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Liquid crystal-integrated metasurfaces for an
active photonic platform
Dohyun Kang1†, Hyeonsu Heo1†, Younghwan Yang1†, Junhwa Seong1,
Hongyoon Kim1, Joohoon Kim1 and Junsuk Rho1,2,3,4,5*

Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate elec-
tromagnetic waves at will  using periodically arranged nanostructures. However, metasurfaces typically have static opti-
cal responses with fixed geometries of nanostructures, which poses challenges for implementing transition to technology
by replacing conventional optical components. To solve this problem, liquid crystals (LCs) have been actively employed
for designing tunable metasurfaces using their adjustable birefringent in real time. Here, we review recent studies on LC-
powered tunable metasurfaces, which are categorized as wavefront tuning and spectral tuning. Compared to numerous
reviews on tunable metasurfaces, this review intensively explores recent development of LC-integrated metasurfaces. At
the end of this review, we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further
directions for improving LCs. We hope that this review will  accelerate the development of new and innovative LC-pow-
ered devices.
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 Introduction
Metasurfaces,  which  consist  of  artificially  arranged  sub-
wavelength structures, also called meta-atoms, have been
actively researched due to their planar nature to dramati-
cally  modulate  electromagnetic  waves1−3.  Numerous  ap-
plications  have  been  demonstrated  with  various  design
approaches for realizing holography4−11,  lensing12−17,  col-
or  generation18−22,  and beam-steering23−26.  Several  design
methods have been demonstrated: the geometry of meta-
atoms,  resonance  effects,  and  free-form  optimization.

The first involves rotating meta-atoms (called Pancharat-
nam-Berry  (PB)  phase)27,28 or  changing  the  parameters
such as height, width, and length of meta-atoms (propa-
gation phase).  In  addition,  both PB phase  and propaga-
tion  phase  can  be  used  to  compensate  for  each  other’s
disadvantages, with PB phase operating only for circular
polarization  while  propagation  phase  operates  only  for
orthogonal  and  linear  polarization  (LP)29,30.  The  second
method  involves  resonance  effects,  such  as  Mie
resonance31−33,  Fabry–Pérot  (FP)  resonance34−36, 
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guided-mode resonance (GMR)37,38,  and bound states  in
the continuum (BIC) resonance39−41. Finally, various sim-
ulation  tools,  such  as  rigorous-coupled  wave  analysis
(RCWA)42,43,  finite-difference  time-domain  (FDTD)44−46,
and finite element methods (FEM)47,48 can be used to op-
timize meta-atoms.  Over the last  two decades,  these  de-
sign methods have been employed to potentially replace
conventional  optical  systems  due  to  their  standout  fea-
tures  such  as  high  numerical  aperture  (NA)  and  wide
field of view (FOV).

However,  their  passive  nature  —  having  one  specific
function once  fabricated — poses  a  critical  problem for
broad  applications.  The  tunability  of  metasurfaces  en-
ables their utilization in optical communications or high-
resolution  sensors.  Furthermore,  by  arranging  tunable
metasurfaces  as  a  pixelated  array,  metahologram can be
applied  for  3D  holographic  displays,  and  beam-steering
can  be  implemented  for  a  light  detection  and  ranging
(LiDAR)  system.  These  applications  strongly  support
that research on tunable metasurfaces is essential not on-
ly for the scientific advancement of metasurfaces but al-
so for their commercial development as a technology.

Tunable metasurfaces can be designed using two main
strategies:  1)  mechanical  tuning based on various  exter-
nal  stimuli  and  2)  combination  with  active  materials.
Mechanical  tuning involves  altering the electromagnetic
response by modifying structural aspects, such as adjust-
ing lattice constants, resonator shapes, or spatial arrange-
ments. This is achieved by manipulating the interplay be-
tween  electromagnetic  and  elastic  forces  in  response  to
external  stimuli,  including  thermal  input49−51,  electrical
input52−54,  and  physical  tension55−57.  Combination  with
active materials involves surrounding media or inserting
materials whose optical properties are sensitive to exter-
nal stimuli, resulting in the dynamic control of metama-
terials.  Active  materials  include  liquid  crystal  (LC)23,58,
graphene59,60,  ultrathin  metal61,62,  semiconductor63,64,  and
superconductor65,66.  Generally,  mechanical  tuning meth-
ods tend to result in a wider spectrum tuning range, but

they exhibit relatively slower response times compared to
methods  involving  active  materials67,68.  In  contrast,
methods  involving  active  materials  offer  faster  response
times but yield narrower spectra.

In this review, we focused on LCs to achieve metasur-
face tunability due to their exceptional characteristics in-
cluding  birefringence,  real-time  responsiveness  across
the visible, infrared (IR), and terahertz (THz) bands, and
high  transparency  in  the  visible  spectrum.  Specifically,
they  can  be  modulated  by  various  stimuli  within  a  few
milliseconds69,  a  crucial  factor for  practical  applications.
Notably, their demonstrated productivity, exemplified by
LC  displays  (LCDs),  showcases  their  cost-effectiveness
and  suitability  for  large-scale  production.  Furthermore,
LCs are among the most widely utilized methods for cre-
ating  electrically  tunable  metasurfaces.  For  instance,
graphene exhibits an incredibly fast response time in the
picosecond scale; however, its critical weakness lies in its
narrow operational  spectrum,  restricting  its  functionali-
ty in the visible region, thus limiting its practical applica-
tions70,71.  Phase  change  materials  offer  reversibility,  en-
abling free switching, but their low energy efficiency pos-
es  a  challenge  for  photonic  applications72,73.
MEMS/NEMS,  while  promising,  suffer  from  high  fabri-
cation difficulty and cost,  rendering them less viable68,74.
In  contrast,  LCs  demonstrate  mass  production  stability,
boasting  high  modulation  accuracy  and  reversibility.
Consequently,  LC-based  metasurfaces  hold  significant
potential  for  practical  applications  [Table 1].  Despite
these advantages, there exists no review paper solely ded-
icated  to  LC-powered  metasurfaces,  unlike  the  reviews
available  for  various  methods  in  tunable
metasurfaces75−80.

Here,  we  focus  on  LC-powered  tunable  metasurfaces
and  their  potential  to  expand  the  practical  usability  of
metasurfaces. Initially, we provide a brief overview of the
characteristics  of  various  types  of  LCs  and  their  align-
ment technologies. Subsequently, we categorize metasur-
face-based  photonic  modulation  into  wavefront  tuning

 

Table 1 | Comparison of electrical tuning techniques for tunable metasurfaces.
 

Methods Response time Advantages Disadvantages Ref.

LC Millisecond scale
Proven stability for mass production

High efficiency
Bulky system ref.81,82

Graphene Picosecond scale
Fast response time

Robust stability
Power consumption

Narrow spectrum (NIR to THz)
ref.70,71

Phase change materials Millisecond scale Reversible Low energy efficiency ref.72,73

MEMS/NEMS Microsecond scale Superior integration capability
High cost

Fabrication difficulty
ref.68,74
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and spectral tuning [Fig. 1]. Under wavefront tuning, we
explore their applications as metaholograms, metalenses,
and  beam  steering,  while  for  spectral  tuning,  we  exam-
ine their use in transmissive and reflective tuning, as well
as  in  absorbers.  Through  this  classification,  we  present
select representative research and provide concise expla-
nations  of  their  principles  or  novelty.  Additionally,  we
highlight  the  potential  of  LC-based  metasurfaces  by  in-
cluding a section on integrated optical platforms. At the
end  of  this  review,  we  summarize  our  overall  contents
and discuss  the  limitations  of  LC-based  metasurfaces  in
real-life applications.

 Liquid crystal
LCs,  as  their  name  implies,  are  intermediate  states  be-
tween  crystalline  solids  and  isotropic  liquids.  In  solids,
molecules  exhibit  both  positional  and  orientational  or-
der, with specific locations and directions for the centers
of  mass  and  molecular  axes.  In  contrast,  in  liquids,
molecules  lack  preferred  positions  and  directions.  In
solids,  molecules  can  undergo  slight  shifts  in  position

and  orientation,  but  they  are  typically  anchored  to  spe-
cific lattice points, moving in relation to the perfect geo-
metric  lattice.  In  the  liquid  state,  molecules  freely  dis-
perse  throughout  the  sample,  and  their  centers  of  mass
move  in  random  directions.  Beyond  solids  and  liquids,
there exist other condensed phases with varying degrees
of  order.  One  example  is  the  plastic  crystal,  where
molecules are predominantly fixed in a lattice but can vi-
brate  and rotate  freely83.  When molecules  have  one  axis
significantly longer or shorter than the other two, phases
with some order in position and orientation can emerge,
though  this  order  is  not  as  pronounced  as  in  solids  or
plastic crystals. These phases are referred to as LC phas-
es,  where  molecules  move  around  while  retaining  some
degree  of  order.  According  to  the  arrangement  of  the
molecules, LCs can be classified into nematic, cholester-
ic or chiral, smectic, and disk or columnar phase [Fig. 1].

 Liquid crystal types

 Nematic

In the liquid state, there is no preferred positional order,

 

Liquid crystal Metasurface

u2(r)=A2(r)e
iø2(r)

u1(r)=A1(r)e
iø1(r)

Nematic Smectic

Columnar Cholesteric Wavefront turning Spectral tuning

Integrated optical platform

AR/VR Encryption Sensor

Fig. 1 | Schematic diagram providing an overview of this review. LCs can be categorized into nematic, smectic, columnar, and cholesteric LC

based on the alignment of the molecules. Recently, metasurfaces have been integrated with LCs to achieve tunability and this integrated optical

platform can be applied to virtual reality (VR), augmented reality (AR), encryption, and sensors.
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as well as orientational order. In the nematic phase, how-
ever,  the  molecules  exhibit  a  preferred  orientational  or-
der  while  still  lacking  positional  order.  The  long  axis  of
the molecules tends to follow a preferred direction, called
the  LC  director,  and  is  expressed  by  the  unit  vector n.
This  LC  director  generally  follows  a  predetermined  di-
rection of LC molecules, but after the application of cer-
tain  inputs,  such  as  voltages,  the  director  of  the
molecules changes due to the anisotropy of the dielectric
constant  and conductivity  of  the LC.  In this  system, the
LC is regarded as a modulator, with inputs being current
and  output  being  the  change  in  refractive  index  of  LC
molecules,  resulting in the modulation of the light pass-
ing  through the  LC.  The  larger  the  input,  the  larger  the
tilt  angle θ of  the  directors  occurs.  The  effective  refrac-
tive  index  can  be  calculated  using  the  following
equation84,85: 

neff =
n0ne√

n0
2sin2θ+ ne

2cos2θ
, (1)

n0 newhere  and  represent the ordinary and the extraor-
dinary LC refractive indexes, respectively.

 Cholesteric

λc

−n

The  cholesteric  LC  has  a  preferred  orientational  order
but  no  positional  order,  which  is  similar  to  nematic  LC
and is also called chiral state. As its name implies, it has a
chiral  property.  The  director  orientation  is  arranged  by
twisting  the  director  of  the  nematic  state.  The  orthogo-
nal  direction of  the twisting long axis  is  the singular di-
rection,  and  the  structures  are  arranged  in  the  rotating
plane following this direction. Thus, cholesteric LC has a
helical  arrangement,  allowing it  to selectively reflect cir-
cularly  polarized  light  with  the  same chirality.  The  cen-
tral wavelength of the reflection spectrum ( ) is related
to  the  helical  pitch  (p)  of  the  cholesteric  LC,  signifying
the distance measured along the twist axis over which the
director completes a full rotation. The average refractive
index  ( )  and  central  wavelength  can  be  calculated  us-
ing the following equations86: 

−n= n0 + ne

2
, (2)

 

λc =
−n p. (3)

 Smectic
The  smectic  LC,  as  its  most  noticeable  feature,  exhibits
both preferred orientational and positional order, unlike

nematic or cholesteric LC. The molecules not only have a
specifically aligned director but also form a layered struc-
ture. These layers can slide independently of each other,
and  according  to  the  molecular  director  in  layers,  the
smectic LC can be classified into different types. For ex-
ample, when the molecular director is orthogonal to the
layers,  it  is  called  smectic  A.  In  contrast,  when  the
aligned  director  is  not  orthogonal  to  the  layers,  it  is
termed  smectic  C,  resulting  in  biaxial  symmetry.  In  a
smectic B phase, a hexagonal crystalline order is present
within the layers87.

 Columnar
The  columnar  LC  represents  a  category  of  LC  phases
where molecules organize into cylindrical structures, un-
like  the  aforementioned  phases,  which  have  rod-like
molecules.  These  crystals  are  categorized  based  on  the
packing arrangement of the columns. Figure 1 shows an
example of hexagonal columnar LC, and in columnar ne-
matic  LC,  molecules  do  not  form  columnar  assemblies
but  instead  float  with  their  short  axes  parallel.  Other
columnar  LCs  exhibit  two-dimensional  lattice  arrange-
ments,  including  tetragonal,  rectangular,  and  herring-
bone patterns88.

 Types in metasurface design
Among  the  various  types  of  LCs,  nematic  LCs  are  the
most  commonly  used  with  metasurfaces,  followed  by
cholesteric  LCs  as  the  second  most  frequently  utilized.
Nematic LCs overwhelmingly dominate, even among ne-
matic  and  cholesteric  LCs.  As  previously  mentioned,
while cholesteric LCs offer possibilities for tuning the re-
flective  wavelength,  nematic  LCs,  capable  of  tuning  po-
larization  through  their  birefringence  property,  are  the
most  suitable  for  utilization  in  metasurfaces.  For  exam-
ple, the most commonly employed structure in metasur-
faces  is  the  rectangular  PB phase  structure,  which  relies
on the difference in response between the long and short
axes,  resulting  in  characteristics  dependent  on  incident
polarization.

 Alignment of liquid crystal
To arrange the LC molecules  from disordered state  to a
preferred  orientational  order,  some  of  the  alignment
techniques  can  be  employed,  typically  involving
methods  such as  rubbing alignment  or  photoalignment.
The coating layer used to align the molecules is called the
alignment layer, which is usually made of polyimide (PI)
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that  is  optically  transparent  and  stable.  The  rubbing
alignment  typically  employs  unidirectional  mechanical
friction  on  the  alignment  layer  to  induce  the  alignment
of  the  molecular  chain  or  generate  groove  surface89−91.
Although this method has been widely adopted in indus-
try and laboratory due to its convenience, there are some
drawbacks that it can generate undesired defects such as
static  electricity,  impurities,  and  mechanical  damage  of
the surface caused by the rubbing process of PI films. As
a  result,  researchers  have  explored  alternative  contact-
free methods to remove the aforementioned problems, of
which photoalignment emerging as one of the most pow-
erful  non-contact  alignment  techniques.  In  this  ap-
proach, the photosensitive substrate is  utilized to enable
it  to undergo orientational  ordering in response to light
irradiation,  making  it  advantageous  in  new applications
such as telecommunications and organic electronics92.

 Wavefront tuning
In recent years, various optical systems have been active-
ly  researched  to  realize  next-generation  optical  devices,
including  AR/VR  and  transparent  displays.  Wavefront
tuning is a crucial function in creating these devices, and
we can dynamically shape the wavefront by sequentially
combining  the  polarization  shifting  feature  of  LC  with
polarization-multiplexed wavefront shaping metasurface,
or  using  pixel-level  modulation  schemes  by  designing
each  pixelated  metasurface  to  have  different  optical  re-
sponses depending on the LC state. In this section, we re-
view  the  recent  progress  in  research  on  wavefront  tun-
ing  using  LC-combined  metasurfaces,  categorized  into
metahologram, metalens, and beam steering.

 Metahologram
Holography  is  an  optical  technology  that  involves
recording  and  reconstructing  a  wavefront  to  generate
optical images, and this is achieved by locally manipulat-
ing  the  phase  or  amplitude  of  scattered  electromagnetic
waves93,94. Conventionally, holographic images have been
produced  using  spatial  light  modulators  (SLMs),  but
large pixel pitch (several micrometers) of SLMs limits the
resolution  of  reconstructed  images,  lowers  viewing  an-
gles,  and  causes  unpredictable  high-order  diffractions
with  sampling  problems95,96.  These  limitations  can  be
overcome  by  employing  metaholograms,  which  have  a
subwavelength  periodic  length97−99.  Nevertheless,  tradi-
tional metaholograms can only record single holograph-
ic  images  once  their  phase  profiles  are  fixed.  To  solve

these limitations, LCs have been applied to tunable meta-
holograms100−103.

Dynamic  metaholographic  displays  that  respond  to
various external stimuli, such as heat or surface pressure,
as well as electric fields, have been proposed [Fig. 2(a)]104.
When heat or pressure is  applied to the LC, its  molecu-
lar ordering can be altered by the material flow with vol-
ume changes owing to pressure gradients or thermal ex-
pansion69,105,106. The polarization state of light can be con-
trolled  because  the  effective  optical  birefringence  de-
pends  on  the  molecular  ordering.  The  designed  LC  cell
can  vary  transmitted  polarization  from  right-circularly
polarized  (RCP)  to  left-circularly  polarized  (LCP)  light
depending on external stimuli. Since designed metaholo-
grams produce different holographic images under RCP
and LCP light,  metaholographic displays can switch im-
ages in real time with various inputs such as electric bias,
finger  touch,  and  heat.  Similarly,  spin-decoupled  helici-
ty-multiplexed  metasurfaces  have  been  integrated  with
pressure-sensitive  LCs107.  The  designed  structure  has
been implemented in a finger touch-enabled holograph-
ic  switching device that  converts  the helicity  of  incident
light  using  LC  depending  on  the  pressure.  However,
these devices can only exhibit two pieces of information
because they work only under RCP and LCP light.

Li  et  al.  have  demonstrated  an  electrically  controlled
digital  metasurface  device  (DMSD)  for  light  projection
displays  as  shown  in Fig. 2(b)81.  The  numeric  indicator
display,  realized  by  this  device,  can  showcase  ten  pieces
of  information  using  seven  switchable  metasurface  pix-
els.  Each metasurface pixel  can be electrically  turned on
and off by manipulating the relative phase between adja-
cent odd and even columns in each metasurface. The rel-
ative  phase  of  each  column  can  be  expressed  as  Δφ.  In
this  study,  there  are  two  phase  factors:  the  geometric
phase  (Δφg)  and  the  propagation  phase  (Δφp).  Because
rectangular-shaped  meta-atoms  are  used  in  this  study,
the  geometric  phase  only  depends  on  the  difference  in
rotating  angle  (Δθ)  of  the  meta-atoms  in  each  column.
As  shown  in Fig. 2(b),  Δφg =  2Δθ =  π  is  fixed  in  this
study. Δφp can be modulated by coating different materi-
als in each column with refractive indices of na (LCs) and
nb (PMMA  trenches).  Here, nb is  a  fixed  value  of  1.5,
while na,  the  only  variable,  can  be  tuned  from  1.53  to
1.92  by  electrical  input.  Consequently,  when  no  input
voltages are applied, na = 1.92 and nb = 1.5,  resulting in
an additional propagation phase, so that Δφ = Δφg + Δφp

=  2π,  leading  to  completely  on  states.  As  the  applied
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voltages  increase, na decreases,  eventually  reaching na =
1.53, resulting in Δφ = Δφg + Δφp = π, signifying totally
off states. By controlling seven independent metasurface
pixels,  reconstructed  holographic  images,  including
numbers from 0 to 9 (0 is not shown in the figure), have
been  demonstrated  [Fig. 2(b)].  Although  this  approach
can  produce  multiple  images,  the  need  for  an  array  of
metasurface  pixels  hinders  its  applications  because  of
fabrication or cost issues.

Kim et al. have proposed an electrically tunable vecto-
rial  holographic  device  that  can  exhibit  multiple  images
without using a metasurface array [Fig. 2(c)]108. The pro-
posed meta-atoms can act as both a Mie-resonator and a
localized  half-wave  plate.  Thus,  this  device  can  simulta-
neously produce a structural  color print under unpolar-
ized white light and generate polarization-encoded meta-
holograms when exposed to coherent laser illumination.
This  vectorial  holography  has  more  degrees  of  freedom
because it works under elliptical polarization, while con-
ventional  metasurfaces-based  holograms  only  work  un-
der RCP and LCP. Elliptical polarization can be generat-
ed by the superposition of RCP and LCP in various ways,
and this  device  produces  multiple  images  depending on
the  arbitrarily  defined  polarization  states.  To  miniatur-
ize the device and enable active control based on electri-
cal bias, an LC modulator is integrated in place of the po-
larizer and retarder. Two-level security applications have
been  demonstrated  using  this  concept.  When  the  QR
code  is  scanned,  the  corresponding  voltage  values  are
transmitted,  and  the  receiver  can  decipher  the  code
through  the  hologram  image.  This  research  shows  the
potential of LC-integrated metasurface, which can be ap-
plied to practical devices.

While  a  metahologram  can  display  multiple  images,
there  had  been  no  research  demonstrating  continuous
image  tuning,  as  previous  studies  had  only  shown  dis-
crete  image  tuning.  Yang  et  al.  demonstrated  LC-inte-
grated  chiral  metasurfaces  as  a  method  to  continuously
control intensity between fully "on" and "off" states [Fig.
2(d)]109.  Conventional  LC-based  metaholograms possess
limitations in achieving a complete off-state.  Employing
fully elliptically polarized states, encompassing both RCP
and  LCP,  offers  enhanced  degrees  of  freedom  for  tun-
able  metasurfaces.  To  achieve  complete  absorption  of
RCP  within  the  visible  range,  gap-shifted  split-ring  res-
onators utilizing multilayer structures consisting of met-
al and dielectric materials have been proposed to gener-
ate  strong  gap-plasmonic  responses.  Applying  a  voltage

of 1.39 V to the LC, RCP is incident on the chiral meta-
surfaces, and the resultant image exhibits nearly negligi-
ble  intensity  with  99.9%  of  the  incident  light  absorbed.
Conversely,  by  applying  a  voltage  of  1.18  V  to  the  LC,
LCP is  incident,  leading to the reconstruction of  a  vivid
metaholographic image.

So  far,  most  research  on  metaholograms  has  focused
on  the  polarization-tuning  mechanism  to  overcome  the
limitations  of  information  capacity.  Broadband  meta-
holograms are  also  a  novel  approach to  address  this  in-
formation  capacity  limit.  Asad  et  al.  have  proposed  a
broadband metahologram operating in both the ultravio-
let (UV) and visible regions, which exhibits different im-
ages for the RCP and LCP [Fig. 2(e)]110. Similar to previ-
ous  research,  LCs  enable  this  device  to  switch  between
RCP  and  LCP  freely.  There  has  been  little  research  on
UV metaholograms due to their low efficiency and fabri-
cation  difficulties.  However,  this  group  selected  silicon
nitride  (Si3N4)  for  broadband  metahologram  operating
in  both  the  UV and visible  region  because  this  material
possesses  a  large  band  gap  energy  of  5.9  eV,  a  high  re-
fractive  index,  and  a  low  extinction  coefficient.  This
group has demonstrated multiple holographic images in
broadband region, showcasing how the integration of the
unique  properties  of  LCs  can  greatly  enhance  system
performance.

Despite these outstanding performances, several prob-
lems  remain  and  limit  functional  utilization.  While  the
novel  LC-based  approaches  which  utilizes  polarization
states  or  broadband  properties  to  provide  a  greater  de-
gree of  freedom for  information storage limits  offer  po-
tential,  it  remains  inadequate  for  practical  technological
utilization. Furthermore, even when increasing the num-
ber of holographic images through these approaches, ad-
dressing  efficiency  degradation  and  crosstalk  between
multiple  images  remain  a  crucial  challenge  for  future
holographic devices.

 Metalens
Metalenses,  thin and flat lenses consisting of nanostruc-
ture arrays, have attracted significant attention in recent
years due to their potential for miniaturizing optical sys-
tems,  a  crucial  aspect  for  next-generation  applications,
including  AR/VR111,112 and  bio-optics113,114.  However,
these  thin  and  flat  lenses  still  face  challenges  similar  to
conventional  lenses,  such  as  chromatic  aberration  and
high NA. To overcome the limitations, numerous metal-
enses  with  diverse  functionalities  have  been  proposed,
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including  multi-focusing115−117,  broadband,  chromatic
aberration  correction118−120,  and  wide  FOV  lenses121−124.
Particularly, achieving active performance such as multi-
focusing  with  metalenses  for  practical  applications
presents a challenge due to their passive nature. Various
methods  have  been  utilized  to  realize  the  dynamic  re-
sponse  of  metalens,  with  the  integration  of  LCs  being
one of the actively explored approaches.

Compared  to  conventional  lenses  which  inevitably
have  bulky  systems  to  achieve  the  control  of  the  focal
length, varifocal metalenses integrated with LCs are rela-
tively small and compact, which is a good advantage for
various applications. Fan et al. have proposed a varifocal
metalens  integrated  with  twisted  nematic  (TN)  LCs
which  has  improved  response  time  and  high  imaging
quality  compared  to  conventional  tunable  lenses  [Fig.
3(a)]82.  TN  LCs,  which  can  rotate  polarization  angle  of
90°,  are utilized to electrically modulate the polarization
of  incident  light  between x-  and y-polarization  states,
while  bifocal  metalens  is  designed  to  shift  the  focal
length  depending  on  incident  polarization  states.  Each
unit cell of metalens is selected to provide different phase
distributions  in x-  and y-polarized  light,  by  properly
changing their lengths and widths. This design shows not
only  a  rapid  response  time of  sub-millisecond level,  but
also  high  focusing  efficiencies  and  the  full  width  at  half
maximum  close  to  diffraction  limit  at  each  focal  point,
meaning that high imaging quality can be shown.

Badloe et al. have proposed an LC-cell combined tun-
able  bifocal  metalens  achieving  high  focusing  efficiency
with  the  design  of  the  metasurface  using  both  propaga-
tion phase and geometric phase to overcome restrictions
of  each  method  [Fig. 3(b)]30.  The  dimensions  of  each
meta-atom were carefully selected to cover the 2π range
for  the  propagation  phase,  while  also  considering  func-
tion  as  half-wave  plates.  In  the  sequentially  combined
LC-integrated  metalens,  RCP  and  LCP  states  are  pro-
duced from the incident linearly polarized light through
the LC cell  at  1.1 and 1.3 V,  and then each of  them can
generate focal point at 3.7 and 7.5 mm through the bifo-
cal  metalens.  As  a  result,  focal  spots  exhibiting  profiles
close  to  perfect  Airy  disks  and  high  Strehl  ratios  were
achieved at each focal point, which indicates diffraction-
limited  performance  of  the  lens.  As  shown  in  the  right
panel  of Fig. 3(b),  imaging  using  this  bifocal  metalens
was  also  demonstrated,  with  the  modulation  transfer
function (MTF) of the metalens closely matching that of
the diffraction-limited MTF at each focal point.

Hu et al. have demonstrated electrically tunable metal-
ens  by  combining  LCs  with  geometric  phase  metasur-
face,  constructing  an  LC-based  tunable  platform  with
simple processing and increased polarization conversion
efficiency [Fig. 3(c)]125.  LC-based wave plate designed to
dynamically  implement  variable  phase  retardation  is
used  to  convert  circularly  polarized  light  emitted  from
the  encapsulated  metasurface  into  variable  elliptically
polarized  light.  The  LCP  and  RCP  channels  can  be
switched by filtering with a linear polarized analyzer ap-
plied in an angle of  45° with the in-plane azimuthal  an-
gle  of  LC  molecules.  Using  vector  decomposition  with
non-interleaved  metasurfaces126 as  a  multiplexing
method, switching two orthogonal helicity channels with
two  different  focal  points  can  be  achieved.  The  packag-
ing strategy of wrapping meta-atoms in PMMA is select-
ed over direct LC wrapping strategies, which can achieve
larger  refractive  index  contrast  and  higher  polarization
conversion efficiency. Due to the broadband characteris-
tic of the geometric phase,  focusing on multiwavelength
can be performed.

Instead of using methods to control the polarization of
light  through  LC,  an  alternative  approach  involves  ad-
justing  the  LC  orientation  to  modulate  the  local  refrac-
tive  index  surrounding  the  metasurface,  consequently
changing  the  phase  delay.  Bosch  et  al.  have  proposed  a
tunable zone plate metalens, whose focal distances can be
continuously manipulated by changing a rotation angle θ
of LC molecules [Fig. 3(d)]127.  The meta-atoms support-
ing  Mie-type  resonant  modes  encapsulated  in  nematic
LC are engineered to produce a phase delay profile  cor-
responding  to  zone  plate  lens,  whose  focal  distance  can
be modulated by changing the refractive index of the sur-
rounding LC cell.  Compared to  the  discrete  bifocal  lens
which can shift between only two focal lengths, a varifo-
cal metalens is designed to provide multiple focal lengths
between  two  values  at  the  corresponding  intermediate
LC molecule rotation angles 0° < θ < 90°. To achieve this,
the phase of each meta-atom is numerically optimized to
change  near-linearly  with θ at  five  values  within  the
range  of  0°  < θ <  90°.  As  depicted in  the  simulation re-
sults  shown  in Fig. 3(d),  increasing  the  amplitude  of  a
bias voltage V0 leads to an increase in the rotation angle
of LC molecules, resulting in slight changes in the phase
profiles of metasurface and thus a continuous decrease in
the focal length.

Besides its ability to adjust the focal length of the met-
alens  using  LC,  some  research  has  also  suggested  new
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dynamic functionalities  for  various applications,  includ-
ing  biological  imaging.  Badloe  et  al.  have  demonstrated
electrically  tunable  metalens  integrated  with  LC  cell
which  can  switch  from  bright-field  mode  to  edge-en-
hanced imaging mode [Fig. 3(e)]128. By combining prop-
agation phase and geometric phase, conventional hyper-
bolic  lens  phase  profile  and  spiral  phase  profile  can  be
encoded into  a  single  metalens.  To prove  the  advantage
of using metalens over conventional lens systems that all
complex  information  can  be  obtained,  bioimaging  with
small  amplitude  fluctuations  is  demonstrated  with  de-
signed metalens.

However, there is still a long way to go before these in-
novative  concepts  can  be  applied  to  practical  devices.
First, some problems of the metalens itself, such as aber-
rations,  broadband  operation,  low  focusing  efficiency,
and large-scale design, need to be resolved. Furthermore,
maintaining  high  focusing  efficiencies  on  both  states  is
essential  in  switchable  imaging  systems.  Increasing  the
modulation number of focal points of varifocal metalens
could also be an interesting issue.

 Beam steering
Beam steering is a technique used to dynamically direct a
beam in a  desired direction,  which is  highly required in
applications  such  as  LiDAR,  displays,  laser  machining,
and  optical  communications.  Mechanical  approaches,
including  rotating  mirrors129 and  MEMS  mirrors130,131

have  conventionally  been  used  as  beam  steering  meth-
ods.  Concurrently,  there  has  been  an  active  exploration
of  non-mechanical  methods,  with  LC-based  devices
gaining a significant attention for their lightweight, com-
pact,  and  cost-effective  nature  compared  to  other  tech-
niques. LC-based beam steering devices have commonly
utilized  the  tunability  of  LCs  in  conjunction  with  vari-
ous optical elements, which can function as blazed grat-
ings,  Bragg  gratings,  and  prisms132.  Recently,  metasur-
faces  have  been  integrated  into  LC-based  beam steering
devices,  offering  the  potential  for  achieving  wide  FOV
and high efficiency.

Komar et al. have demonstrated a dynamically switch-
able  beam  deflector  in  the  visible  region  using  a  Huy-
gens  dielectric  metasurface  infiltrated  with  LCs  [Fig.
4(a)]133. By heating the LC from 25 °C to 60 °C, a transi-
tion  of  the  LC  arrangement  occurs  from  nematic  to
isotropic state,  which leads to a  refractive index change.
The  embedded  Huygens  metasurface  is  designed  to
transmit light straight through in nematic state, while de-

flecting it at a specific angle in isotropic state. Different-
sized  nanodisks  are  employed  to  introduce  the  desired
phase delays, covering a range of 2π with satisfying Huy-
gens’ condition  in  isotropic  state,  and  creating  a  phase
gradient  that  functions  as  a  binary  blazed  grating.  As
shown in the left panel of [Fig. 4(a)], the power distribu-
tion among the diffraction orders of the transmitted light
through  the  device  is  changed  by  varying  the  tempera-
ture and altering the LC state.  With the LC state shifted
from  nematic  to  isotropic  as  the  temperature  rises,  the
intensity of the zeroth order decreases while the intensi-
ty of the first order increases. The device effectively con-
trols the amount of beam deflection at the angle of 12° at
the working wavelength of 745 nm.

Beam  steering  can  be  achieved  non-mechanically  us-
ing  SLM,  however,  the  widely  used  LC-based  SLM  suf-
fers  from  large  pixel  sizes  and  consequently  small  FOV
issues.  To alleviate this  problem, a phase-only transmis-
sive  SLM  with  miniaturized  pixel  size  using  Huygens
metasurface has been demonstrated [Fig. 4(b)]134. In this
work, the desired phase accumulation can be implement-
ed  by  changing  the  LC  arrangement  and  inducing  local
environment  and  resonance  changes  of  the  nanoanten-
nas, rather than modulating phase delay solely by LC lay-
er.  This  enables  a  reduction  in  the  LC  cell  thickness,
leading to decreased pixel sizes and resolving the issue of
limited FOV. The radius of the TiO2 nanoantennas is op-
timized to satisfy Huygens’ condition, and the phase re-
tardation of the light transmitted through the optimized
unit cell is calculated for LC molecule orientations of 0°,
45°, and 90°. The results showed evenly spaced phase re-
tardation of approximately 2π/3 between each other and
similar  high  transmittance  at  three  states  within  the
wavelength range of 660–670 nm, indicating the possibil-
ity of designing a three-level-addressing scheme. A beam
steering  SLM  is  designed  with  three  nanoantennas  per
pixel,  which  accommodate  phase  broadening  and fring-
ing  field  effects65.  The  device  is  fabricated  with  28  indi-
vidually  addressable  electrodes,  acting  as  a  diffraction
grating,  and  the  diffraction  angles  can  be  changed  by
adopting  different  electrode-addressing  configurations.
By  using  a  three-level-addressing  scheme,  the  device
achieves  effective  suppression  of  the  0th  order  and  the
+1th order while enhancing the –1th order to values ex-
ceeding  15%  at  the  deflection  angle  of  11°.  To  mitigate
the shortcomings arising from a small sample size, a larg-
er  device  is  also  designed.  Although  it  cannot  alter  the
deflection angle and is limited to reversing the deflection
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based beam-switching device. It transmits light straight through in nematic state and deflects it at a fixed angle at isotropic state. The right shows

2D images and measured intensity of three main diffraction orders (0, +1, +2) for different temperatures. The total power of transmitted light vary-

ing with temperature is also measured. (b) The left image shows a three-level-addressing scheme of beam steering device with tunable deflec-

tion angle. The right image shows the concept of large aperture device with integration of active-matrix electrodes. (c) Schematic of LC-tunable

metasurface using inverse design. A designed grating deflects incident light to the target angle in the opposite direction depending on the volt-

age “on” and “off” states. (d) The left image shows the schematic of a programmable metasurface performing THz beam steering. Shifting the ap-

plied coding sequence changes the beam deflection angle. The right image shows the measured and calculated distribution of the reflected beam

for the applied five coding sequences at 672 GHz. (e) The left image shows the schematic of the digital coding metasurface using a MIM res-

onator and CASR pattern, performing various THz beam manipulation functions including dual beam steering. The middle images show the cod-

ing patterns and simulated 3D, and 2D scattering patterns for dual beam steering at 0.408 THz. The rightmost figure shows a comparison be-

tween the measured and simulated scattering patterns of the transmitted beam for five different coding sequences. Figure reproduced with per-

mission from: (a) ref.133, © 2018 American Chemical Society; (b) ref.134, © 2019 The American Association for the Advancement of Science; (c)

ref.135, © 2020 American Chemical Society; (d) ref.136, © 2020 AIP Publishing; (e) ref.137, © 2021 John Wiley and Sons.
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direction,  it  significantly  improves  deflection  efficiency
reaching 36% at 660 nm.

To  make  an  active  beam  steering  device  with  both
high  device  efficiencies  and  high  deflection  angles,  a
method of applying inverse design to LC-based metasur-
face has also been proposed [Fig. 4(c)]135.  The optimized
device  consists  of  a  single  silicon  grating  embedded  in
the LC layer, along with two supportive TiO2 gratings on
the top and bottom, switching the beam deflection by ap-
plying  voltage  to  the  LCs.  To  maintain  high  perfor-
mance across multiple refractive-index states using a sin-
gle geometrical structure, it requires extensive computa-
tional  optimization  with  numerous  degrees  of  freedom.
The  adjoint  method  is  utilized  to  effectively  optimize
many  small-scale  degrees  of  freedom,  combining  with
Particle swarm optimization as a global optimization al-
gorithm to deal with larger geometrical parameters such
as layer thickness and periodicity of the structure. By uti-
lizing  multiple  gratings  optimized  for  each  specialized
role, it is possible to find a structure achieving very high
switching  angles  with  having  near-unity  switching  effi-
ciency.  Consequently,  the  highest  deflection-angle  de-
sign achieves a large deflection angle from –72° to +72°,
simultaneously  reaching  large  diffraction  efficiencies  of
62% and 76% in each state.

Active  beam  steering  techniques  are  also  highly  de-
manded  in  THz  wave  applications  such  as  communica-
tion, security screening, biological imaging, and astrono-
my.  For  the  phase  manipulation  of  THz  beams,  digital
coding and programmable metasurfaces have been wide-
ly adopted, which use binary coding elements with sever-
al  discrete  phase  responses  and  switch  the  state  of  each
coding element dynamically. Wu et al. have demonstrat-
ed a programmable metasurface performing a THz beam
steering  with  a  tunable  LC  layer  [Fig. 4(d)]136.  The  de-
signed beam steering device is composed of a 24-column
linear  array  with  each  column  containing  2×50-unit
cells,  and  each  unit  cell  has  a  metal-insulator-metal
(MIM) resonator structure with the Jerusalem cross pat-
terns on its top and pixelated rectangle patch on its bot-
tom  metallic  layers.  The  refractive  index  change  of  the
LC layer induced by applying an electric  field leads to a
shift in the absorption frequency, thus allowing modula-
tion of the reflection amplitude and phase for each cod-
ing element. In this study, a relative phase difference of π
is achieved by applying appropriate bias voltage (0 V and
40 V), which is half of the range of 2π due to the low fill-
ing factor of the top pattern of the unit cell.  As a result,

the 1-bit coding can be defined with the 0 and 1 coding
states which have a relative phase difference of π and the
same  reflection  amplitude.  The  deflection  angle  can  be
adjusted by modifying the coding sequences using a field
programmable  gate  array  (FPGA)  board,  which  in  turn
alters the periodicity of the subarray. At the working fre-
quency 672 GHz, the deflection angle reached 31.5° but it
has low beam deflection efficiency, due to several factors
such as low reflection efficiency, low filling factor of unit
cell pattern, and significant specular reflection.

A THz beam steering using a transmissive digital cod-
ing metasurface with an LC layer has also been proposed,
incorporating  a  MIM  resonator  and  complementary
asymmetrically split ring (CASR) pattern on the metallic
layer  [Fig. 4(e)]137.  The  CASR  is  employed  to  utilize  the
Fano  resonance  which  can  be  excited  by  symmetry
breaking,  making  the  high-Q  resonance  and  enabling  a
large  phase  difference.  By  carefully  selecting  the  dimen-
sions  of  the  CASR  structure,  almost  the  same  transmit-
tance and the maximum relative phase difference of near
π  are  achieved  at  0.408  THz,  meaning  that  1-bit  digital
coding metasurface can be designed. As depicted in Fig.
4(e), a dual beam steering is demonstrated by varying the
coding  patterns,  resulting  in  the  direction  of  the  trans-
mitted THz beam steered from 0° to 31.9°. However, for
practical  beam  steering  applications,  it  is  crucial  to  en-
hance deflection efficiency and expand the FOV, making
it  essential  to  focus  future  research  efforts  on  maximiz-
ing these values. In specific applications such as LiDAR,
some other factors including high frame rates, high spa-
tial  resolution,  and  economical  on-chip  integration
should also be considered.

 Spectral tuning
Spectral  tuning,  another  significant  functionality  of
metasurfaces, allows for the modulation of the transmis-
sive  or  reflective  properties  of  electromagnetic  waves  at
specific  wavelengths.  By  carefully  designing  the  meta-
atoms,  desired  resonance  effects  can  be  achieved,  en-
abling  applications  such  as  color  filters  and  sensors.  In
this  section,  we  summarize  recent  research  on  spectral
tuning based on LC-combined metasurfaces, categorized
into transmissive or reflective tuning and absorbers.

 Transmissive or reflective tuning
Exploiting the anisotropy of LC with various inputs, the
resonance  in  meta-atoms  can  be  arbitrarily  modulated,
enabling the tuning of transmissive or reflective spectra.
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Research  on  transmissive  or  reflective  tuning  in  LC-
based  metasurfaces  has  mainly  been  conducted  in  the
visible  region,  whereas  research  in  the  near-infrared
(NIR) and THz regions is relatively less extensive. There-
fore,  we have divided this section into the visible region
as well as the NIR and THz region.

 Visible region
Most  research  on  transmissive  or  reflective  tuning  by
LC-based metasurfaces has been conducted in the visible
region,  with  a  primary  focus  on  designing  a  colorful
gamut  through  resonance  mode  tuning.  Color  displays
are indispensable in our daily  lives,  such as  those found
on smartphones, tablets, televisions, and other video dis-
plays.  However,  conventional  dye-based  color  displays
have critical issues, such as color fading and wavelength-
limited  resolution138.  Thus,  color  generation  based  on
metasurface  with  the  advantages  of  ultrahigh  resolution
and  natural  colors  has  been  actively  researched,  includ-
ing  structural  coloration  and  color  filtering139−141.  How-
ever,  the  versatility  of  conventional  metasurface-based
color  generation  is  limited142.  To  overcome  this  limita-
tion,  dynamically  tunable  color  generation  is  necessary,
and LCs are promising materials  to dynamically control
the color.

Xie  et  al.  proposed  a  dynamic  plasmonic  color  filter
based on aluminum grating metasurface combined with
LCs by controlling the applied voltage with a range from
0 to 4 V [Fig. 5(a)]143.  At a voltage of 0 V being applied,
the  polarization  state  of  the  incident  light  is  altered  to
align parallel to the grating vector, while the initial inci-
dent  direction  is  parallel  to  the  grating  stripes.  In  brief,
the  transverse  magnetic  (TM)  polarization  effect  is  at-
tained  at  an  applied  voltage  of  0  V.  On the  other  hand,
the transverse electric (TE) polarization effect is attained
when a voltage exceeding 4 V is applied since the appli-
cation of an external voltage prevents the rotation of the
incident  light's  polarization  state.  The  color  modulation
correlates  with  the  fluctuations  in  TM and TE polariza-
tions according to small variations of the applied voltage
[Fig. 5(a)]. Aluminum is selected because it has low tran-
sition  loss,  which  can  generate  more  vivid  colors,  while
metals  generally  have  a  high  loss.  However,  the  color
tuning range is not enough for color displays.

Lee et al. implemented widely separated color genera-
tion  by  using  an  asymmetric  lattice  nanohole  array  of
metasurface  [Fig. 5(b)]144.  Depending  on  the  structural
parameters,  such  as  the  film  thickness,  hole  shape,  and

inter-hole  spacing,  the  resonance  property  can  be  pre-
cisely selected. Additionally, in the case of the plasmonic
asymmetric  nanostructure,  the  color  resonance  mode
varies  based  on  the  polarization  state  of  the  incident
light.  By  appropriately  selecting  the  structural  parame-
ters and using a combination of LCs, they experimental-
ly  demonstrated  a  color-tuning  shift  of  over  120  nm.
Two  primary  colors  can  be  generated  by  applying  volt-
ages of 0 V and 5 V, respectively, and the mixed states of
the two primary colors can be continuously generated by
adjusting the applied voltage. Although the color tuning
range was improved significantly, it was still not enough
to cover the RGB region.

Driencourt  et  al.  demonstrated an electrically  tunable
color  filter  that  can  encompass  over  70%  of  the  color
gamut  found  in  conventional  RGB  filters  [Fig. 5(c)]145.
The achieved tuning range results from the combination
with  birefringent-induced  colors  transmitted  by  a  plas-
monic nanostructure and a thin LC cell. Specifically, the
plasmonic structure yields the color red supported by sil-
ver nanowire, blue from the LC cell, and green from the
integration of  two-color  states.  This  single  tunable  filter
covering the RGB region boosts the possibility of display
miniaturization and high-resolution display.

Covering  the  RGB  region  via  a  single  pixel  has  been
demonstrated  in  the  case  of  both  structural  coloration
and  color  filtering.  Franklin  et  al.  proposed  a  reflective
plasmonic  nanostructure  capable  of  producing  the  full
RGB  color  basis  set  [Fig. 5(d)]146.  The  resonant  wave-
length  is  determined  by  the  effective  refractive  index  of
grating  coupled  surface  plasmons  (GCSP)  modes  which
are  affected  by  the  alignment  of  LC  near  the  plasmonic
surface. Polarized light from the linear polarized glass su-
perstrate,  indium tin oxide (ITO),  and a  rubbed PI  film
enters  the  LC layer  and excites  GCSP on the  aluminum
surface. As a result, different applied voltages cause vari-
ations in LC orientation, resulting in different plasmonic
modes and transitions in color. However, even though a
single pixel can cover the full RGB region, LCs-powered
structural color generation based on plasmonic metasur-
faces is still hindered by unavoidable ohmic losses in the
visible  region,  which  can  lead  to  performance  degrada-
tion.  Additionally,  black  and  gray  states  are  significant
for complete displays as they can control important fac-
tors such as brightness and contrast, which conventional
approaches have not been able to implement.

Badloe et al. constructed a tunable all-dielectric meta-
surface, which provides full-color reflective displays and
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Fig. 5 | Color generation metasurfaces combined with LCs. (a) The left images show a schematic of aluminum grating metasurface integrat-

ed  with  LC.  The  right  images  show experiment  results  of  Al  grating  metasurface  with  incrementing  the  applied  voltage  from 0  V  to  10  V.  (b)

Schematic of wide tuning range color filter and optical photographs of proposed structure for the initial voltage of 0 V and the saturated voltage of

5 V. (c) The left image shows a schematic of proposed color filter achieving a color coverage exceeding 70% of the sRGB color gamut. The right

image shows the CIE chromaticity diagram of the transmitted colors for the proposed structure. (d) The left image shows a schematic of the LC

plasmonic device producing full RGB color. The right image shows the CIE chromaticity diagram of the LC plasmonic device and that of the com-

parative standard. (e) The top image shows a schematic of tunable all-dielectric LC system. The bottom image shows experimental results with

rotated subpixels and the CIE chromaticity diagram of the all-dielectric LC device. Under an LP axis of 90°, the intended primary color is generat-

ed, while at an LP axis of 0°, successful mixing of two colors is achieved. (f) The left image shows a schematic of the switchable transparent dis-

plays which can be turned on and off. The right image shows experimental images of the device at the applied voltage of 0 and 20 V. Figure re-

produced with permission from: (a)  ref.143,  © 2017 Optica Publishing Group;  (b)  ref.144,  © 2017 American Chemical  Society;  (c)  ref.145,  © 2020

American Chemical Society;  (d) ref.146,  (e) ref.147,  under a Creative Commons Attribution 4.0 International License; (f)  ref.149,  © 2019 American

Chemical Society.
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a nearly linear transition from vivid, saturated "on" states
to  deep,  black  "off"  states.  [Fig. 5(e)]147.  Two  factors  de-
termine  the  possibility  of  vivid  colors:  the  material  and
the  geometry  of  the  meta-atoms.  This  group  used  low-
loss  hydrogenated  amorphous  silicon  for  the  meta-
atoms148,  which  leads  to  stronger  Mie  scattering  effects.
Therefore, more vivid color can be generated because of
a  high  refractive  index  and low extinction coefficient  in
the visible region. This group chose an ellipsoidal-shaped
meta-atom  due  to  its  optimum  reflectance  and  LP  de-
pendency.  By  integrating  polarization-dependent
anisotropic  meta-atoms  and  an  LC  modulator,  tunable
reflective  metasurfaces  have  been  easily  demonstrated.
The modulation of the LP axis of the meta-atoms, transi-
tioning  from alignment  along  the  long  axis  to  the  short
axis, enabled the attainment of black states and grayscale
colors.

Figure 5(f) shows another  example  of  structural  color
using LCs.  Zou et  al.  demonstrated switchable transpar-
ent  displays  in  the  visible  region  by  integrating  a  Mie-
resonant  silicon  metasurface  into  a  nematic  LC  cell149.
The  display  can  be  turned  on  and  off  through  applied
voltage  from 0 to  20  V.  This  group realized an absolute
transmission modulation of  53% at  a  wavelength of  669
nm by utilizing a photoalignment material, which can in-
crease the accuracy of the LC alignment.

However,  the  color  generation  by  the  LCs  has  two
main drawbacks138.  First,  continuous and constant pow-
er is needed to stay in the current color state. Second, the
microscale of the LC cells and additional polarizers make
the device hard to fabricate, miniaturize, and increase the
reflection  efficiency.  These  problems  have  to  be  solved
for the next-generation LC-based metasurface displays.

 Near-infrared and terahertz region
In the NIR and THz region, the majority of research on
LC-based  metasurfaces  has  focused  on  utilizing  high-Q
resonance  modes,  which  can  be  applied  in  sensing  and
imaging.  For  instance,  Sharma et  al.  have  demonstrated
the electrical tuning of nonlocal second-harmonic gener-
ation by combining a nonlinear metasurface with an LC
layer  in  NIR  region  [Fig. 6(a)]150.  The  polarization-de-
pendent  surface  lattice  resonance,  with  its  high-Q  reso-
nance  characterized  by  a  narrow  spectral  width,  results
in  strong  nonlocal  second-harmonic  generation.  LC  al-
lows  for  the  electrical  control  of  polarization  within  the
system,  thereby  enhancing  or  attenuating  the  second
harmonic  signal,  effectively  providing  active  control  of

the nonlinear device. This concept has potential applica-
tions in optical signal processing and sensing.

Another instance of  high-Q resonance can be seen in
the  work of  Ni  et  al.,  who implemented a  multi-dimen-
sional light field encoder capable of simultaneously mea-
suring  the  polarization  and  spectrum  of  NIR  light  [Fig.
6(b)]151.  This  group  utilized  electrically  tunable
anisotropic  high-Q-GMR  by  using  LC.  Photodetectors
can  only  measure  the  intensity  of  light.  Therefore,  this
group  calculated  the  measured  intensity  using  a  pho-
todetector  after  an  unknown  signal  passed  through  the
LC-combined  metasurface,  adjusting  the  N  numbers  of
applied  voltage.  By  fitting  the  measured  intensity  infor-
mation to the proposed matrix equation, it is possible to
simultaneously  reconstruct  the  polarization  and  spec-
trum of the incident light. This concept also has applica-
tions in sensing and bioimaging.

Research  utilizing  LC  for  tuning  anisotropy  and  chi-
rality  is  also  conducted  in  the  THz  range.  Zhao  et  al.
have proposed electrical tunable anisotropy and chirality
in the THz region by rotating the optical axis of LC [Fig.
6(c)]152. When the optical axis of LC is parallel to the op-
tical  axis  of  the meta-atom, the anisotropy of  the device
is  enhanced.  Conversely,  when  the  axes  are  orthogonal,
the  anisotropy  is  canceled,  resulting  in  an  over  180°
range  of  phase  shift.  Furthermore,  between  the  parallel
and  orthogonal  orientations,  chirality  arises  due  to  the
breaking  of  mirror  symmetry,  which  can  find  applica-
tions in polarization imaging and chiral spectroscopy.

Furthermore,  Shen  et  al.  have  demonstrated  active
Fano  resonance  cloaking  in  the  THz  region  using
anisotropic  split-ring-shaped  meta-atoms  [Fig. 6(d)]153.
This ring structure has two gaps on both sides. By electri-
cally tuning the polarization state with LC, when the po-
larization  is  orthogonal  to  the  two  gaps,  a  sharp  Fano
resonance  occurs.  When  it  is  parallel,  a  high-transmis-
sive  state  is  achieved,  effectively  enabling  Fano  reso-
nance cloaking.

So  far,  we  have  discussed  research  on  tuning  high-Q
resonance  modes  with  LC-based  metasurfaces.  Another
attempt,  conducted  by  Wang  et  al.,  involved  examining
the  relationship  between  the  orientation  of  the  LC  axis
and the geometry of rectangular meta-atoms in NIR and
visible  region[Fig. 6(e)]154.  Through  electrical  tuning  of
LC,  longitudinal  and  transverse  polarization  is  incident
on the metasurface, and the ratio between the length and
width  of  the  metasurface  varies  from  1:1  to  1:5.  When
the  ratio  is  1:1,  the  width  and  length  are  the  same,
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Fig. 6 | Spectral tuning in the NIR and THz region using LC-combined metasurface. (a) The left image depicts a schematic of the nonlinear

metasurface capable of electrically tuning nonlocal second-harmonic generation by combining LC, along with a SEM image. The right image illus-

trates the results of electrical switching for second-harmonic generation and the second-harmonic signal. (b) This image shows a simplified rep-

resentation of computational spectropolarimetry using a tunable LC metasurface. When light with an unknown polarization and spectrum strikes

the LC metasurface, the polarization and spectrum of the incident light can be computationally reconstructed based on the measured intensity of

the reflected light. (c) The left image shows a schematic of the proposed system for electrically tunable anisotropy and chirality. The right image

shows  FDTD  simulations  of  electric  field  distribution  at γ=0°,  45°,  and  90°,  where γ represents  the  angle  between  the  long  axis  of  the  LC

molecule orientation and the x−y plane. (d)  The left  image displays a schematic of  the demonstrated active Fano resonance cloaking system.

The right image presents numerical simulations, measured transmission spectra, and corresponding phase spectra for incident waves in both x-

polarization (red curve) and y-polarization (blue curve). (e) The left image shows a schematic of the proposed tunable LC-loaded metasurfaces.

The right image shows experimental results based on the ratio of width to length. Figure reproduced with permission from: (a) ref.150, (b) ref.151,

under a Creative Commons Attribution 4.0 International License; (c) ref.152, © 2022 Optica Publishing Group; (d) ref.153, © 2019 AIP Publishing;

(e) ref.154, © 2021 John Wiley and Sons.
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resulting in an isotropic mode with weak plasmonic res-
onance.  In  contrast,  when  the  ratio  is  1:5,  isotropy  in-
creases, leading to a deeper dip in the transmissive spec-
tra, indicating strong plasmonic resonance. Additionally,
LC-based tunable  polarization-dependent THz filter  has
been demonstrated155.

 Absorber
Absorbers,  which  can  be  employed  for  optical
sensing/detection,  optical  modulators,  and  energy  har-
vesting,  aim  to  maximize  energy  absorption  within  ab-
sorbing  layers.  Generally,  perfect  absorbers  require  zero
transmission and zero reflection (unity  absorption).  Re-
alizing  perfect  absorbers  with  the  use  of  metamaterials
has  garnered  a  lot  of  attention  since  the  early  times  in
this research field. Minimizing the transmission can usu-
ally be achieved with metallic plate at the backside. How-
ever,  to  minimize  the  reflection,  the  impedance  mis-
match  should  be  removed,  which  needs  control  of  the
permeability  that  is  challenging  to  achieve  with  natural
materials but becomes feasible through the use of meta-
materials156,157.  Among  the  numerous  studies  that  have
attempted to realize a perfect absorber based on metasur-
faces,  there  have  been  a  consistent  emergence  of  re-
search focusing on enriching versatility by incorporating
LC into these metasurface-based absorbers.

Shrekenhamer et al. first proposed a tunable metasur-
face  absorber  at  THz  frequencies  by  combining  LCs158.
The potential is applied at the electric ring resonator and
ground plane, enabling the control of the permittivity of
the LC layer. The frequency-dependent absorption is cal-
culated under the different applied bias, which shows the
general trend of absorption shifting to lower frequencies
by increasing the voltage. Isic et al. have also demonstrat-
ed  metasurface  absorber  which  can  modulate  the  re-
flectance  at  target  frequency  from  nearly  zero  to  more
than  90%159.  To  achieve  this,  the  critical  coupling  be-
tween  periodic  resonators  and  external  fields  is  exploit-
ed  with  a  careful  design  of  resonator  geometry.  Conse-
quently,  this design achieves a polarization-independent
tunable  absorber  with  the  ability  to  spectrally  modulate
the  resonance  by  more  than  15%  with  a  rapid  response
time.

Yin  et  al.  have  proposed  a  tunable  chiral  metasurface
absorber  in  the  NIR  region  which  has  selective  absorp-
tion characteristics for specific circular polarized state160.
The  metasurface  absorber  is  composed  of  MIM  struc-
ture consisting of two L-shaped gold nanohole arrays on

the top metallic layer. LC layer is serving as the insulator
layer,  changing  the  polarization  state  and  consequently
flipped  the  reflecting  and  absorbing  behaviors  of  chiral
metasurface.  It  shows  over  70%  reflection  and  80%  ab-
sorption in opposite spin state,  and achieves high circu-
lar dichroism reaching approximately 70%, while simul-
taneously  flipping the  sign of  the  circular  dichroism ac-
cording to the LC alignment.

LC tunable metasurface absorbers operating for dual-
band have also been demonstrated at a THz region with
a new resonant structure,  compared to other works that
can modulate  only  a  single  absorption peak161.  The  unit
cell structure consists of two quartz plates encapsulating
the  LC  layer,  with  a  patterned  layer  and  a  ground  plate
made of copper printed on each side of the quartz plates.
This  structure  excites  resonance  modes  at  the  two  peak
absorption frequencies of 271 and 304.8 GHz at the ini-
tial  LC  alignment,  while  the  rotation  of  LC  orientation
induces the redshift of the peak frequencies. This design
is also insensitive to incident polarization and maintains
high absorptivity at different oblique angles, which gives
advantages for practical applications such as sensing and
detection.

Savo  et  al.  have  demonstrated  the  reflective  SLM  at
THz frequency with the metasurface absorbers  integrat-
ed with LCs162. The proposed metasurface absorber con-
sists  of  a  dielectric  spacer  sandwiched  between  electric
ring resonator arrays and ground plate, while the rest of
the part between two gold layers is covered with LC lay-
ers. By controlling the orientation of the LC with 6 by 6-
pixel  array scheme,  the response frequency of  absorbers
can be shifted, which enables modulating the spatial dis-
tribution of THz waves.

 Optical platform with LC-integrated
metasurface
Even  the  most  remarkable  technology  faces  limitations,
and when these limitations are clearly defined, the scope
of  application  becomes  restricted.  LCs,  by  introducing
tunability  to  metasurfaces,  have  effectively  surmounted
these constraints and enhanced the flexibility of metasur-
faces. This has facilitated the diverse integration of meta-
surfaces into various devices,  including those previously
mentioned,  such  as  metaholograms,  metalenses,  color
generation, and beam steering. In this section, we aim to
present several illustrative examples.

Kim et al. have demonstrated a real-time gas-sensitive
holographic  device  that  is  particularly  important  for
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public  health  and  environmental  monitoring  [Fig.
7(a)]163. Based on the detection of gas on LCs, the polar-
ization state of the light is changed, allowing light to pass
through  the  metasurface  only  when  the  gas  is  detected.
When the  light  passes  through  the  metasurface,  a  holo-
graphic alarm is displayed to alert the user. Additionally,
this  group  has  designed  a  flexible  metasurface  using  a
novel  nanofabrication  method  called  nanoimprinting,
which  easily  transfers  the  pattern  onto  a  flexible  sub-
strate. Finally, this group has implemented an ultracom-
pact  gas  sensor  without  complex  systems  by  attaching
the  flexible  metasurface  to  curved  glass  at  a  low  cost.
These  results  show  that  integrating  LC-based  metasur-
faces  with  other  components  can  realize  promising
devices.

As another example, Li et al. have implemented an en-
cryption  platform  using  a  polarization-based  LC
nanoaperture  metasurface  [Fig. 7(b)]164.  This  group  de-
signed  both  rectangular  meta-atoms  and  square  meta-
atoms,  which are dependent on and independent of  po-
larization  states,  respectively.  The  rectangular  meta-
atoms  exhibit  plasmonic  resonances  only  when  aligned
with the polarization state matching their short axis. LCs
enable  more  possible  cases  because,  without  LCs,  there
are  only  two  cases:  "1  0"  or  "0  1"  (where  0  and  1  repre-
sent off and on states, respectively, in each pixel) accord-
ing  to  polarization  direction,  either  0°  or  90°  with  re-
spect to the short axis of rectangular meta-atoms. How-
ever,  by adding LCs, there are 4 cases:  "1 1",  "1 0",  "0 1",
and  "0  0"  according  to  different  polarization  states  and
applied  voltages.  This  concept  can  be  used  for  encryp-
tion devices,  and this group demonstrated this with two
examples: “x” and “√” shaped marks, as well as QR code
designs.

The integration of LC with a metasurface and an opti-
cal  waveguide  has  been  also  demonstrated,  potentially
finding  utility  in  dynamic  AR  displays  [Fig. 7(c)]165.  In-
stead of vertical cascading of multiple layers of metasur-
faces which presents challenges in precise alignment, to-
tal  internal  reflection  within  the  optical  waveguide  en-
ables  successful  coupling  of  beam  steering  metasurface
with  two  different  holographic  metasurfaces.  The  beam
steering  metasurface  in  the  middle  of  the  system  is  de-
signed to redirect the normally illuminated beams in op-
posite directions, contingent upon the x-/y- polarization
of the incident light, which can be electrically controlled
by integrated LC layer. Two different holographic meta-
surfaces on both sides of the optical waveguide can gen-

erate two different holographic images dynamically with
the  change  of  the  LC  voltage,  which  can  be  potentially
employed for 3D stereoscopic vision166.

In other research, improving the quality and function-
ality  of  SLMs are  actively  studied,  which  can  contribute
to  wide  range  of  applications  such  as  displays,  LiDAR,
and optical  communications.  For  example,  a  multispec-
tral  SLM  has  been  proposed  using  LC-tunable  FP
nanocavities which enables high reflectance and 2π phase
modulations  at  multiple  wavelengths,  a  crucial  feature
for  display  applications167.  The  system  comprises  an  LC
layer  sandwiched  between  two  distributed  Bragg  reflec-
tor layers, with the thickness of each layer is carefully op-
timized to achieve high reflectance and large phase shifts
at  multiple  wavelengths.  The  operating  wavelengths  are
determined within the blue-shift range as the LC orienta-
tion  angle  transitions  from  0°  to  90°,  allowing  for  full
phase modulation with high reflectance. The system per-
formance  has  been  verified  through  the  construction  of
wide FOV beam steering device and varifocal cylindrical
lenses,  demonstrating its  significant potential  for practi-
cal  applications.  As  another  example,  polarization-inde-
pendent SLM device is also demonstrated with 4K reso-
lution,  which  is  beneficial  for  real  applications  such  as
beam steering devices and displays168. Despite promising
results to date, devices using LC-based metasurfaces still
exhibit  insufficient  performance  relative  to  their  price.
Therefore, we intend to conclude by summarizing sever-
al issues to be addressed.

 Conclusions
In this review, we summarized several representative LC-
based  metasurfaces,  which  can  dynamically  modulate
wavefront or spectral features. Additionally, we discussed
significant  research  on  novel  optical  platforms  utilizing
LC-based metasurfaces, such as AR/VR, encryption, and
sensors.  Beyond  the  scope  covered  in  this  review,  there
are  still  many  other  methods  and  aspects  in  the  design
and applications of photonic devices using LCs that hold
potential  for  achieving  tunability.  An  interesting  exam-
ple  is  LC  elastomer  (LCE),  which  has  been  studied  as  a
promising  candidate  for  realizing  dynamic  responses  of
metasurface  through  mechanical  deformation  induced
by heat, light, and electricity23. In addition, several pieces
of  research  related  to  plasmonics169,170,  chiral171−173,  and
nonlinear174,175 optics,  which  have  been  actively  studied
in  the  nanophotonic  field,  are  also  attempting  to  utilize
LC  to  enrich  the  functionality  of  photonic  devices.  The
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range of application area of LC-based metadevice is also
extending to various unique systems, such as spectropo-
larimetry151 and  thermal  camouflage  for  military  use176.
Combining  LCs  with  these  research  areas  can  dramati-
cally  improve  the  performance  of  conventional  ap-

proaches, as LCs are strong and user-friendly options for
enabling versatile applications of metasurfaces.

In  spite  of  extensive  research  in  this  field,  several  is-
sues  impede  the  versatile  use  of  LC-based  devices.  One
example  is  the  fringing  field  effect,  which  indicates  the
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Fig. 7 | Various applications using LC-based metasurfaces. (a)  Schematic of  a gas-sensitive holographic sensor.  The middle image shows

proposed metasurfaces successfully combined with a curved surface. The right image demonstrates broadband properties with experimental re-

sults. (b) The left image illustrates a schematic of the proposed polarization-based encryption platform and possible cases based on polarization

states. The right image shows the demonstrated encryption platform using this concept. (c) Schematic of dynamic AR system using layer-folded
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trolling the polarization beam with tunable LC platform. Figure reproduced with permission from: (a) ref.163, under a Creative Commons Attribu-

tion 4.0 International License; (b) ref.164, © 2021 American Chemical Society; (c) ref.165, © 2022 John Wiley and Sons.
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effect that electric distribution near the edges of the elec-
trodes  forms  fringes  and  extends  outside  of  the  elec-
trodes. This influences the adjacent pixel in the pixel-lev-
el modulating LC devices, especially when pixel pitch be-
comes  comparably  small  as  cell  gap,  thus  limiting  the
pixel  size  of  the  modulators.  It  is  noted  that  the  mini-
mum pixel size of the reflective LCoS (LC on silicon) de-
vice is about 3 μm177,178 for 2D SLM, while researchers are
striving to realize pixel pitch of 1 μm179. The modulation
speed is also one of the critical drawbacks of LC devices.
Typically,  the  switching  speed  of  LC  is  a  few  millisec-
onds,  which  is  comparably  slower  than  other  optical
modulators.  For several  applications that  need faster re-
sponse  time,  LC  devices  with  thin  LC  cell  gap  can  be  a
general  approach  to  resolve  this  issue.  Additionally,  in
general  cases,  LC-based  devices  require  pre-alignment
process,  usually  by  rubbing  alignment,  which  can  cause
static  electricity  and  mechanical  damage  degrading  the
device's performance. Especially, the alignment layer can
hinder  the  advantage  of  thin  LC cells,  by  generating  di-
electric  shielding  effect  and  strong  anchoring  effect180.
However,  there  have  been  some  research  attempting  to
address these challenges by using metasurface, which al-
so  emphasizes  the  usefulness  of  tunable  LC-integrated
metasurface  in  this  field181,182.  Therefore,  to  achieve
broader  application of  LC-based devices  with the use  of
metasurface,  further  research  in  the  fields  of  nanopho-
tonics  and  nanofabrication  is  crucial,  alongside  the  ex-
ploration of innovative ideas on device design.

Despite  facing  several  challenges,  LC-based  metasur-
faces facilitate the development of emerging devices with
their unique features. Recently, promising future devices
based on metasurfaces, such as displays, sensors, AR/VR,
and LiDAR systems, have been actively studied. Further-
more,  some  LC-based  metasurface  products  are  begin-
ning to be commercialized by startup companies beyond
the academic field183,184.  We believe that various brilliant
design  methods  and  advancing  fabrication  techniques
such  as  inverse  design185−188,  nanoimprint
lithography189−195,  and  3D nanofabrication196−200 will  lead
to  emergence  of  new novel  devices  combined with  LCs.
The field of metasurfaces is expected to undergo a signif-
icant  transition from scientific  research to technological
development,  with  LC-powered  tunable  metasurfaces
playing a critical role in this process.
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