-
outs across  various  CDs.  According  to  the  imaging  im-
provement  and  the  high  computational  efficiency,  the
proposed SMO  method  is  valuable  to  the  EUV  litho-
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graphy process at advanced IC technology nodes.
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