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Finely regulated luminescent Ag-In-Ga-S
quantum dots with green-red dual emission
toward white light-emitting diodes
Zhi Wu, Leimeng Xu*, Jindi Wang and Jizhong Song*

Ag-In-Ga-S (AIGS) quantum dots (QDs) have recently attracted great interests due to the outstanding optical properties
and eco-friendly components, which are considered as an alternative replacement for toxic Pb- and Cd-based QDs. How-
ever, enormous attention has been paid to how to narrow their broadband spectra, ignoring the application advantages of
the broadband emission. In this work, the AIGS QDs with controllable broad green-red dual-emission are first reported,
which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crys-
tals. Resultantly, the AIGS QDs exhibit  broad dual-emission at green- and red- band evidenced by photoluminescence
(PL) spectra, and the PL relative intensity and peak position can be finely adjusted. Furthermore, the dual-emission is the
intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temper-
ature-dependent PL spectra. Accordingly, the AIGS QDs (the size consists of 17 nm and 3.7 nm) with 530 nm and 630
nm emission could successfully  be synthesized at  220 °C. By combining the blue light-emitting diode (LED) chips and
dual-emission  AIGS QDs,  the  constructed  white  light-emitting  devices  (WLEDs)  exhibit  a  continuous  and  broad  spec-
trum like natural sunlight with the Commission Internationale de l’Eclairage (CIE) chromaticity coordinates of (0.33, 0.31),
a  correlated  color  temperature  (CCT)  of  5425 K,  color  rendering  index  (CRI)  of  90,  and  luminous  efficacy  of  radiation
(LER) of 129 lm/W, which indicates that the AIGS QDs have huge potential for lighting applications.
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Introduction
Colloidal  semiconductor  quantum  dots  (QDs)  have
drawn  much  attention  due  to  their  size-dependent  tun-
able  bandgap,  high color saturation,  which exhibit  great
advantages in the application of lightings and displays1,2.
Recent  years,  some outstanding  QDs,  such as  CdSe  and
perovskite  QDs  have  achieved  extraordinary  develop-
ment,  but  the  use  of  toxic  Cd  and  Pb  has  limited  their
further  application.  Thus,  exploring  novel  semiconduc-

tor  QDs  with  environmentally  components  and  promi-
nent luminescence properties are highly desired. Ternary
Ⅰ-Ⅲ-Ⅵ2 alloyed compounds (I = Cu, Ag; III = Ga, In;
VI  =  S,  Se,  Te)3−6 are  widely  investigated.  Cu-based
ternary  QDs  feature  a  broad  emission  peak  and  low
quantum efficiency due to their  intrinsic  band structure
and defect-related luminescence7,8. Recently, Ag-In-Ga-S
(AIGS) QDs, which exhibit controllable light emission in
almost  full  visible  range  and  higher  photoluminescence 
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quantum  yield  (PLQY),  have  shown  great  potential  in
lightings  and  displays9−17.  Compared  with  the  classical
Cd-based  system,  the  AIGS  QDs  feature  a  wider  emis-
sion  in  visible  range,  accompanied  by  a  main  peak  of
strong bandgap luminescence and a weak peak from de-
fect luminescence. Currently, great efforts such as forma-
tion  of  core-shell  structure18−29 and  surface  ligand  treat-
ment30−32,  have  been  devoted  to  improving  the  main
peak, suppressing defect peaks, and thus narrowing pho-
toluminescence  (PL)  spectra  to  meet  the  needs  of  high-
definition displays. While the feature of broadband emis-
sion  also  has  great  advantages  in  phosphor-converted
lightings and is ignored33−36.

The emission peaks of  the low energy region in dual-
spectral emission AIGS QDs are mainly caused by band-
edge  or  lattice  defects31,32.  As  a  result,  the  luminous  in-
tensity of this peak is relatively weak and cannot be con-
trolled,  making  it  impossible  to  achieve  high-quality
lighting  applications.  In  order  to  effectively  regulate  the
luminous  intensity  of  the  low-energy  region,  we  have
studied  the  nucleation  and  growth  processes  of  QDs  in
the synthesis process, and this is largely related to the ef-
fect of temperature on quantum size.

Based on the quantum size effect, the band gap and lu-
minous wavelength of QDs can be adjusted through con-
trolling the size, morphology or structure29.  The size de-
pendent band gap follows the Bruce equation: 
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where ∆E is  defined as  the size-dependent bandgap due
to quantum effects, Eg is the bandgap of the bulk materi-
als, R is  the  radius  of  QDs, me*  is  the  effective  mass  of
electron, mh* is the effective mass of hole, ε0 is the dielec-
tric  constant  in  vacuum, εα is  the  effective  constant  of
electron, e is the electron charge. Based on above formu-
la, the motion of electrons and holes in QDs will be lim-
ited with decreasing size, leading to the increase in kinet-
ic energy. The increased kinetic energy will  result in the
larger  energy  gap  and blue  shift  in  spectra,  as  shown in
Scheme 1.  Benefitting  from  the  quantum  size  effect  of
QD  materials,  rich  and  tunable  spectra  can  be  obtained
by controlling the size of QD crystals37. Through control-
ling  the  crystal  nucleation  and  growth  properly,  QDs
with  two  distinct  size  distribution  (large  and  tiny  parti-
cles)  exhibit  the  dual  broadband  emission,  which  are
beneficial  for  the  manufacture  of  white  light  devices
(WLEDs).  The  WLED  is  generally  composed  of  blue

chips  and  yellow  or  green+red  phosphors38−40.  Com-
pared to  traditional  rare  earth  phosphors,  the  one com-
ponent  AIGS  QDs  with  dual-emission  at  green  (≈530
nm) and red (≈630 nm), large Stokes’ shifts, eco-friendly
composites  and facile  solution synthesis  process,  exhibit
great potential in WLEDs.
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Scheme 1 | Schematic  diagram of  the size-dependent  band gap
and spectral correspondence based on size effect of QDs.

 
In  this  work,  the  AIGS  QDs  with  dual-emission  are

obtained  through  one-pot  synthesis,  and  the  controlled
bimodal PL spectra is reported for the first time. The du-
al-emissive  PL  is  achieved  through  adjusting  the  crys-
talline  size  and  composition  of  AIGS  QDs,  the  nucle-
ation and growth of which can be controlled by regulat-
ing the growth temperature. Resultantly, the PL of dual-
emission at 530 nm and 630 nm is realized, and the rela-
tive intensity of the two peaks can be adjusted.  Further-
more,  the  intrinsic  emission  characteristics  of  the  dual-
emissive  PL  is  demonstrated  through  PL  measurements
under  different  excitation  wavelength  and  temperature.
Possessing green- and red-emission simultaneously,  this
QDs  exhibit  great  advantages  in  WLEDs.  Through
combing the dual-missive QDs with blue-emitting chips,
a  white  light-emitting  diode  is  obtained,  which  exhibit
tunable  color  temperature  and  CIE  chromaticity
coordinates. 

Experimental section
Chemicals. Silver acetate (AgOAc, 99.5%), indium triac-
etate  (In(OAc)3,  99.99%),  gallium  nitrate  hydrate
(Ga(NO3)3,  99.9%),  sodium  diethyldithiocarbamate
(NaDDTC,  98%),  1-dodecanethiol  (DDT,  98%),  n-hex-
ane  (GC),  oleylamine  (OAm)  were  purchased  from
Macklin,  low-density  polyethylene  (LDPE)  was  pur-
chased from Dongguan Huachuang Plastic  Raw Materi-
al  Firm.  Methanol  (AR)  was  purchased  from  Fuyu
Reagent.  Trichloromethane  (AR)  was  purchased  from
Luoyang Chemical Factory.
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Synthesis  of  Gallium  Diethyldithiocarbamate
(Ga(DDTC)3). Ga(DDTC)3 was  prepared  following  the
previous  report  with  some  modifications30,  where  the
volume  was  expanded  and  the  purification  process  was
optimized.  Typically,  a  200  mL  0.3  mol/L  NaDDTC
(10.2756  g)  aqueous  solution  was  added  dropwise  to  a
200 mL 0.1 mol/L Ga(NO3)3 (5.1148 g) aqueous solution
with continuous stirring at atmospheric environment for
3 h. The collection was filtered through the suction filter
device and repeat washing three times to achieve purity.
Then the white powder was obtained after drying in vac-
uum oven at 60 °C overnight.

Synthesis  of  AIGS  QDs. The  synthesis  process  was
modified from reported method30, where the volume was
expanded and reaction temperature was optimized. Typ-
ically, AgOAc (0.4 mmol, 66.8 mg), In(OAc)3 (0.8 mmol,
232 mg) and Ga(DDTC)3 (0.8 mmol, 268 mg) were dis-
solved  in  OAm  (20  mL)  in  a  three-necked  flask.  The
mixture  solution  was  evacuated  at  100  °C  for  30  min.
Then, the temperature was heated to 180 °C, 190 °C, 200
°C, 210 °C, 220 °C, 230 °C, 240 °C or 250 °C, respectively
under  nitrogen  (N2)  flow  and  maintained  for  30  min.
Subsequently, 0.5 mL of dodecanethiol was injected for a
further  30  min.  After  cooling  to  room  temperature,  the
nanoparticle  portion  was  isolated  by  precipitation  with
trichloromethane (2 mL) and methanol (8 mL). The so-
lution was  centrifuged three  times  (10,000 rpm,  1  min),
and dispersed in hexane (1 mL).

Construction  of  AIGS  QD-based  white  light-emit-
ting diodes. 100 μL of QDs were added to 5 g of thermo-
plastic  polymer  powder  (LDPE),  followed  by  0.1  g  of
photo-dispersible powder. After mixing with a stirrer for
3  min,  the  mixture  was  processed  into  a  yellow  film  by
hot pressing.  According to the principle of three prima-
ry  colours,  the  yellow  quantum  dot  film  was  superim-
posed  on  a  blue  LED  chip  (455  nm)  to  obtain  a  white
light emitting device.

Material  characterization. The  steady-state  photolu-
minescence (PL) spectra  and photoluminescence excita-
tion  (PLE)  spectra  were  studied  through  a  spectrofluo-
rometer  (Hitachi  Fluorescence  Spectrophotometer  F-
4700). The Ultraviolet−visible (UV-vis) absorption spec-
trum  was  measured  using  a  UV-vis  spectrophotometer
(Hitachi  UV-Visible/NIR  Spectrophotometer  UH5700).
The  QD  morphologies  were  observed  using  a  transmis-
sion  electron  micros-copy  (TEM)  instrument  (Hitachi,
H-7650)  at  an  acceleration  voltage  of  100  kV,  whereas
high-resolution  TEM  (HRTEM)  images  were  obtained

using  a  200  kV  TEM  (JEOL,  JEM-2100).  Powder  X-ray
diffraction (XRD) analysis was performed using an X-ray
diffractometer (Rigaku, SmartLab) equipped with a par-
allel  beam/parallel  slit  analyzer.  The  chemical  composi-
tion  of  the  QDs  was  determined  using  an  inductively
coupled  plasma  atomic  emission  spectrometer  (Shi-
madzu,  ICPS-7510).  Variable  temperature  PL  spectrum
are measured using a FLS1000 Photoluminescence Spec-
trometer  (Cryo77,  Tianjin  Orient-KOJI  Instrument  and
TAP-02,  Tianjin  Orient-KOJI  Instrument).  Variable
power  PL spectrum are  used  by  a  laser  diode  controller
(ADR-1805). 

Results and discussion
The  AIGS  QDs  are  synthesized  through  the  modified
hot-injection  method  from  previous  report30,  where  the
varied  temperature  is  used  to  regulate  the  size  of  the
quantum dots. Through controlling the reaction temper-
ature, AIGS QDs with different size distributions are ob-
tained, as shown in Fig. 1(a−c) and Fig. S1. When react-
ing at 180 °C, QDs exhibit spherical particles with an av-
erage  diameter  of  16.5  nm  (Fig. 1(a) and 1(e)).  Increas-
ing  the  reaction  temperature  to  220  °C,  a  mass  of  tiny
QDs  within  5  nm  appear,  and  the  average  diameter  of
these small particles is 3.7 nm (Fig. 1(b) and 1(g)). As the
temperature rises further to 250 °C, the synthesized QDs
are almost tiny particles with an average diameter of 3.7
nm (Fig. 1(c) and 1(i)). The corresponding HRTEM im-
ages  of  QDs  are  presented  in Fig. 1(d, f) and 1(h),  all
these  particles  reveal  well-ordered  lattice  fringes,  which
means  these  QDs  show  a  uniformly  single  crystalline
characteristic.  And  the d-spacing  is  corresponding  to
(112) plane of tetragonal phase, which is consistent with
previous  reports28,30.  It  should  be  noted  that  the  large
particles  and small  particles  have the same crystal  plane
spacing,  which  indicates  they  possess  the  same  crystal
structure.  It  will  be  further  confirmed  in  later  XRD
discussion.

Due to the variation in dimension, QDs grow at differ-
ent temperature exhibit tunable light emission, their cor-
responding typical spectra are shown in Fig. 1(j−l).  QDs
with large particles possess red light emission (Fig. 1(j)),
with  the  appearance  of  the  small  particles,  the  green-
emitting  band  of  PL  spectra  occur  (Fig. 1(l)),  which  is
consistent with the quantum confinement effect of QDs.
Through  controlling  the  nucleation  and  growth,  QDs
with large and small particles can be obtained, leading to
the  realization  of  QDs  with  dual-emission  (Fig. 1(k)).

Wu Z et al. Opto-Electron Adv  7, 240050 (2024) https://doi.org/10.29026/oea.2024.240050

240050-3

 

https://doi.org/10.29026/oea.2024.240050
https://doi.org/10.29026/oea.2024.240050


The  nucleation  and  growth  controlling  mechanism  and
of  AIGS  QDs  and  the  fine  regulation  of  spectra  will  be
further explained in the following content.

The schematic diagram of temperature-affected nucle-
ation and growth is presented in Fig. 2(a). For the liquid-
phase  synthesis  process  of  colloidal  QDs,  homogeneous
nucleation occurs when supersaturation of the precursor
molecules is sufficient to overcome the nucleation barri-
er. The higher the supersaturation, the higher the nucle-
ation  probability  and  the  smaller  the  critical  nucleus2,41.
When reacting  at  lower  temperature  (180  °C),  the  reac-
tive activity  of  precursors  is  not  fully  mobilized,  leading
to low nucleation rate. The nucleuses lager than the criti-
cal  size  can continue to  grow,  while  the  clusters  smaller
than the critical size will dissolve, the dissolved ions tend
to grow on the as-formed crystal  core,  resulting in large
grains.  With  the  temperature  rises,  the  more  intense
molecular  motion  and  the  increased  supersaturation  is
favorable  for  efficient  nucleation42,  leading  to  smaller

particles.  Through  regulating  the  reaction  temperature,
the AIGS QDs simultaneously containing large and small
particles can be obtained, which exhibit dual emission as
presented in Fig. 1(k).

The crystalline structure of the AIGS QDs are further
analyzed  through  XRD  as  shown  in Fig. 2(b),  all  the
AIGS  QDs  obtained  at  different  temperature  exhibit
tetragonal  phase,  the  appearance  of  characteristic  peaks
at 26.7°, 45.5°, and 53° are located between the positions
of  (112),  (204),  and (312)  planes  for  AgGaS2 (PDF #25-
0351)  and  AgInS2 (PDF  #23-1330),  which  is  consistent
with  previous  reports28,30.  While  the  QDs  synthesized  at
lower  temperature  (180  °C)  exhibit  impurity  phase  due
to the incomplete reaction caused by low activity of pre-
cursor.  Furthermore,  the  atomic  metrology  of  the  QDs
are  measured  via  inductively  coupled  plasma  emission
spectroscopy  (ICP-OES),  the  QDs  have  similar  atomic
ratio  that  is  close  to  the  composition  of  Ag-(In/Ga)-S2

(Fig. 2(c) and Table S1),  except the QDs obtained at the
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Fig. 1 | The temperature-dependent microstructure of AIGS QDs and corresponding PL spectra. (a, b, c) TEM, (d, f, h) HRTEM images,

(e, g, i) histograms of the statistical distributions of particle sizes and corresponding (j, k, l) normalized PL spectra of the AIGS QDs synthesized

at 180 °C, 220 °C and 250 °C, respectively.
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lower temperature due to the unreacted metal precursor
salt. Above results indicate that the large and small parti-
cles  have  the  same  structure  not  the  heterogeneous
phase, which also demonstrates that the dual emission is
due to the size effect rather than different phases.

The microstructure of  the typical  dual  emissive AIGS
QDs is further demonstrated. The schematic diagram of
the  tetragonal  AIGS  is  shown  in Fig. 3(a).  And Fig.
3(b−f) present the EDS element mapping of typical AIGS
QDs containing large and small particles obtained at 230
°C. It can be seen that Ag, In, Ga, S are evenly distribut-
ed  on  all  the  selected  grains,  which  further  supports
above conclusion that the QDs with large and small sizes
have the same composition and structure.

Based on above adjustment of crystal size, the spectra
of  QDs  can  be  finely  controlled. Figure 4(a, b) presents

the photographs and corresponding spectra of the AIGS
QDs synthesized at different temperature. At lower tem-
perature  (180  °C,  190  °C),  the  QDs  exhibit  broadband
emission with the peak at 630 nm, which is derived from
the large-sized AIGS QDs. With the temperature increas-
ing (200 °C, 210 °C), a new small peak at green band ap-
pear that is due to the generation of small-sized particles
in the system. As the temperature continues to rise (220
°C, 230 °C), the green-band emission is also enhanced on
account  of  the  increased  small-sized  particles,  the  QDs
with dual emission are obtained. When the temperature
is further increased (240 °C, 250 °C), the red-band emis-
sion weakened to almost disappear. Correspondingly, the
optical photographs under UV irradiation also shows the
change from red emission to green emission. In addition,
the peak position of the dual emission can also be adjusted
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through regulating the proportion of Ga/In as shown in
Fig.  S2,  the  overall  blue  shift  of  the  spectra  is  observed
with  increasing  Ga  that  is  consistent  with  previous  re-
ported  result9−17.  The  AIGS  QDs  have  large  Stoker  shift
the  absorption  band  edge  of  which  is  at  480  nm  (dash
line  in Fig. 4(b)),  this  character  makes  it  advantageous
for lighting applications.

To further prove that the feature of this dual emission
is derived from intrinsic luminescence of QDs, the tem-
perature-,  power- and  excitation  wavelength-dependent
PL are measured, as shown in Figs. 5, S4. As can be seen
from Figs. 5(a, b), S3,  with  the  increasing  temperature
from 80 K to 380 K, both PL peaks of the dual emission
redshift slightly due to the lattice expansion, but no new
fluorescence peaks occur43−45. The stable existence of both
emission peaks at low temperature when the phonon en-
ergy is suppressed, and the peak positions are almost the
same  as  those  at  room  temperature,  indicating  that  the
luminescence  is  derived  from  the  intrinsic  emission  of
AIGS  QDs.  The  PL  intensity  increase  with  the  decreas-
ing  temperature  due  to  suppression  of  non-radiative
pathways  at  lower  temperature.  And  the  narrower  full
width at  half  maximum (FWHM) is  due to  the  reduced
probability  of  non-radiative  recombination  caused  by
lattice vibration declines with decreasing temperature46.
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In  addition,  the  power-dependent-PL  spectra  under
370 nm excitation are shown in Fig. 5(c) and 5(d), R2 is a
fitting  parameter. R2 =  0.99,  the  results  show  that  the
emission intensity of AIGS quantum dots has a good lin-
ear correlation with the excitation power, also indicating
that the dual emission is due to the grain size and do not
arise  from  other  defects47.  Moreover,  the  PL  spectra  of
the  dual-emissive  AIGS  QDs  under  different  excitation
wavelength  are  also  tested  (Fig.  S4),  and  the  emission
peak  did  not  shift  and  the  PL  spectra  shape  did  not
change. Above analysis demonstrated that the character-
istic  peaks  are  derived  from  intrinsic  exciton  emission.
Through  regulating  the  size  and  components  of  AIGS
QDs,  the relative intensity of  the dual-emissive peaks as
well as the peak position can be controlled. The stability
of  AIGS  QDs  are  also  tested  (Fig.  S5),  The  AIGS  QDs
maintain 89% of original PL intensity after storing in at-
mosphere  for  six  months,  and maintain 63% of  original
PL  intensity  after  continuous  UV  irradiation  for  24  h,
which exhibit good stability.

Benefiting from the AIGS QDs with tunable broad du-

al-emission  and  good  stability,  the  white  light-emitting
diodes  can be  constructed on blue  chips  using only  one
material,  without  the  need  to  mix  multiple  phosphors.
To  build  the  white-emitting  device,  an  appropriate
amount  of  AIGS  QDs  are  mixed  with  thermoplastic
polymer powders (LDPE, low-density polyethylene), and
then  processed  into  films  through  thermo-compression
formation, the white-emitting device is obtained by com-
bining  blue  LED  chip  (455  nm)  (Fig. 6(a)).  The  bright
and pure white-emission can be observed from the pho-
tograph. The emission spectra and the CIE color coordi-
nate of the as-prepared WLED at 6.30–6.48 V are delin-
eated  in Fig. 6(b) and 6(c).  With  the  increasing  voltage,
the  PL  intensity  of  the  device  enhances  and  the  color
temperature  changes  from  cold  to  warm  white  light,
which is due to the increasing red band induced by parti-
cle  aggregation  under  increased  light  irradiation.  The
electroluminescent (EL) spectrum covers a broad region
from  400  to  780  nm.  The  WLED  exhibits  a  continuous
and  broad  spectrum  like  natural  sunlight  with  the  CIE
chromaticity  coordinates  of  (0.33,  0.31),  a  CCT  of  5425
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K, CRI of 90, and LER of 129 lm/W at a drive current of
6.30  V.  Furthermore,  the  operation  stability  of  the  con-
structed  WLEDs  is  tested  at  1200  cd/m2, T50 of  the  de-
vice is 6.5 h, as shown in Fig. S6. 

Conclusion
In  conclusion,  we  propose  a  finely  regulated  lumines-
cent  AIGS QDs  with  dual  emission  through  controlling
the crystal size of QDs. The relative intensity of bimodal
PL  and  peak  position  can  be  regulated  by  adjusting  the
size distribution and composition of AIGS QDs. And the
single  phase  of  the  dual-emissive  QDs  is  demonstrated
from  the  crystalline  structure  and  component  analysis.
The  typical  sample  exhibits  yellow  luminescence  with
broad dual emission at 530 nm and 630 nm respectively,
furthermore, the intrinsic emission characteristics of the
dual-emission is analyzed by the PL under different tem-
perature,  power  and  excitation  wavelength.  Taking  ad-
vantage  of  the  spectral  property,  the  AIGS  QDs  are
mixed with thermoplastic polymer to form emitting film
via thermo-compression process. By combining the blue
LED chips and dual-emission AIGS QDs, a WLED with
a CIE color coordinate of (0.30, 0.31), a CCT of 5425 K,
CRI of 90, and LER of 129 lm/W is successfully fabricat-
ed.  In  a  short,  the  dual-emissive  AIGS  QDs  indicating
the potential for practical application.
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