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NIR-triggered on-site NO/ROS/RNS nanoreactor:
Cascade-amplified photodynamic/photothermal
therapy with local and systemic immune
responses activation
Ziqing Xu1†, Yakun Kang2†, Jie Zhang1†, Jiajia Tang1, Hanyao Sun1,
Yang Li1, Doudou He1, Xuan Sha1, Yuxia Tang1, Ziyi Fu3*, Feiyun Wu1*
and Shouju Wang1*

Photothermal and photodynamic therapies (PTT/PDT) hold promise for localized tumor treatment, yet their full potential is
hampered by limitations such as the hypoxic tumor microenvironment and inadequate systemic immune activation. Ad-
dressing  these  challenges,  we  present  a  novel  near-infrared  (NIR)-triggered  RNS nanoreactor  (PBNO-Ce6)  to  amplify
the photodynamic and photothermal therapy efficacy against triple-negative breast cancer (TNBC). The designed PBNO-
Ce6 combines sodium nitroprusside-doped Prussian Blue nanoparticles with Chlorin e6 to enable on-site RNS produc-
tion through NIR-induced concurrent NO release and ROS generation. This not only enhances tumor cell eradication but
also  potentiates  local  and systemic  antitumor  immune responses,  protecting mice from tumor  rechallenge.  Our in  vivo
evaluations revealed that treatment with PBNO-Ce6 leads to a remarkable 2.7-fold increase in cytotoxic T lymphocytes
and a 62% decrease in regulatory T cells in comparison to the control PB-Ce6 (Prussian Blue nanoparticles loaded with
Chlorin e6),  marking a substantial  improvement over traditional  PTT/PDT. As such,  the PBNO-Ce6 nanoreactor  repre-
sents a transformative approach for improving outcomes in TNBC and potentially other malignancies affected by similar
barriers.

Keywords: photothermal  therapy; photodynamic  therapy; nitric  oxide; reactive  nitrogen  species; triple-negative  breast
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 Introduction
Photothermal  and  photodynamic  therapy  (PTT/PDT)
activated by a single-wavelength laser presents a promis-
ing, safe, and effective approach for treating localized tu-

mors such as breast cancer1−5. Our previous work has re-
vealed  the  synergistic  potential  of  combining  PTT  and
PDT6,7.  However,  the  localized  nature  of  phototherapy
imposes  limitations  on  its  efficacy.  While  phototherapy 
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can provoke anti-tumor immune responses,  it  is  under-
stood that these localized immunostimulatory effects are
insufficient  to  produce  robust  systemic  anti-tumor  im-
munity8−10.  Additionally,  the  hypoxic  tumor  microenvi-
ronment  hampers  PDT's  effectiveness11,12.  Further  re-
search  is  needed  to  enhance  phototherapy's  ability  to
stimulate  systemic  anti-tumor  immunity  and  overcome
the constraints of the tumor microenvironment.

Nitric oxide (NO) is a unique bioactive molecule with
diverse  functions  in  many  physiological  and  pathologi-
cal  processes13,14.  A  key  interaction  occurs  between  NO
and  the  reactive  oxygen  species  (ROS)  generated  by
PDT,  resulting  in  the  formation  of  reactive  nitrogen
species (RNS)15,16.  These RNS can enhance PDT's effica-
cy under hypoxic conditions by aiding tumor cell  eradi-
cation,  while  also  significantly  influencing  immune  re-
sponses. Current research indicates the peroxynitrite an-
ion (ONOO−), a type of RNS, can suppress immunosup-
pressive  cells  and  repolarize  tumor-associated
macrophages to an M1-like phenotype17,18. However, the
integration  of  RNS with  PTT/PDT remains  scarcely  ex-
plored, leaving the impacts of the NO/ROS/RNS combi-
nation on local and systemic anti-tumor immunity large-
ly unknown.

A  considerable  hurdle  in  amplifying  PTT/PDT  with
RNS lies in the precise control of NO release in terms of
timing and location19−21.  Given the  short  lifetime of  sin-
glet oxygen produced during PDT (typically 3–6 ms) and
its limited diffusion within cells (approximately 20 nm),
positioning NO donors near photosensitizers  is  impera-
tive  to  efficiently  generate  RNS22.  Traditional  approach-
es injecting NO donors and photosensitizers as separate
entities  may compromise  efficacy due to  differing phar-
macokinetics23.  Therefore,  we  propose  unifying  photo-
sensitizers  and  NO  donors  within  single  nanoparticles,
then  utilizing  laser  irradiation  to  concurrently  initiate
PTT/PDT and trigger NO release. This could substantial-
ly enhance RNS production and anti-tumor efficacy.

For  our  study,  triple  negative  breast  cancer  (TNBC)
was  chosen  as  the  model  system.  As  the  leading  malig-
nancy  among  women  worldwide,  TNBC  exhibits  a
markedly  immunosuppressive  and  hypoxic  tumor  envi-
ronment24,25.  This  milieu  impedes  therapeutic  interven-
tions  by  suppressing  immune  cell  activity  and  forming
hypoxic regions resistant to PDT26,27. Therefore, utilizing
the TNBC model is fitting to evaluate the efficacy of RNS
generation in conquering these intrinsic tumor microen-
vironmental  challenges.  Demonstrating  the  benefits  of

this method in TNBC can pave the way for its adoption
in tackling other tumors plagued by similar obstacles.

In  our  work,  we  developed  sodium  nitroprusside-
doped Prussian Blue nanoparticles (PBNO) as NO nano-
generators and combined them with the photosensitizer
Chlorin  e6,  forming  PBNO-Ce6.  Under  near-infrared
(NIR) laser exposure, PBNO-Ce6 underwent a tempera-
ture  surge,  initiating  photothermal  tumor  destruction
and  catalyzing  NO  release  through  cleavage  of  the  Fe-
NO  bond.  Concurrently,  the  co-loaded  Ce6  produced
singlet  oxygen,  transforming  NO  into  RNS  that  further
enhanced  PDT/PTT.  Our  comprehensive  evaluation  of
PBNO-Ce6’s  therapeutic  efficacy  in  orthotopic  and  re-
current breast cancer models revealed the NIR-triggered
NO/ROS/RNS  generation  augmented  treatment  out-
comes  for  primary  and  secondary  tumors,  eliciting  po-
tent local and systemic immune responses (Scheme 1).

 Experimental section/methods

 Materials
SNP  (Na2[Fe(CN)5NO]·2H2O),  potassium  ferricyanide
(K3[Fe(CN)6]), and polyvinylpyrrolidone (PVP, K29-32)
were  purchased  from  Aladdin  Industry  Corporation
(Shanghai,  China).  Anhydrous  ethanol  was  purchased
from  Sinopharm  Chemical  Reagent  Co.  Ltd.  (Shanghai,
China). Griess Reagent kit was purchased from Cayman
Chemical  (Michigan,  USA).  3-Amino,  4-aminomethyl-
2’,  7’-difluorescein,  diacetate  (DAF-FM  DA),  2’,  7’-
dichlorofluorescein  diacetate  (DCFH-DA)  and  4’,6-di-
amidino-2-phenylindole (DAPI) were obtained from Be-
yotime  Biotechnology  (Shanghai,  China).  The  fluores-
cent  probes  BBoxiProbe® O56  and  BBoxiProbe® O52
were  purchased  from  Bestbio  (Beijing,  China).  3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl  tetrazolium  bromide
(MTT,  99.0%)  was  purchased  from  Nanjing  Keygen
Biotech.  Co.,  Ltd.  (Nanjing,  China).  RPMI-1640  medi-
um, phosphate buffer solution (PBS), heat-inactivated fe-
tal  bovine  serum  (FBS),  trypsin,  and  penicillin-strepto-
mycin solution were purchased from Gibco Laboratories
(NY, USA). The 4T1 cell line was obtained from the Chi-
nese Academy of Sciences (Shanghai, China). Fixable Vi-
ability  Dye  Fluorescent  Dye  (FVD)  purchased  from
Thermo  Fisher  Scientific  (MA,  USA).  Anti-CD45-
BV510,  anti-CD3-FITC,  anti-CD4-BV421,  anti-CD8-
PerCP-cy5.5,  anti-IFN-γ-PE-Cy7,  anti-Foxp3-PE  and
anti-CD25-APC were all from BD Biosciences (New Jer-
sey, USA).
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 Bioinformatics analysis for identification of the
hypoxia environment of breast cancer
To  identify  the  hypoxic  environment  in  breast  cancer,
immunohistochemistry staining of HIF1A, VEGFA, and
GLUT1 in normal breast  tissues and breast  cancer sam-
ples were acquired from The Human Protein Atlas (TH-
PA)  database  and  compared.  The  expression  of  HIF1A,
VEGFA, and GLUT1 was compared between breast can-
cer  and  paired  para-cancerous  normal  breast  tissues
from 113 patients  using data from The Cancer Genome
Atlas (TCGA) database28. To compare the level of hypox-
ia  between  TNBC  and  non-TNBC  patients,  the  expres-
sion  of  HIF1A,  VEGFA  and  GLUT1  was  compared  be-
tween TNBC (578 patients) and non-TNBC (87 patients)
using bc-GenExMiner v5.029.

 Bioinformatics analysis for identification of the
immunosuppressive environment of breast cancer
To  identify  differences  in  the  immune  microenviron-
ment  between  normal  breast  tissue  and  breast  cancer,

RNA  sequencing  data  from  1099  breast  tumor  samples
and  292  normal  breast  tissue  samples  were  obtained
from The Cancer Genome Atlas (TCGA) and Genotype-
Tissue  Expression  (GTEx)  projects,  respectively.  A  total
of  28  immune  cell  type  specific  gene  sets  were  curated
from Molecular Signatures Database and related publica-
tions30,31.  Gene  Set  Variation  Analysis  (GSVA)  was  per-
formed to estimate the enrichment of  each immune cell
type specific gene set in each sample.

To  estimate  the  influence  of  the  immune  microenvi-
ronment on survival, immune scores were calculated for
breast  cancer  samples  from TCGA using the  estimate  R
package. OS curves were generated for patients with high
immune  scores  (n=109)  and  low  immune  scores
(n=938).

To  estimate  the  influence  of  the  immune  microenvi-
ronment  on  recurrence  risk  in  breast  cancer,  processed
gene expression and clinical data from 200 patients were
obtained  from  the  GEO  database  (GSE11121).  Immune
scores  were  calculated  as  described  above,  and  DMFS
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Scheme 1 | Illustration showing the preparation and use of the RNS nanoreactor. The PBNO-Ce6 nanoparticles heat up (PTT) and re-
lease NO when exposed to NIR laser. At the same time, ROS are generated (PDT) and further transform the NO into RNS. The combined ef-

fect of PTT and RNS-enhanced PDT causes cell apoptosis and promotes strong activation of local and systemic immune responses.
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curves  were  generated  for  patients  with  high  immune
scores (n=52) and low immune scores (n=148).

To  compare  the  immune  microenvironment  between
TNBC and non-TNBC samples,  the  single-cell  RNA se-
quencing  dataset  GSE161529  was  obtained  from  the
GEO  database.  The  dataset  contained  8  TNBC  samples
and 8 non-TNBC samples. The sequencing data were fil-
tered, normalized, and scaled prior to linear dimension-
al  reduction  with  principal  component  analysis  (PCA).
The FindNeighbors and FindClusters functions were uti-
lized to cluster cells based on the PCA results, with a res-
olution  of  0.4.  Differentially  expressed  genes  were  used
to annotate the identity of the cell clusters. Further hier-
archical  clustering  was  performed  on  the  T  cell  sub-
group using FindSubCluster to achieve higher resolution
T cell types. The T cell clusters were annotated based on
known T cell markers.

To compare the survival  and recurrence risk between
TNBC and non-TNBC patients, OS and PFS curves were
generated according to the phenotype and clinical data of
breast  cancer  patients  from TCGA (661  patients  for  OS
and 586 patients for PFS).

 Preparation of PB and PBNO
For  the  synthesis  of  PB,  120  mg  of  potassium  ferri-
cyanide and 3 g of PVP were dissolved in 40 mL of HCl
(0.01 mol/L) and heated in a 100 mL flask in a water bath
at  80  °C  for  1  h.  The  synthesized  PB  was  collected  by
centrifugation (14000 rpm for 8 min) and washed at least
3 times with water. To synthesize PBNO, 488.7 mg SNP,
60  mg  potassium  ferricyanide,  and  3  g  PVP  were  dis-
solved  in  40  mL  HCl  (0.1  mol/L),  mixed  in  a  100  mL
flask,  and heated in  a  water  bath at  80  °C for  12  h.  The
synthesized  PBNO  was  collected  by  centrifugation
(14000 rpm for 8 min) and washed at least 3 times with
water32.

 Preparation of PBNO-Ce6
To prepare  PBNO-Ce6,  5  mg of  Ce6  was  dissolved  in  5
mL of H2O, mixed with 5 mL of PBNO (2 mg·mL−1) dis-
persed  in  H2O,  shaken  at  500  rpm  in  a  metal  bath  at
room temperature for 24 h and centrifuged at 13500 rpm
for 8 min to collect the nanoparticles.

To investigate the loading capacity and efficacy of PB-
NO-Ce6, 1 mL of PBNO (1 mg·mL−1) was mixed with 1
mL of different concentrations of Ce6 solution and shak-
en for 24 h at  room temperature.  The mixture was cen-
trifuged  and  the  Ce6  concentration  in  the  supernatant

was calculated from the standard curve of Ce6 (Fig. S15).
The Ce6 loading capacity and loading efficacy of PBNO-
Ce6 were calculated according to the following formulas:

Loading Capacity of Ce6 (%) = [weight of loaded Ce6 /
(weight of PBNO-Ce6 + weight of loaded Ce6)] × 100%,

Loading Efficiency of Ce6 (%) = [weight of loaded Ce6
/ weight of totally Ce6] × 100%.

 Characterization
Transmission  electron  microscopy  (TEM)  of  the
nanoparticles  was  conducted  using  a  FEI  Talos  F200X
electron  microscope  operating  at  200  kV.  The  zeta  po-
tential  and  hydrodynamic  sizes  (DLS)  were  measured
with  a  Brookhaven  analyser  (Brookhaven  Instruments
Co.,  Holtsville,  USA).  Nitrogen  sorption  analysis  was
performed  on  a  Micromeritics  Tristar  3000  at –196  °C.
The Brunauer-Emmett-Teller (BET) method was used to
determine  the  specific  surface  area  based  on  adsorption
data at p/p0 = 0.05–0.15.  The total  pore volume was de-
termined  from  adsorption  data  at p/p0 =  0.995.  UV–vis
spectra  were  obtained  using  a  UV-vis-near  infrared
(NIR)  spectrophotometer  (UV-3600,  Shimadzu).  Fluo-
rescence intensity measurements were performed using a
fluorescence  spectrophotometer  at  specific  excitation
wavelengths (F97, Shanghai Lengguang Technology Co.,
Ltd). Fluorescent images were taken with an inverted flu-
orescent microscope (Axio Vert.A1, Zeiss). Flow cytom-
etry analyses  were conducted using a  Beckman Cytoflex
flow cytometer (Cytoflex, Beckman).

 Photothermal properties of PB and PBNO
PB  and  PBNO  solutions  with  concentrations  between  0
to 0.2 mg·mL−1 were irradiated by a 660-nm laser at pow-
er densities  from 0.2 to 0.8 W·cm−2 for  10 minutes.  The
temperature change was monitored by an IR camera. To
assess the photothermal stability of the nanoparticles, the
PBNO solution was irradiated with a 660 nm laser for 10
minutes, the laser was turned off and the solution was al-
lowed to return to room temperature, then this cycle was
repeated  5  times.  The  photothermal  conversion  efficacy
(η) was determined according to previous reports33.

 NO/ROS/RNS generation detection
To detect the generation of NO, PBNO solutions at spec-
ified concentrations were irradiated by a 660-nm laser at
different power densities for 30 minutes with or without
an ice bath. Then the solutions were centrifuged and the
NO concentration in the supernatant was determined by

Xu ZQ et al. Opto-Electron Adv  7, 240013 (2024) https://doi.org/10.29026/oea.2024.240013

240013-4

 

https://doi.org/10.29026/oea.2024.240013


standard curve of NO (Fig. S16) using Griess reagent kit
following the manufacturer’s instructions.

To detect the generation of ROS, 50 μg mL−1 concen-
tration PB and equal  concentration PBNO,  PB-Ce6 and
PBNO-Ce6  solutions  were  irradiated  by  a  660-nm  laser
at  0.4  W·cm−2 for  5  minutes.  The  generation  of  singlet
oxygen was detected by SOSG following the manufactur-
er’s instructions.

To  detect  the  generation  of  RNS,  PBNO-Ce6  solu-
tions  were  irradiated  by  a  660-nm  laser  at  0.4  W·cm−2.
PBNO and PB-Ce6 solutions with equal light irradiation
dosage  and  PBNO-Ce6  with  no  irradiation  served  as
controls. The generated RNS was determined by the flu-
orescent probe BBoxiProbe® O56 following the manufac-
turer’s instructions.

 In vitro NO/ROS/RNS generation detection
4T1 cells were seeded at a density of 8×104 cells well−1 in
24-well  plates  and  incubated  with  100  μg  mL−1 PBNO-
Ce6  and  corresponding  concentrations  of  Ce6,  PBNO,
and  PB-Ce6  for  4  hours.  The  cells  were  then  irradiated
with  a  660  nm  laser  at  0.4  W·cm−2 for  5  minutes.  The
generation of NO, ROS and RNS was detected by Griess
reagent, DAF-FM DA and BBoxiProbe® O52 respective-
ly,  following  the  manufacturer’s  instructions  for  each
reagent.

 In vitro cytotoxicity
To  assess  the  biocompatibility  of  PBNO-Ce6,  4T1  cells
were seeded in 96-well plates at a density of 8 × 103 cells
well−1 and incubated at 37 °C 5% CO2 for 24 hours. The
cells  were  then  incubated  overnight  with  different  con-
centrations  of  PB,  PBNO  or  PBNO-Ce6.  Cell  viability
was measured by MTT assay.

To  assess  the  therapeutic  efficacy  of  PBNO-Ce6,  the
cells were incubated with different concentrations of PB,
PBNO and PBNO-Ce6 for 4 hours, then irradiated with a
660  nm laser  at  0.4  W·cm−2 for  5  minutes.  Cells  treated
with PBNO-Ce6 and irradiated with the laser while incu-
bated  in  an  ice  bath  served  as  a  control  to  nullify  pho-
tothermal  therapy  effects.  The  cells  were  stained  with
Calcein AM and PI following the manufacturer’s instruc-
tions  and imaged by  fluorescence  microscopy.  The  syn-
ergy  between  PDT  and  PTT  effect  induced  by  PBNO-
Ce6 upon laser irradiation was evaluated by determining
the  combination  index  (CI)  using  the  Chou-Talalay
method34. CI values are then calculated using the follow-
ing formula: 

CI =
DPDT/PTT

DPTT
+
DPDT/PTT

DPDT
, (1)

where DPTT is  the  IC50  of  PBNO  +  laser, DPDT is  the
IC50  of  PBNO-Ce6  +  laser  (with  ice  bath), DPDT/PTT is
the IC50 of PBNO-Ce6 + laser.

 Cell apoptosis assay
4T1 cells were seeded at a density of 8×105 cells per well
in 6-well plates and cultured for 24 hours. The cells were
then treated with PB, PBNO, PB-Ce6 and PBNO-Ce6 for
12 hours,  followed by irradiation with a 660 nm laser at
0.4  W·cm−2 for  5  minutes.  After  an  additional  8  hours,
the  cells  were  collected  and  stained  with  Annexin  V-
FITC and propidium iodide (PI),  then analyzed by flow
cytometry.

 Animal tumor mode
Female BALB/c mice (6 weeks old) were subcutaneously
injected  on  the  flank  with  a  suspension  of  1×105 4T1
breast  cancer  tumor  cells  in  100  μL  PBS.  The  tumors
were allowed to grow until reaching a volume of approx-
imately 100 mm3 before being used for experiments.  All
animal experiments were performed in compliance with
the guidelines for the care and use of laboratory animals,
ethical approval for this studywas obtained from Animal
Ethics  Committee  of  Nanjing  Medical  University
(2202006).

 In vivo distribution
Tumor-bearing  mice  were  intravenously  injected  with
100  μL  of  PBNO-Ce6  (10  mg·mL−1)  or  an  equivalent
amount  of  free  Ce6. In  vivo fluorescence  imaging  was
performed at 0, 1, 2, 4, 8, 12 and 24 hours post-injection
to observe fluorescence intensity at the tumor site. Addi-
tionally, 20 μL blood samples were collected from the tail
vein at 10, 15, 30, 60, 120, 240 and 480 minutes post-in-
jection.  The  fluorescence  intensity  at  660  nm  was  mea-
sured for the blood samples.

 In vivo antitumor efficacy
30  tumor-bearing  mice  were  randomly  divided  into  5
treatment groups (n=6 per group): (I) Saline + laser; (II)
Ce6  +  Laser;  (III)  PBNO + Laser;  (IV)  PB-Ce6  +  Laser;
(V)  PBNO-Ce6 + Laser.  Mice  were  injected  with  saline,
PBNO-Ce6  (15  mg·mL−1)  or  an  equivalent  amount  of
Ce6,  PBNO, or  PB-Ce6.  The tumors were then irradiat-
ed with a 660-nm laser at a power density of 0.4 W·cm−2

for 15 minutes. 24 hours post-treatment, one mouse per
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group was euthanized and the tumors collected for H&E
and  TUNEL  staining.  The  generation  of  NO,  ROS  and
RNS in tumors was detected by Griess reagent, DAF-FM
DA  and  BBoxiProbe® O52  respectively,  following  the
manufacturer’s instructions for each reagent.

The weights of the remaining mice and tumor growth
were  recorded  every  other  day  for  14  days  post-treat-
ment.  Tumor  volume  was  calculated  using  the  formula:
width2 × length/2.

An additional 30 mice were grouped and treated as de-
scribed above to monitor survival time over a prolonged
period.

 Immunophenotyping
Seven days after treatment, tumors and spleens were col-
lected  from  mice  in  each  treatment  group.  The  tissues
were  mechanically  dissociated  into  single  cell  suspen-
sions in PBS, then enzymatically digested with 5 mg·mL−1

collagenase  IV at  37  °C for  1.5  hours  with shaking.  The
cell suspensions were passed through a 70 μm cell strain-
er,  incubated  in  RBC  lysis  buffer,  and  resuspended  in
RPMI 1640 medium with 10% FBS.

The isolated immune cells  were  stimulated by adding
phorbol  12-myristate  13-acetate  (PMA)  and  incubating
for  4  hours  at  37  °C  with  shaking.  The  cells  were  then
stained  with  fluorescently-labeled  antibodies  against
FVD,  CD45,  CD3,  CD4,  CD8a,  and  CD25  for  30  min-
utes at 4 °C in the dark. To evaluate cytotoxic T cell effi-
cacy and proliferation,  cells  were  also  stained with anti-
bodies  against  Foxp3,  IFN-γ,  and Ki67.  The stained cell
suspensions were analyzed by flow cytometry on a Beck-
man Coulter  CytoFLEX.  The gating strategy  was  shown
in Fig. S17.

 Tumor rechallenging
12 mice were divided into three groups (n=4 per group):
Saline  +  Laser,  PBNO + Laser,  and PBNO-Ce6 +  Laser,
and treated as previously described. Seven days after the
initial treatment, 1 × 105 4T1 cells were injected into the
opposite  flank  of  each  mouse  to  establish  secondary  tu-
mors.  The  growth  curves  of  the  secondary  tumors  were
then monitored over time.

 Biocompatibility study in vivo
Six female healthy BALB/c mice (6 weeks old, 20 g ± 2 g)
were divided into two groups (n=3 per group) and intra-
venously injected with either 100 μL saline or 100 μL of
PBNO-Ce6  (10  mg·mL−1).  After  one  week,  blood  sam-
ples  were  collected  for  biochemical  and  blood  cell

counts.  Major  organs  including  hearts,  livers,  spleens,
lungs and kidneys were collected and sectioned for H&E
staining to assess toxicity.

 Statistical analysis
Data are presented as means ± standard deviation of ≥3
independent  experiments  performed.  Student  t-test  was
used for comparison between two groups. Statistical sig-
nificance (p) was displayed as *p< 0.05, **p< 0.01, ***p<
0.001, ****p< 0.0001.

 Results and discussion

 Identification of hypoxia and immune suppressive
environment in human TNBC
To  evaluate  the  hypoxic  state  in  human  triple-negative
breast  cancer  (TNBC),  we  selected  three  proteins,
HIF1A,  VEGFA,  and  GLUT1,  as  biomarkers  of  tumor
hypoxia.  HIF1A becomes stabilized and activated under
low  oxygen  conditions,  characterizing  tumor  hypoxia35.
The expression of VEGFA, driven by HIF1A, induces an-
giogenesis, thereby catering to the increased oxygen and
nutrient  demands  of  hypoxic  tumors36.  Meanwhile,
GLUT1,  encoding  a  glucose  transporter  protein,  facili-
tates  the  augmented  glucose  uptake  by  cancer  cells  un-
der hypoxia as a metabolic countermeasure37.

Utilizing  immunohistochemistry  staining,  we  dis-
cerned  pronounced  positive  staining  for  HIF1A,  VEG-
FA,  and  GLUT1  in  human  breast  cancer  tissues,  con-
trasting with the subdued staining observed in their nor-
mal counterparts (Fig. 1(a)). A subsequent analysis of the
TCGA  database  echoed  our  findings,  registering  a
marked surge in the expression levels of HIF1A, VEGFA,
and GLUT1 when juxtaposed  against  normal  breast  tis-
sue (Figs. 1(b)&S1). Intriguingly, the expression of these
biomarkers  was  more  accentuated  in  TNBC  samples
compared to non-TNBC malignancies (Fig. 1(c)). Collec-
tively,  these findings attest to the ubiquity of hypoxia in
the human TNBC microenvironment.

The  tumor  microenvironment  (TME)  is  a  dynamic
entity, with its immunological constituents playing a piv-
otal  role  in  determining  the  risk  of  cancer  recurrence.
Bioinformatics  analysis  revealed  a  more  immunosup-
pressive  milieu  in  human  breast  cancer  tissues,  charac-
terized by decreased anti-tumor immune infiltrates, such
as mast cells and eosinophil cells, and a concomitant es-
calation in pro-tumor immune cell constituents, notably
regulatory  T  cells  and  myeloid-derived  suppressor  cells
(Fig.  S2).  In  line  with  this,  survival  analysis  of  breast
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cancer patients (Fig. 1(d)) showed that patients with low-
er immune scores,  indicating lower anti-tumor immune
infiltrates, had significantly shorter overall survival (OS)
and distant metastasis-free survival (DMFS). These find-
ings underscore the profound prognostic implications of
the  intratumoral  immune  landscape  in  human  breast
cancer.

To  explore  the  immune  intricacies  of  human  breast
cancer,  we  analyzed  single-cell  sequencing  data  from  8
TNBC  and  8  non-TNBC  human  breast  cancer  tissue
samples  (Figs. 1(e)&S3).  Astoundingly,  TNBC  samples
manifested an overwhelming prevalence of immunosup-
pressive  cell  populations,  encompassing  Treg  cells  and
exhausted  CD8  T  cells,  juxtaposed  with  a  paucity  of
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Fig. 1 | Bioinformatics analysis of breast cancer patients. (a) Immunohistochemistry images showing HIF1A, VEGFA, and GLUT1 staining in

breast  cancer  tumor  tissue  and  normal  breast  tissue.  Scale  bar:  100  μm.  (b)  HIF1A,  VEGFA,  and  GLUT1  gene  expression  profiles  across

TCGA/GTEx breast  cancer  datasets.  (c)  Differential  expression of  HIF1A,  VEGFA,  and GLUT1 in  TNBC compared to  non-TNBC. (d)  Kaplan-

Meier survival curves for OS and DMFS in patients with high vs low immune scores. (e) Single cell analysis of T cells in TNBC and non-TNBC tu-

mors. (Tn: naive T cells; Tef: effector T cells; Tex: exhausted T cells; Tm: memory T cells; Tef: effector memory T Cell.) (f) Kaplan-Meier survival

curves for OS and PFS in TNBC and non-TNBC patients.
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anti-tumor cell populations, like effector CD8 T cells and
CD4  T  cells.  Consequently,  survival  analysis  indicated
that TNBC patients experienced notably reduced OS and
progression-free survival (PFS) compared to non-TNBC
patients  (Fig. 1(f)).  The  aforementioned  findings  indi-
cate  that  human  TNBC  possesses  an  immunosuppres-
sive  microenvironment,  predisposing  it  to  relapse  and
metastasis.  Consequently,  the  development  of  therapeu-
tic  strategies  aimed  at  immune  activation  emerges  as
imperative.

 Preparation and characterization of PBNO-Ce6
We embedded the nitric oxide donor, sodium nitroprus-
side (SNP), into Prussian Blue nanoparticles (PB) due to
its  structural  similarity  to  the  PB  precursor,  potassium
ferricyanide. To integrate nitric oxide with Prussian blue
nanoparticles (PB), we embedded the nitric oxide donor,
sodium nitroprusside (SNP), utilizing its structural con-
gruence  to  potassium ferricyanide,  the  precursor  for  PB
synthesis. Transmission electron microscopy (TEM) dis-
played  PBNO  nanoparticles  as  cubic  structures  with  an
average size of 108.7 ± 3.3 nm (Fig. 2(a)). Fourier-trans-
form  infrared  (FT-IR)  spectra  exhibited  pronounced
stretching vibrations for the CN group at 2086 cm−1 and
the  N=O  group  at  1944  cm−1,  indicative  of  successful
SNP  incorporation  (Fig. 2(b))38.  N2 adsorption-desorp-
tion isotherms confirmed that PBNO retained PB's con-
sistent mesopores, with a modified BJH pore diameter at
4.1  nm (Fig. 2(c)).  The PBNO had a  Brunauer-Emmett-
Teller (BET) surface area of 473.0 m2·g−1 and a mesopore
volume of 0.073 cm3·g−1.

Taking advantage of  its  mesoporous structure,  PBNO
allowed for  efficient  photosensitizer  incorporation.  UV-
vis spectra determined a Ce6 loading capacity for PBNO-
Ce6  up  to  94.5%,  with  an  efficiency  exceeding  64.4%
(Fig. 2(d)).  Post  Ce6  incorporation,  the  nanoparticle's
hydrodynamic diameter augmented from 197.5 ± 3.8 nm
to  215.7  ±  5.3  nm,  and  the  zeta  potential  shifted  from
−21.7  ±  3.7  mV  to  −32.5  ±  1.6  mV  (Fig. 2(e)).  The  PB-
NO-Ce6 showed similar fluorescence spectrum with free
Ce6 (Fig. S4). The UV-vis spectra of PBNO-Ce6 present-
ed distinct Ce6 peaks around both 400 nm and 650 nm,
validating  the  Ce6's  successful  integration  with  PBNO
(Fig. 2(f)).

The  photothermal  capabilities  of  both  PB  and  PBNO
were assessed by gauging temperature variations in their
solutions upon near-infrared (NIR) laser exposure. Both
solutions  displayed  temperature  augmentations  influ-

enced  by  power  density  and  concentration  (Figs.
2(g)&S5).  Post  a  10-minute  exposure  to  a  low-power
density laser (0.4 W·cm−2), the PB solution's temperature
reached 50.1 °C, while PBNO peaked at 41.2 °C. In con-
trast, pure water remained virtually unaltered (Fig. 2(h)).
PBNO  showed  commendable  photothermal  stability
through five heat-cooling cycles  (Fig.  S6).  Derived heat-
cooling  curves  deduced  a  photothermal  conversion  rate
of  61.2%  for  PBNO,  marginally  less  than  PB's  79.2%
(Figs. 2(i)&S7). This discrepancy can likely be attributed
to the energy consumed in breaking the Fe-NO bonds.

 NO/ROS/RNS generation ability of PBNO-Ce6
To understand the multifaceted reactive species produc-
tion  capabilities  of  PBNO-Ce6  (Fig. 3(a)),  we  began  by
assessing its nitric oxide (NO) generation through Griess
assay. Figure 3(b) illustrates  that  PBNO's  NO  produc-
tion  escalated  with  increased  irradiation  power  density
and  extended  exposure  time,  underscoring  that  NIR
laser-induced photothermal actions facilitate NO release.
PBNO,  when  incubated  in  an  ice  bath,  showed  no  NO
production.

Singlet oxygen, a type of ROS, can oxidize NO to form
RNS. SOSG assays revealed that PBNO-Ce6 and PB-Ce6
generated  comparable  amounts  of  singlet  oxygen  under
NIR exposure (Fig. 3(c)), suggesting that SNP incorpora-
tion  didn't  impair  PB-Ce6's  ability  to  produce  singlet
oxygen. Neither PBNO nor PB produced singlet oxygen,
solidifying the idea that Ce6 was responsible for its gen-
eration.

RNS  production  was  gauged  by  assessing  ONOO−

generation  through the  BBoxiProbe® O56  probe. Figure
3(d) displays  that  only  post-NIR  exposure  did  PBNO-
Ce6 produce RNS. Neither PB-Ce6 nor PBNO exhibited
such an effect,  inferring that simultaneous NO emission
and singlet oxygen formation in the proximity of PBNO-
Ce6 lead to RNS. RNS production by PBNO-Ce6 was di-
rectly related to laser intensity, as shown in Figs. 3(e)&S8.

In  vitro outcomes  mirrored  these  findings  (Figs.
3(f)&3(h)). Both fluorescence imaging and flow cytome-
try attested to NO production in cells exposed to PBNO
and  PBNO-Ce6  post-NIR  illumination.  ROS  was  dis-
cerned in cells  with Ce6,  PB-Ce6,  and PBNO-Ce6 treat-
ment.  RNS detection  was  exclusive  to  PBNO-Ce6-treat-
ed cells,  with its presence coinciding with ROS. This re-
inforces  that  the  co-generation  of  NO  and  ROS  around
PBNO-Ce6,  activated  by  NIR  exposure,  is  pivotal  for
RNS formation.
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 In vitro cytotoxicity
The  promising  potential  of  PB  nanoparticles  for  thera-
peutic applications largely stems from their excellent bio-
compatibility.  Validating  this,  MTT  assays  demonstrat-
ed that the addition of SNP and Ce6 to form PBNO and
PBNO-Ce6  did  not  compromise  this  inherent  biocom-
patibility,  as  negligible  cytotoxicity  was  observed  in  the
absence of laser irradiation (Fig. 4(a)).

Yet,  the  therapeutic  potential  of  PBNO-Ce6  truly
shone  upon  laser  irradiation.  The  cytotoxicity  levels  of
4T1  breast  cancer  cells  for  PBNO-Ce6  were  noticeably
higher  compared  to  its  counterpart,  PB-Ce6,  at  equiva-
lent  concentrations.  This  suggests  that  RNS  generation
by  PBNO-Ce6  has  the  capability  to  amplify  PDT/PTT
outcomes,  even  if  PBNO  possesses  somewhat  dimin-
ished photothermal toxicity relative to the native PB (Fig.
4(b)).

The therapeutic efficacy of PBNO-Ce6, endowed with
both  photothermal  (PTT)  and  photodynamic  (PDT)
properties, was further evaluated against controls. Com-
pared to cells treated with PB, which manifests only PDT
effects,  and  cells  subjected  to  an  ice  bath  during  PBNO
treatment,  effectively  nullifying  its  PTT effects,  the  cells
treated  with  PBNO-Ce6  showed  a  pronounced  reduc-
tion  in  viability  (Fig. 4(c)).  To  explore  whether  the  en-
hanced  efficacy  of  PBNO-Ce6  was  merely  an  additive
outcome of its dual modalities or a result of a synergistic
interaction, we calculated its combination index. The no-
tably low value of 0.24 confirmed a synergistic effect be-
tween its PDT and PTT properties (Fig. S9).

To further elucidate the heightened efficacy of PBNO-
Ce6,  live/dead  staining  was  conducted.  The  results
demonstrated a pronounced red fluorescence for PBNO-
Ce6,  indicative  of  extensive  cell  death,  in  stark  contrast
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to  the  more  prevalent  green  fluorescence  observed  for
other nanoparticles (Fig. 4(d)). Importantly, flow cytom-
etry  analysis,  as  detailed  in Fig. 4(e),  revealed  that  cells
treated  with  PBNO-Ce6  underwent  the  most  pro-
nounced  transition  from  viable  to  late  apoptotic/dead
states. This was evidenced by a 1.5-fold increase in apop-
totic  indices  compared to  PB-Ce6,  underscoring the  su-
perior apoptosis-inducing capability of PBNO-Ce6.

 In vivo distribution and therapeutic efficacy of
PBNO-Ce6
The in vivo biodistribution of PBNO-Ce6 was assessed in
4T1  tumor-bearing  mice.  Mice  were  intravenously  in-
jected with either Ce6 or PBNO-Ce6, and the accumula-
tion of  PBNO-Ce6 in tumors was monitored.  A peak in
tumor-associated fluorescence was observed at 8 h post-
injection, indicative of maximum PBNO-Ce6 accumula-
tion  (Figs. 5(a)&S10).  Moreover,  the  systemic  circula-

tion  half-life  of  PBNO-Ce6  was  found  to  be  2.3  times
longer than that of free Ce6. This superior retention and
tumor  targeting  is  attributed  to  the  extended  blood  cir-
culation  of  PBNO-Ce6  in  comparison  to  free  Ce6  (Fig.
S11).

For  therapeutic  efficacy  assessment,  4T1  tumor-bear-
ing  mice  were  grouped  and  administered  with  equal
dosages of Ce6, PBNO, PB-Ce6, PBNO-Ce6, or PBS as a
reference, followed by NIR laser irradiation. Notably, the
temperatures of tumors treated with PBNO, PB-Ce6, and
PBNO-Ce6  reached  50  °C  upon irradiation,  showcasing
the comparable photothermal  capabilities  of  PBNO-Ce6
to  PBNO  and  PB-Ce6 in  vivo (Figs. 5(b)&5(c)&S12).
Analysis  of  fluorescently stained tumor sections post-ir-
radiation confirmed exclusive NO, ROS, and RNS gener-
ation in  the  PBNO-Ce6 group (Fig. 5(d)).  This  observa-
tion is consistent with previous in vitro findings and fur-
ther underscores NIR-induced NO/ROS/RNS production
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by  PBNO-Ce6.  Additionally,  TUNEL  and  H&E  stained
sections  highlighted pronounced apoptosis  and necrosis
in tumors treated with PBNO-Ce6, underscoring the po-
tent  antitumor activity  mediated by RNS (Fig. 5(e)).  Af-
ter  14  days  of  monitoring,  tumors  treated  with  PBNO-
Ce6  exhibited  significantly  reduced  volumes  compared
to  those  treated  with  PB-Ce6  (Fig. 5(f)).  Furthermore,
PBNO-Ce6  treatment  led  to  a  marked  improvement  in
survival  durations  relative  to  other  nanoparticle  treat-

ments (Fig. 5(g)). In sum, these findings validate the aug-
mented  antitumor  efficacy  of  PBNO-Ce6  in  primary
breast  cancer,  attributed  to  the  NIR  triggered
NO/ROS/RNS generation.

 Antitumor immune response
Breast  cancer  recurrence  and  metastasis  following  pri-
mary treatments remain significant challenges in oncolo-
gy.  To  evaluate  the  potential  of  combined  PBNO-Ce6
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and  NIR  laser  irradiation  in  preventing  long-term
recurrence,  post-treatment  mice  were  subsequently
rechallenged with  4T1 breast  cancer  cells.  Mice  subject-
ed to the combined PBNO-Ce6 and NIR laser treatment
exhibited significant  resistance to the tumor rechallenge
compared  to  those  treated  with  native  or  PBNO  alone
(Figs. 6(a)&S13). This resistance suggests a potent antitu-
mor  immune  response  activated  by  the  NO/ROS/RNS
generation  facilitated  by  the  combined  PBNO-Ce6  and
NIR laser irradiation.

Delving  deeper  into  the  immune  responses  engen-
dered by this combined treatment, immunophenotyping
was performed on isolated primary tumors and spleens.
Flow  cytometry  analyses  revealed  that  the  combined
treatment  led  to  a  marked  increase  in  intratumoral
CD3+CD8+  cytotoxic  T  cells  (CTLs)  and  a  notable  de-
crease  in  immunosuppressive  CD25+Foxp3+  regulatory
T cells (Tregs) compared to other treatments (Fig. 6(b)).
Notably,  CTLs  increased  2.7-fold  while  Tregs  decreased

62%  in  the  PBNO-Ce6  group  compared  to  the  PB-Ce6
group, indicating the potent ability of RNS generated by
PBNO-Ce6 to stimulate antitumor immunity and inhib-
it  immunosuppression.  Similar  trends  were  observed  in
the spleen (Fig. 6(c)),  signifying that the combination of
PBNO-Ce6 and NIR laser therapy influences both the tu-
mor  microenvironment  and  systemic  lymphoid  organs
by promoting CTLs and suppressing Tregs.

In  addition  to  these  shifts  in  CTL  and  Treg  popula-
tions,  the  efficacy  and  proliferative  capability  of  CTLs
post-treatment  were  assessed.  Elevated  frequencies  of
both IFN-gamma-producing and Ki-67-marked prolifer-
ating CD8+ T cells were found in tumors and spleens of
the  combined  treated  mice,  underscoring  its  profound
effect (Fig. 6(d)&6(e)). In summary, these findings high-
light the capability of the combined PBNO-Ce6 and NIR
laser  irradiation to  enhance  both  systemic  and localized
antitumor immune reactions, offering substantial protec-
tion against breast cancer recurrence.
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 Biocompatibility in vivo
The in vivo biocompatibility of PBNO-Ce6 was systemat-
ically  assessed.  Mice  were  administered  either  PBNO-
Ce6 or saline and observed for a span of 14 days. During
this period, no significant deviations in body weight were
observed following PBNO-Ce6 administration (Fig. S14).
Histological  examinations  using  H&E  staining  of  major
organ tissues revealed no noticeable pathological changes
or  indications  of  damage  (Fig. 7(a)).  A  comprehensive
range  of  hematological  indicators,  such  as  white  blood
and  red  blood  cell  counts  (Fig. 7(b)),  as  well  as  various
biochemical  markers  like  alanine  transaminase  and  as-
partate  aminotransferase  (Fig. 7(c)),  were  analyzed.
These  parameters  consistently  fell  within  conventional
limits for both PBNO-Ce6 and saline-injected mice, indi-
cating no discernible differences between the two groups.

These findings collectively  suggest  that  PBNO-Ce6 does
not  induce  any  apparent  adverse  effects  within  the  14-
day observation window, highlighting its promising bio-
compatibility profile.

 Conclusions
In  summary,  we  have  developed  a  NIR-triggered  RNS
nanoreactor  (PBNO-Ce6)  to  combat  TNBC,  which  ex-
hibits  a  highly  immunosuppressive  and  hypoxic  tumor
microenvironment. PBNO-Ce6 comprises sodium nitro-
prusside-doped  Prussian  Blue  nanoparticles  and  the
photosensitizer  Chlorin  e6.  By  harnessing  concurrent
production  of  NO  and  ROS,  PBNO-Ce6  can  efficiently
generate RNS, which greatly enhanced the photodynam-
ic/photothermal therapeutic efficacy against TNBC. Fur-
thermore,  the  RNS  potently  stimulated  localized  and

 

Heart

S
a
lin

e
P

B
N

O
-C

e
6

Liver Spleen Lung Kidney

10

8

Saline

PBNO-Ce6

Saline

PBNO-Ce6

W
B

C
 (

1
0

9
/L

)

P
L
T

 (
1
0

9
/L

)

6

4

2

0

100

80

C
R

E 
(μ

m
ol

/L
)

60

40

20

0

250

200

A
S

T
 (

U
/L

)

150

100

50

0

15

12

G
LU

 (m
m

ol
/L

)

9

6

3

0

500

400

A
L
P

 (
U

/L
)

300

200

100

0

150

100
A

L
P

 (
U

/L
)

50

0

10

9

R
B

C
 (

1
0

1
2
/L

)

8

7

6

7

6

M
P

V
 (

fL
)

5

4

3

360

340

M
C

H
C

 (
g
/L

)

320

300

280

150

140

130

H
G

B
 (

g
/L

)

120

110

100

2000

1600

1200

800

400

0

40

30

BU
N

 (m
g/

dL
)

20

10

0

20

18

M
C

H
 (

p
g
)

16

14

12

50

45

H
C

T
 (

%
)

40

35

30

a

b

c

Fig. 7 | Biocompatibility of PBNO-Ce6 in vivo. (a) H&E images of heart, liver, spleen, lung, and kidney tissues from mice at 14 days post-injec-

tion. Scale bar: 50 μm. (b) Routine blood cell count of mice at 14 days post-injection. WBC: white blood cells; RBC: red blood cells; MPV: mean

platelet volume; MCHC: mean corpuscular hemoglobin concentration; MCH: mean corpuscular hemoglobin; HCT: hematocrit; HGB: hemoglobin;

PLT: platelet count. The gray areas indicate the normal range of the indicators. (c) Blood biochemistry analysis of mice at 14 days post-injection.

ALT: alanine aminotransferase; ALP: alkaline phosphatase; BUN: blood urea nitrogen; CRE: creatinine; AST: aspartate aminotransferase; GLU:

glucose.

Xu ZQ et al. Opto-Electron Adv  7, 240013 (2024) https://doi.org/10.29026/oea.2024.240013

240013-14

 

https://doi.org/10.29026/oea.2024.240013


systemic  antitumor  immune  responses,  protecting  mice
from  tumor  rechallenge.  This  resulted  in  a  2.7-fold  in-
crease in cytotoxic T lymphocytes and a 62% decrease in
regulatory  T  cells  compared  to  PB-Ce6.  To  our  knowl-
edge, PBNO-Ce6 is the first NIR-triggered RNS nanore-
actor  with  synergistic  photodynamic/photothermal  ef-
fects  and  robust  immune-stimulating  activity.  Our  de-
sign strategy could serve as a versatile platform to incor-
porate  with  immune  checkpoint  inhibitors  or
chemotherapies,  further  improving outcomes for  TNBC
and other malignancies.
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