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Reconfigurable optical neural networks with
Plug-and-Play metasurfaces
Yongmin Liu1,2* and Yuxiao Li2

In  a  very  recent  study,  Prof.  Lingling Huang and co-workers  proposed and demonstrated reconfigurable optical  neural
networks based on cascaded metasurfaces. By fixing one metasurface and switching the other pluggable metasurfaces,
the neural networks, which operate at near-infrared wavelengths, can perform distinct recognition tasks for handwritten
digits and fashion products. This innovative device opens up an avenue for all-optical, high-speed, low-power, and multi-
functional artificial intelligence systems.
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Drawing  inspiration  from  signal  processing  in  the  ner-
vous  system,  artificial  neural  networks  (ANNs)  have
demonstrated their indispensability in a variety of tasks,
such  as  computer  vision,  natural  language  processing,
new materials discovery, and medical diagnosis1. Howev-
er, the prevailing von Neumann architectures in modern
computers  hinder  the  efficient  utilization  of  ANNs,
prompting extensive  efforts  toward enhancing the  com-
putation  speed  and  accuracy.  One  particularly  promis-
ing  solution  is  optical  neural  networks  (ONNs),  which
shift  from  real-number  matrix  operations  to  complex-
number logical computing. ONNs offer inherent advan-
tages in power efficiency, speed, parallelism, bandwidth,
and scalability, in comparison to their conventional digi-
tal  and  electronic  counterparts2−3.  A  notable  feature  of
ONNs is their passive functionality, relying solely on in-
put light energy, thus eliminating the need for additional
power  consumption  during  the  computation  processes.
Moreover,  ONNs  could  seamlessly  integrate  diverse
functionalities across different wavelengths and polariza-
tions, which can operate independently and avoid cross-
talk.  This  inherent  feature  enhances  the  capacity  of

ONNs for both extensive bandwidth utilization and par-
allel computing capabilities.

Over  the  past  years,  researchers  have  demonstrated
ONNs using distinct platforms, including photonic inte-
grated circuits4−5,  diffractive optical  elements6−7,  and op-
tical  metasurfaces7−8.  However,  most  of  the  demonstrat-
ed ONNs lack reconfigurability. Their functionalities are
fixed once they are trained and fabricated. In a very work
published  in Opto-Electronic  Advances,  Lingling  Huang
et al. conceptually proposed and experimentally demon-
strated  pluggable  diffractive  neural  networks  (P-DNNs)
operating  in  the  near-infrared  region9.  P-DNNs  can
switch between different tasks,  such as classifying hand-
written  digits  and  fashion  products,  by  simply  inter-
changing the pluggable components of the networks. As
a  result,  we  can  significantly  enhance  the  flexibility  and
adaptation  of  ONNs while  effectively  reducing  comput-
ing resources and training time in the network design.

Figure 1(a) schematically  illustrates  the  proposed  P-
DNNs, which consist of two layers of metasurfaces with a
separation distance of 500 μm. The first layer is a shared
component  to  preprocess  input  information,  and  the 
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second layer is a pluggable task-specific classification lay-
er  for  different  types  of  objects,  including  handwritten
digits  (from  0  to  5)  and  fashions  (T-shirts,  trousers,
coats,  sneakers,  bags,  and ankle  boots).  When light  illu-
minates distinct objects and passes through the P-DNNs,
it  converges  on  different  regions  of  the  detection  plane,
and  hence  classification  is  achieved.  The  metasurfaces
consist  of  rectangular  silicon  nanofins  with  deliberately
designed geometries and rotation angles, as shown in the
inset of Fig. 1(a). Individual nanofins function as optical
neurons,  and  the  neurons  on  the  adjacent  metasurface
layers are connected through diffraction.

The P-DNNs were designed and optimized in a simi-
lar way in training machine learning models, encompass-
ing  the  introduction  of  a  loss  function  and the  employ-
ment  of  the  stochastic  gradient  descent  and  error  back-
propagation  algorithms.  The  objective  of  the  training
process was to maximize the light intensity at the corre-
sponding  detection  region  for  a  given  class  of  objects,
and minimize  the  total  signal  in  other  regions.  In  order
to  reduce  the  training  time  for  different  tasks,  the  au-
thors  used  transfer  learning.  First,  the  MNIST  dataset
was  utilized  to  train  and optimize  the  phase  parameters
of the shared layer (the first metasurface) and the hand-
written  digits  classification  layer  (the  second  metasur-
face)  with  10  training  epochs.  Then,  the  parameters  of

the  shared  layer  were  fixed,  and  the  Fashion-MNIST
dataset  was  used  to  train  the  fashion  classification  layer
(the  third  metasurface).  This  process  only  took  5  train-
ing epochs to reach high classification accuracy thanks to
transfer  learning.  The  phase  profiles  essential  for  the
three  metasurfaces  were  achieved  by  employing  Pan-
charatnam–Berry phase modulation for circularly polar-
ized  light.  This  was  realized  by  rotating  individual  sili-
con nanofins to specific angles. The silicon metasurfaces,
each  500×500  μm2 in  size,  were  fabricated  by  standard
electron  beam  lithography.  The  period  was  set  as  500
nm,  and  the  length,  width  and  height  of  nanofin  were
210, 135 and 600 nm, respectively.

Figure 1(b) shows  the  representative  results  and  per-
formances of the P-DNNs. The left column presents the
inputs  of  P-DNNs,  which  are  handwritten  digits  and
fashion  images.  In  the  experiment,  circularly  polarized
light  carrying  the  input  information was  generated by  a
digital  micromirror  device.  It  passed  through  the  P-
DNNs,  in  which  the  second  layer  could  be  readily
switched depending on the classification tasks. The light
intensity on the output plane was captured by a camera,
as  shown  in  the  middle  column.  For  specific  input  im-
ages,  the  region  with  the  highest  energy  corresponds  to
the result of classification. The right column in Fig. 1(b)
shows  energy  distribution  on  the  detection  plane,  both
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Fig. 1 | (a) Schematic illustration of P-DNNs, which can perform recongnization of handwritten digits and fashion by switching the pluggable clas-

sification layer. The inset at the bottom right corner shows the scanning electron micrograph of the fabricated metasurface. (b) Characterization

and performance of P-DNNs. Left column: handwritten digits and fashion input images. Middle column: experimentally detected energy distribu-

tion maps for handwritten digits and fashion. Right column: experimental and simulation results of energy distribution for handwritten digits and

fashion. ΔE represents the difference between the percentage of maximum and second maximum energy. The figures are adapted from ref.8 with

modification.
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the experimental and simulation results, for handwritten
digits  and  fashion.  The  authors  introduced  ΔE = Emax

(maximum energy) - Esmax (second maximum energy) as
an  indicator  to  verify  the  classification  accuracy  and  ef-
fectiveness.  The  results  confirm  that  the  P-DNNs  can
correctly  perform classification,  although  the  maximum
energy  distribution  in  the  experimental  was  a  bit  lower
than the simulation results due to the inevitable fabrica-
tion errors and misalignment of the two metasurface lay-
ers  in  optical  characterization.  Overall,  the  accuracy  for
handwritten  digit  classification  was  90%  in  experiment
and 91.8% in simulation. The fashion classification accu-
racy  reached  90%  in  experiment  and  90.2%  in
simulation.

In  summary,  the  proposed  P-DNNs  can  classify  di-
verse patterns through the seamless switching of the sec-
ond plugin layer.  They help to effectively overcome one
major limitation of previously demonstrated ONNs, that
is, inability to adapt to multiple tasks once ONNs are de-
signed and fabricated. This new approach allows for the
architecture  reconfigurability  of  ONNs,  akin  to  tunable
and  programmable  metasurfaces.  Moreover,  the  utiliza-
tion of metasurfaces technology facilitates the realization
of  optical  intelligent  computing  chips,  enabling  intelli-
gent  functions  such  as  real-time  object  detection  in  au-
tonomous driving systems. By leveraging wavelength and
polarization multiplexing techniques10−11,  we can further
advance  ONNs  for  more  versatile,  energy-efficient,  and
adaptive optical computing technologies.
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