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Multi-prior physics-enhanced neural network
enables pixel super-resolution and twin-image-
free phase retrieval from single-shot hologram
Xuan Tian1,2†, Runze Li1†, Tong Peng1, Yuge Xue1,2, Junwei Min1, Xing Li1,
Chen Bai1,2* and Baoli Yao1,2*

Digital in-line holographic microscopy (DIHM) is a widely used interference technique for real-time reconstruction of liv-
ing  cells’ morphological  information  with  large  space-bandwidth  product  and  compact  setup.  However,  the  need  for  a
larger pixel size of detector to improve imaging photosensitivity, field-of-view, and signal-to-noise ratio often leads to the
loss  of  sub-pixel  information  and  limited  pixel  resolution.  Additionally,  the  twin-image  appearing  in  the  reconstruction
severely degrades the quality of the reconstructed image. The deep learning (DL) approach has emerged as a powerful
tool for phase retrieval in DIHM, effectively addressing these challenges. However, most DL-based strategies are data-
driven or end-to-end net approaches, suffering from excessive data dependency and limited generalization ability. Here-
in,  a  novel  multi-prior  physics-enhanced neural  network  with  pixel  super-resolution  (MPPN-PSR)  for  phase retrieval  of
DIHM is  proposed.  It  encapsulates  the physical  model  prior,  sparsity  prior  and deep image prior  in  an untrained deep
neural network. The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional
and learning-based phase retrieval  methods.  With the capabilities of  pixel  super-resolution,  twin-image elimination and
high-throughput jointly from a single-shot intensity measurement, the proposed DIHM approach is expected to be widely
adopted in biomedical workflow and industrial measurement.

Keywords: optical  microscopy; quantitative  phase  imaging; digital  holographic  microscopy; deep  learning; super-
resolution
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Introduction
Transparent  specimens  exhibit  minimal  absorption  but
instead  induce  a  phase  change  in  light  wavefronts,  ren-
dering  them  invisible  under  conventional  optical  mi-
croscopy.  Alternatively,  as  an  interference  technique,
digital holographic microscopy (DHM) has been used as
a  convenient  approach  for  non-destructive  phase  imag-

ing1,  DHM  typically  employs  two  major  configurations:
in-line and off-axis structures. The off-axis DHM allows
wavefront reconstruction from a single-shot digital holo-
gram,  but  suffers  from the  loss  of  space-bandwidth  and
the resolution1,2.  In comparison, the digital in-line holo-
graphic  microscopy  (DIHM),  with  its  relatively  higher
space-bandwidth  product,  is  often  preferred  in  some 
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microscopic scenes3.
Unfortunately,  two  factors  often  obfuscate  the  high-

quality reconstruction in practical DIHM, i.e., the loss of
sub-pixel  information  and  the  well-known  twin-image.
In  optical  systems,  detectors  are  typically  designed  with
larger  pixel  sizes  to  accommodate high photosensitivity,
large field-of-view (FOV), and improved signal-to-noise
ratio (SNR) during limited exposure time4. However, the
use of large pixel  sizes may lead to inadequate sampling
of the transmitted wavefront, resulting in low pixel reso-
lution  and  the  down-sampling  problem4.  Although  de-
ploying  magnification  camera  adapters  or  using  image
sensors  with  smaller  pixel  sizes  could  mitigate  the  sub-
pixel  information  loss  problem,  it  comes  at  the  cost  of
the reduced FOV. In terms of twin-image, as a character-
istic noise that manifests itself as an out of focus version
of  the  reconstructed  plane,  is  commonly  caused  by  in-
complete data acquisition by digital image sensors which
only  contain  the  intensity  information  of  the  complex
optical  field3.  While some holographic setups capable of
eliminating  the  twin-image  have  been  presented,  they
add complexity to the recording process, by introducing
sensible  optical  elements  or  imposing  new  constraints,
such as the resolution loss in the off-axis holography5.

Since DIHM only depends on intensity measurement,
the  phase  reconstruction,  known  as  phase  retrieval,  can
be regarded as a highly ill-conditioned inverse problem6.
An effective way to solve this inverse problem in DIHM
is to introduce additional and potential information dur-
ing imaging procedure.  Therefore,  both of  the sub-pixel
information loss and the twin-image can be addressed by
using  diversity  information  from  multiple  holograms.
For instance, the de-multiplexing algorithm could allevi-
ate  phase  retrieval  with  loss  of  sub-pixel  information.
However, its capability is still restrained by the elaborate
illumination scheme and the requirement of multiple de-
tections4.  Alternatively,  pixel  super-resolution  (PSR)
techniques,  such  as  sub-pixel  shifting7 or  wavelength
scanning8, utilizes observation diversity that provides ex-
tra information of the latent high-resolution image while
increasing  measurement  noise.  Besides,  most  existing
PSR  algorithms  based  on  alternating  projection  (AP)
techniques  are  not  robust  to  noise9,10.  The  twin-image
can be eliminated by record multiple holograms as well.
Specifically,  the  twin-image-free  phase  distribution  of  a
specimen  can  be  reconstructed  with  the  aid  of  multiple
wavelengths11,  illumination  angles12,  or  phase  shifts13,
though the achievable imaging resolution is restricted to

the incoherent diffraction limit.  Nevertheless, the acqui-
sition of multiple holograms often leads to increased ex-
perimental complexity and elevated system costs, as well
as poor image acquisition rate.

High-throughput  and  high-accuracy  phase  retrieval
without  sacrificing  FOV  or  requiring  additional  hard-
ware  is  more  practical  for  observing  live  samples.  In-
stead of using multiple holograms, a strategy for solving
the inverse problem of phase imaging is to integrate the
known prior information into computational methods to
obtain high-accuracy phase imaging from a single holo-
gram. A classic approach is to introduce sparse priors in
PSR  reconstruction14,  but  this  often  lacks  robustness  to
deviations  in  the  nominal  parameters  of  the  system.  In
contrast, using a trained denoiser as a prior has led to the
development of modified plug-and-play optimization for
PSR  phase  retrieval  (PnP-PSR)  based  on  the  AP  frame-
work10.  However, it cannot cope well with intense noise.
To  reduce  twin-image  influence,  combining  the  Gerch-
berg-Saxton (GS) algorithm15 with the known amplitude
distribution  of  the  incident  light  field  demonstrates  the
advantage of requiring only a single hologram for phase
retrieval.  Additionally, physics-driven compressive sens-
ing-digital holography (CS-DH)16 based on Fourier anal-
ysis  and  sparsity  achieves  high  accuracy,  but  it  requires
exact  estimation  of  backward  propagation  for  optical
imaging. These strategies are generally limited as they re-
quire perfectly tuned parameters, and are difficult to im-
plement  in  the  presence  of  strong  noise  due  to  using  a
single  prior.  When  sub-pixel  information  is  lost,  the
twin-image and noise will become more pronounced due
to ill-posed phase retrieval17.

Recently,  the  deep  learning  (DL)  network  has  been
proven to be a powerful tool for phase retrieval with un-
precedented  performance18,19.  It  eliminates  the  need  for
tedious  image  acquisition  process  and  time-consuming
iterations,  while  maintaining  high-quality  reconstructed
phase images. A DL-based pixel-super-resolved quantita-
tive  phase  microscopy  has  been  proposed  by  training  a
neural network with paired low-resolution intensity and
high-resolution phase data.  This  approach is  well-suited
for  live  cell  imaging  and  enables  high-throughput  long-
term dynamic phase reconstruction4. In addition, DL has
also  been  successfully  applied  to  artifacts-free  or  twin-
image-free  phase  retrieval19.  However,  most  DL-based
strategies are data-driven or end-to-end net approaches,
suffering  from  excessive  data  dependency  and  limited
generalization  ability.  In  contrast,  a  training-free  DL
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approach  combines  a  complete  physical  model  repre-
senting  the  imaging  process  with  the  deep  image  prior
(DIP)20 frame to solve the phase retrieval issues6,21. These
paradigms  allow  direct  learning  of  high-dimensional
representations from captured data using untrained neu-
ral  networks  based  on  physical  models,  i.e.  physics-en-
hanced network (PN), making them more practically in-
terpretable.  Nevertheless,  it  has been found that directly
applying the DIP framework with a single prior to solve
ill-posed  inverse  problems  often  leads  to  pseudo-solu-
tion22 or  overfitting  of  interference-related  noise  and
weight  decay23.  Moreover,  to  our  knowledge,  High-
throughput  quantitative  phase  imaging  with  both  pixel
super-resolution and twin-image-free  from hologram in
DIHM has not been realized yet.

In  this  work,  a  multi-prior  physics-enhanced  neural
network  with  PSR  (MPPN-PSR)  that  encapsulates  the
physical model prior, sparsity prior and deep image pri-
or  within  an  untrained  deep  neural  network  has  been
proposed.  The  physical  model  priors  represent  the
DIHM  imaging  process  and  detector  down-sampling,
while  the  sparsity  prior  further  enhances  the  imaging
resolution. Consequently, the retrieval of phase distribu-
tion  can  be  achieved  with  pixel  super-resolution,  twin-
image-free,  and  insensitivity  to  noise  without  any  addi-
tional hardware design. MPPN-PSR improves the space-
bandwidth  product  (SBP)  since  the  inherent  large  FOV
of the low-resolution intensity image is exploited. In ad-
dition,  MPPN-PSR maximizes  the  data  efficiency  by  re-
ducing  the  intensity  image  redundancy  requirement  to
only  one  frame,  and  the  phase  reconstruction  speed  is
greatly  accelerated  by  utilizing  the  graphics  processing
unit  (GPU).  The  performance  and  effectiveness  of
MPPN-PSR  was  evaluated  by  comparing  with  other  re-
trieval  methods  through  both  simulations  and  experi-
ments. Given its capability of achieving pixel super-reso-
lution,  twin-image  elimination  and  large-SBP  phase  re-
construction,  we provide high-throughput phase images
with  high  accuracy.  These  superior  performances  indi-
cate that the proposed approach is a promising tool to be
widely  adopted  in  biomedical  workflow  and  industrial
measurement. 

Methods
 

Problem statement and reconstruction methods
When an object with the phase distribution of Ψ(z = 0) is
illuminated  by  coherent  plane  waves,  the  output  com-

plex amplitude U0 can be expressed as: 

U0 (z = 0) = exp [iΨ (z = 0)] . (1)

The  diffraction  pattern Uz(z = d)  with  a  propagation
distance z = d is given as follows: 

Uz (z = d) =
x

Û0 (fx, fy)Mexp [i2π (fx, fy)] dfxdfy
=P [Ψ (z = 0)] , (2)

M = exp
(
ikz

√
1− (λfx)2 − (λfy)2

)
Û0

where  is  the trans-

fer function,  is the 2D Fourier transform of U0, fx and
fy are the spatial frequency coordinates, and P is a trans-
form operator expressing from Ψ(z = 0) to Uz(z = d). Be-
cause the image sensor only responds to the light intensi-
ty,  and  the  large  pixel  size  of  the  sensor  also  results  in
down-sampling,  the  complete  mapping  from  the  object
phase to the hologram recorded by the sensor can be ex-
pressed as follows: 

I (z = d; θ) = Dθ
{
|Uz (z = d)|2

}
= Dθ

{
|P [Ψ (z = 0)]|2

}
=Fθ {Ψ } , (3)

F−1
θ

where Dθ{·}  represents  down-sampling  process  with  the
rate  of θ,  and Fθ{·}  is  the  mapping  function  relates  the
phase  object Ψ to  the  measured  diffraction  pattern I.  It
should  be  noted  that  the  mapping  function  is  ill-posed,
since  information  recorded  by  the  sensor  is  incomplete
due  to  the  intensity  response  and  limited  pixel  size  of
sensor. The objective of the phase retrieval problem is to
formulate an inverse mapping {·}:
 

Ψ (z = 0) = F−1
θ {I (z = d; θ)} . (4)

Most  existing  iterative  algorithms  for  solving  the  in-
verse  problem are  single-task,  i.e.,  their  forward  models
are  established  as Ftwin-image =  |Uz(z = d)|2+E or
Fdown-sampling = Dθ{I}+E,  where E is  the  noise  term.  In
other  words,  such  approaches  solely  focus  on  twin-im-
age  suppression  or  pixel  super-resolution,  rather  than
dealing  with  both  tasks,  such  as  the  physics-driven  CS-
DH16 or  the PnP-PSR10 mentioned above.  Joint  process-
ing  of  sub-pixel  information  loss  and  twin-images  is  a
challenge.  Specifically,  when  the  image  processes  of
down-sampling and twin-image generating are combined
in a forward model as Eq. (3), the typical approach of the
inverse problem is to solve minimization as: 

Ψ̂ = argmin
Ψ

{
∥I− FθΨ ∥22 + R (Ψ )

}
, (5)

where R(Ψ)  is  handcrafted  or  dictionary  prior  that  can
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Ψ̂capture the general regularity of the object . As shown
in Fig. 1(a),  this  minimizing  problem  can  be  naturally
considered as a simple way that  imposes a sparsity con-
straint,  e.g.,  applying  total  variation  (TV)  on  a  classical
iterative  solver  such  as  two-step  iterative  shrinkage/
thresholding  (TwIST)  to  form the  TwIST-TV-based  ap-
proach. However, due to the limited discriminative pow-
er of handcrafted priors23,  iterative methods often fail to
capture the rich structure of samples and are challenging
to  converge  when  meeting  the  synthesis  problem  of

F−1
θ

down-sampling,  twin-image  and  intense  noise,  which
should  be  proved  in  the  subsequent  sections.  Another
common  problem  of  this  class  of  methods  is  exact  esti-
mation of the inverse mapping {·} and perfectly tuned
parameters are required24.

Gp
typical

, · · · ,

On the other hand,  deep learning has been proven to
reconstructing  phase  robustly.  Typical  DL-based  meth-
ods try to learn the mapping function of the neural net-
work  from a large number of labeled data training
set ST = {(Ψq, Iq), q = 1,2 Q} by:
 

 

a

c

bHologram I

Hologram I

MPPN-PSR Sparse basis

B

min {||I−Fθψk||22+R(ψk)}

min {||BI−BFθGp
MPPN(I)||22+β||Gp

MPPN(I)||1}

min ||I−FθGp
PN(I)||22

Gp
PN(I)

Hologram I

Forward

propagation

model

Fθ

Forward

propagation

model

Fθ

Forward

propagation

model

Fθ

Backward

propagation

model

Fθ
−1

k k

Gp
MPPN(I)

FθG
p
MPPN(I)

k

k

FθG
p
PN(I)

k

Iteration-PSR

Conv+BN+ReLU+Conv+BN+ReLU+Down sample

Conv+BN+ReLU+Conv+BN+ReLU+Up sample

Conv+Sigmoid Skip connection

PN-PSR OTF

OTF

ψk

Iteration-PSR

PN-PSR

MPPN-PSR

Gp
MPPN

Gp
MPPN

Gp
MPPN

Fig. 1 | An overview of the proposed reconstruction method. (a) Diagrams of classical solutions based on CS and TV regularization frame-

work. (b) DIP-based reconstruction method combined with physical model. (c) Pipeline of MPPN-PSR for hologram reconstruction. A measured

hologram I of a phase object Ψ is the input to the neural networks. The output of the neural networks is taken as the estimated phase (I),
which is then numerically propagated to simulate the diffraction and measurement processes Fθ to generate Fθ (I). The sparsity prior B ad-

ditionally enhances the imaging resolution. The mean square errors (MSEs) between BI and BFθ (I) are measured as the loss value to ad-

just the neural network parameters.
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Gp
typical = argmin

p∈Θ

∥∥Gp
typical(Iq)−Ψ q

∥∥2

2
, ∀(Iq,Ψ q) ∈ ST ,

(6)
Gp

typical

Gp
typical

Gp
PN

where  is  defined  by  a  set  of  weights  and  biases
p∈Θ.  The  performance  of  is  heavily  dependent
on the size and variance of training set, which can often
be thousands or even larger. In a typical DL application,
the size of training set can be thousands or even larger, to
produce  feasible  mapping  function  between  the  holo-
gram  and  the  corresponding  phase  through  a  training
process21.  It  is experimentally time-consuming to collect
such  a  large  group  of  holograms  and  their  correspond-
ing  original  phase.  In  addition,  only  the  object  set  with
the same priority used in the training process can obtain
good  generalization  effect21.  In  contrast,  the  ground-
truth  phase  explicitly  does  not  appear  in  the  objective
function  of  PN-based  approaches,  meaning  that  such
type of method does not require the ground-truth phase
for  training.  Instead,  it  is  the interplay between forward
mode Fθ and  the  parameters  of  the  network  that
causes the prior of the measured diffraction pattern I to
be  captured  by  the  handcrafted  neural  network6,21.  As
shown in Fig. 1(b), a complete physical model is integrat-
ed with a  neural  network to solve the reconstruction is-
sues of DIHM, which can be formulated as: 

Gp
PN = argmin

p∈Θ

∥∥I− FθGp
PN(I)

∥∥2
2 . (7)

Gp
PN

Gp
PN

In this objective function, the PN-PSR approach does
not  need to  be  trained in  the  basic  truth  stage.  Alterna-
tively, the error between the estimated and the measured
hologram is fed back to update the parameters of the net-
work. After optimization, the phase can be expectedly re-
constructed using the obtained mapping function  as
Ψ(z = 0)= [I(z = d; θ)]. However, when using the PN-
PSR framework to solve inverse problem that map from
low  dimensions  to  high  dimensions,  inversion  results
tend  to  get  trapped  in  a  pseudo-solution22,  mainly  be-
cause  such  problems  are  more  ill-posed  owing  to  their
relatively  high  dimensionality  and  incomplete  informa-
tion caused by down-sampling.

In fact, sparsity has been shown to be more effective in
computational imaging25, and ℓ-1 regularization has also
proven  to  be  advantageous  in  super-resolution  recon-
struction26. It is reasonable to incorporate sparsity and ℓ-
1 regularization into a neural network for phase retrieval
from  single-shot  DIHM,  thus  forming  the  MPPN-PSR
network method, as shown in Fig. 1(c). Besdies, since ℓ-2

loss  is  convex  and  differentiable,  it  can  provide  maxi-
mum  likelihood  estimation  in  the  case  of  independent
and identically distributed Gaussian noise, which has be-
come  the  most  commonly  used  loss  function  in  regres-
sion  problems,  pattern  recognition,  and  image  process-
ing27.  Therefore,  we  used  a  linear  combination  of ℓ-2
norm and ℓ-1 norm as the loss function in our method.
The  optimization  equation  of  MPPN-PSR  can  be  ex-
pressed as: 

Gp
MPPN = argmin

p,Ψ=GpMPPN(I){∥∥BI− BFθGp
MPPN(I)

∥∥2
2 + β

∥∥Gp
MPPN(I)

∥∥
1

}
,

(8)

Gp
MPPN

where B is  a  sparse  base,  which  can  be  obtained  from
some  transform  domain  (e.g.,  undecimated  wavelet
transform,  discrete  Fourier  transform,  discrete  Hartley
transform,  discrete  cosine  transform,  Legendre  polyno-
mial) or through dictionary learning, while β serves as a
key proportional coefficient to balance the ℓ-1 norm and
ℓ-2  norm terms.  In  this  work,  we  select  the  discrete  co-
sine  transform  as  the  sparse  base B since  it  has  been
proven  to  have  good  reconstruction  performance28.  In
other words, MPPN-PSR encapsulates the physical mod-
el  prior,  sparsity  prior  and  deep  image  prior  in  an  un-
trained  deep  neural  network.  By  expressing  the  holo-
gram sparsely using B,  additional  sparsity and ℓ-1 regu-
larization  constraints  are  applied  to  the  untrained  net-
work's  captured  prior  information,  convergence  be-
comes  easier.  The  optimization  of  the  MPPN-PSR  net-
work  parameters  only  requires  initializing  the  forward
model  for  convergence  and self-calibration.  As  a  conse-
quence,  the  phase  can  be  retrieved  as Ψ(z=0)
= [I(z=d; θ)],  which  addresses  issues  such  as  sub-
pixel  information  loss,  twin-image  and  noise  interfer-
ence over conventional DIHM hardware. This approach
enables  rapid  high-resolution  and  high-throughput
quantitative phase imaging from single-shot low-resolu-
tion intensity measurements.

The U-Net  architecture29 is  used in  this  study to  pre-
dict  the  phase  based on the input  diffraction pattern,  as
shown in Fig. 1(c).  It  is  worth pointing out  that  there is
no  limitation  on  the  network  architecture  that  can  be
chosen  to  implement  MPPN.  In  our  study,  we  simply
adopt U-Net for universality, which has been widely used
in  many  other  studies21.  Typically,  this  network  struc-
ture  consists  of  an  encoder  path  that  takes  the  diffrac-
tion  pattern  as  its  input,  a  decoder  path  that  outputs  a
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Gp
MPPN

predicted  phase  map,  and skip  paths  in  the  middle.  We
use  four  main types  of  modules  to  connect  the  input  to
the  output:  convolution  blocks  (3  ×  3  convolution  +
batch normalization + leaky ReLU), max pooling blocks
(2  ×  2),  up-convolution  blocks  (3  ×  3  de-convolution  +
batch normalization + leaky ReLU), and skip connection
blocks.  We  use  ReLU  as  the  activation  function  in  the
output  layer.  The  neural  network  is  based  on  the  Py-
Torch  2.0.1  platform  and  implemented  with  Python
3.9.13. An Adam optimizer with a learning rate of 0.01 is
used  to  optimize  the  weights  and  biases.  The  network
generally  required  around  3000  periods  to  obtain  accu-
rate  estimation  of  the .  All  implementations  were
performed  on  a  computer  with  an  Intel  Core  CPU  i7-
10700  processor,  having  64  GB  of  RAM  along  with  an
NVIDIA GeForce RTX4080. 

Experimental setup
An DIHM system was built to verify the effectiveness of
MPPN-PSR in practice, as shown in Fig. 2. A laser beam
with  a  wavelength  of  685  nm  (NOVAPRO,  RGB  Laser-
systems Inc.,  Germany) passes through two lenses (L1, f
= 50 mm and L2, f = 100 mm) for expansion. After pass-
ing  through  a  polarizer  (P,  Thorlabs  Inc.,  USA)  to  en-
sure consistent polarization, the beam is split into an ob-
ject  beam  and  a  reference  beam  via  a  non-polarizing
beam splitter 1 (NPBS1, Thorlabs Inc., USA). The object
beam illuminates the specimen, and then magnified by a
microscopic  system  consisting  of  an  objective  (either  a
20× objective, NA = 0.45, Nikon Inc., Japan or a 10× ob-
jective, NA = 0.25, Nikon Inc., Japan) and a tube lens L4
(f = 200 mm). The reference beam passes through a same
identical objective and tube lens L3 (f = 200 mm) to en-
sure  an  equal  optical  path.  The  object  and  reference
beam interference  after  the  NPBS2  to  form final  in-line
hologram  recording  by  a  sCMOS  camera  (ORCA-
Flash4.0  LT3,  Hamamatsu  Photonics  Inc.,  Japan),  with
the  total  pixels  of  2048×2048 at  a  pixel  pitch  of  6.5  µm.

The camera  is  mounted on a  motorized stage  (traveling
range  of  25  mm,  displacement  accuracy  of  0.05  μm,
KMTS25E/M, Thorlabs Inc., USA) and placed on the im-
age plane to ensure that the target is firstly in focus. The
hologram  at  designed  diffraction  propagation  distance
can  be  precisely  recorded  by  moving  the  camera  along
the z axis.  Finally,  the  phase  can  be  reconstructed  from
the  diffraction  hologram recorded  at  a  propagation  dis-
tance of z = d from the image plane, where the distance z
is set experimentally and empirically6. 

Results and discussion
 

Evaluation with the simulated test dataset

OTF = exp (−f2r/2σ2)

Numerical simulations were first performed to verify the
performance  of  the  MPPN-PSR  method.  In  the  simula-
tion,  the  noise-free  single-shot  DIHM  imaging  results
were generated using a phase target with 960 × 960 pix-
els, as shown in Fig. 3. The simulated illumination wave-
length  was  685  nm,  and  the  maximum  height L of  the
sample  was  set  to  620  nm.  The  spatial  down-sampling
rate was set as θ = 3, i.e., resulting in the pixel size of the
obtained hologram is 320 × 320 pixels. The propagation
distance z = d between  the  image  plane  and  detector
plane was set to be 12 mm, and the detector’s pixel pitch
was  set  to  6.5  µm.  In  addition,  the  OTF  of  the  optical
imaging  system  is  estimated  using  a  Gaussian  function

, where the σ is set as 0.230.
The performance of the proposed MPPN-PSR method

was  evaluated  and  compared  with  other  retrieval  meth-
ods,  as  shown  in Fig. 4,  including  back  propagation,
compressed sensing with TV regularization (TwIST-TV-
PSR),  plug-and-play  frameworks  (PnP-TV-PSR,  PnP-
FFDNet-PSR),  and  a  physically  enhanced  neural  net-
work (PN-PSR). It should be notable that similar to PnP-
PSR  approaches,  all  the  PSR  methods  are  obtained  by
making  minor  modifications  to  the  original  version,
which integrates the forward mode Fθ of the down-sam-
pling process,  in an effort  to increase its  PSR capability.
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Fig. 2 | Schematic of the experimental setup of the DIHM.
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Besides, all the recovery methods used are based on sin-
gle-shot hologram. Intuitively, it is clearly that the recon-
struction results of the proposed method are superior to
others.  To assess the accuracy of reconstruction, the en-
velopes along blue line are also investigated, in which the
details provided by MPPN-PSR are closer to the ground
truth.  The  resolution  (full  width  at  half  maximum,
FWHM)  is  measured  and  averaged  for  each  lobe  from
the envelope of the cell in Fig. 4. Consequently, the aver-
aged  FWHM  of  MPPN-PSR  is  10.07  μm  while  that  of
TwIST-TV-PSR  is  about  24.32  μm,  representing  that

MPPN-PSR  can  achieve  an  approximate  2.4-fold  in-
crease  in  resolution  through  its  embedded  pixel  super-
resolution approach. In fact, unlike other original meth-
ods  that  only  focus  on  PSR  or  twin-image  suppression,
the  iterative  solving  strategy  of  inverse  problem  often
fails  to  strike  a  balance  between  sub-pixel  information
estimation and twin-image suppression when faced with
additional  tasks,  resulting  in  non-convergence  and  un-
satisfactory  results.  Even  though  PN-PSR  partially  im-
proves the reconstruction performance by encapsulating
the  imaging  process  in  neural  networks,  its  single  prior
mode still prevents it from meeting multitasking require-
ments.  To  quantitatively  evaluate  this  point,  the  struc-
tural  similarity  (SSIM)  and  peak  signal-to-noise  ratio
(PSNR) were  used to  analyze  the  reconstruction results,
which  are  summarized  in Table 1.  The  averaged  PSNR
and  SSIM  between  the  reconstructed  phase  and  ground
truth  using  MPPN-PSR  are  30.86  dB  and  0.90,  respec-
tively,  better  than  the  reconstruction  results  of  other
methods.  In  addition,  the  cross-section envelope  can be
calculated  as  an  autocorrelation  function  when  there  is
no  ground  truth31,  which  is  very  useful  in  the  quantita-
tive analysis  of  experimental  applications.  The narrower
the main lobe width of the autocorrelation function, the
higher the resolution, and vice versa, the lower the reso-
lution.  To  examine  the  effectiveness  of  the  autocorrela-
tion  function,  we  investigated  its  consistency  with  the
ground truth of the envelope curve in simulation, which
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is  shown  in Fig. 4(b) and 4(c).  Specifically,  the  average
FWHM of  the  main  lob  in  the  autocorrelation  function
of  MPPN-PSR  is  about  2.3  times  narrower  than  that  of
the TwIST-TV-PSR, which is completely consistent with
the  analysis  of  the  ground  truth  generated  by  the
computer.

The  reconstructed  results  obtained  from  the  simulat-
ed holograms with different down-sampling rates are al-
so  compared  in Fig. 5.  Specifically,  the  down-sampling
rates are θ = 2, 3, and 4, corresponding to the holograms
with size of 480 × 480, 320 × 320, and 240 × 240 pixels,
respectively. It can be observed that, MPPN-PSR success-
fully  reconstructs  the  phase  from  the  corresponding
diffraction  pattern  in  all  cases,  which  is  consistent  with
the  quantitative  analysis  shown  in Table 2.  On  the  one
hand,  reconstruction  with  an  excessively  high  down-

sampling  factor  introduces  a  significant  computational
burden  and  cause  errors  to  a  small  extent.  This  finding
further  proves  that  resolution  cannot  be  infinitely  im-
proved  for  phase  reconstruction.  On  the  other  hand,
even  though  the  reconstruction  performance  decreases
slightly as the down-sampling rate increases, MPPN-PSR
still  achieves  convergence  and  produces  acceptable  re-
sults when θ does not exceed 4 times. Besdies, we exam-
ined  the  ratio β in Fig. 5(c).  When β set  to  1×10−4,  the
best  reconstruction performance can be achieved with a
particularly typical situation at θ = 3. Indeed, this coeffi-
cient can also be slightly adjusted according to the actual
imaging  environment  to  avoid  overfitting.  In  addition,
the  evolution of  the  MSE with  an increasing  number  of
epochs  shows  that  the  network  generally  required
around  3000  periods  to  obtain  accurate  estimation  of

 

Table 1 | Quantitative results of different methods①.
 

Method Back propagation TwIST-TV-PSR PnP-TV-PSR PnP-FFDNet-PSR PN-PSR MPPN-PSR

Resolution chart
PSNR (dB) 10.46 10.68 10.69 10.77 13.09 36.51

SSIM 0.18 0.18 0.22 0.23 0.56 0.93

Cell
PSNR (dB) 14.41 14.93 15.27 17.66 19.26 25.21

SSIM 0.29 0.37 0.37 0.39 0.61 0.87
①The SSIM ranges from 0 to 1 (higher is better).
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Table 2 | Quantitative results with the holograms simulated of different down-sampling rate.
 

Down-sampling rate
Resolution chart Cell

PSNR (dB) SSIM PSNR (dB) SSIM

θ = 2 39.12 0.94 28.59 0.91

θ = 3 36.51 0.93 25.21 0.87

θ = 4 30.10 0.89 23.10 0.83
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phase  information,  which  can  achieve  a  good  conver-
gence state, as shown in Fig. 5(d). The situation at θ = 2
and  4  is  highly  similar  to  that  at θ =  3,  so  we  will  not
elaborate on it here.

In addition, the noise immunity of the reconstruction
is also analyzed to verify the performance of MPPN-PSR.

Shot noise is added to test the robustness of these frame-
works,  as  the  model  mismatch  and  the  Poisson  shot
noise are the primary noise in many phase recovery ap-
plications. These can be approximated as Yn = Y+W with
W ~ N(0, ξ Diag(Y)), where Diag(Y) is the diagonal ma-
trix of Y, and Y is a random variable following a Poisson
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distribution6.  The  reconstruction  results  for  resolution
chart  and  cell  at  different  noise  levels  under  different
down-sampling  rates  are  respectively  shown  in Fig. 6.
Specifically,  the  SNR  of  the  holograms  have  been  re-
duced  from  20  to  10  dB,  and  the  down-sampling  rates
are set to 2 and 3, respectively. It is worth noting that due
to  the  absence  of  additional  sparse  and  regularization
priors,  the  performance  of  PN-PSR  witnesses  a  signifi-
cantly decrease as the noise increases, especially in terms
of SSIM. For other iterative methods, their overall imag-
ing performance is poor due to the failure of twin-image
suppression  under  pixel  super-resolution  conditions.  In
contrast,  although  the  performance  of  MPPN-PSR
slightly  decreases  under  high-level  noise  as  well,  the
quantitative  analyses  in Fig. 7 show that  the  reconstruc-
tion results are acceptable compared with other methods. 

Experimental results of different samples
First,  we  use  the  standard  imaging  and  pixel  binning
modes  of  the  camera  to  verify  the  effectiveness  of  the
proposed  method.  Specifically,  the  standard  imaging
mode was firstly used to capture the hologram of a quan-
titative phase target (USAF resolution test chart,  Bench-
mark Technologies, USA), which is shown in Fig. 8(a), to
retrieve the phase information by standard PN approach
(without PSR). In this situation, the pixel size is 6.5 μm ×
6.5  μm.  Then,  the  imaging  mode  was  switched  to  the

BIN2×2 mode,  representing  the  camera  merges  4  pixels
into  one  pixel  output  and  the  resolution  has  been  re-
duced  to  1/4  of  the  original.  The  captured  hologram  is
shown in Fig. 8(b), where the corresponding pixel size is
13 μm × 13 μm, and the region of interest (ROI) selected
by the blue box is zoomed and shown as well. In terms of
the  down-sampling  hologram,  MPPN-PSR  is  used  for
the PSR reconstruction.  Compared with the reconstruc-
tion  with  high-sampling,  MPPN-PSR  has  a  satisfactory
probability of recovering lost intermediate pixel informa-
tion,  which  has  also  been  verified  by  non-PSR  recon-
struction. Quantitative analysis shows that the SSIM be-
tween  the  two  results  reaches  0.897.  In  addition,  a  no-
reference perceptual blur metric (NPBM)32, ranging from
0 to 1 (lower was better) was introduced to evaluate the
results  due  to  the  unavailability  of  the  ground  truth.
Consequently,  the  NPBM  of  result  recovered  by  stan-
dard imaging mode is 0.33, while that of result rebuilt by
MPPN-PSR is 0.31. These all demonstrate the practicali-
ty  and  persuasiveness  of  the  proposed  method  in
application.

Then,  a  620-nm-thick  rectangular  phase  step  and 20-
µm-diameter  polymethyl  methacrylate  (PMMA)  beads
were  measured  to  test  the  feasibility  and  practicality  of
the proposed method, as shown in Fig. 9. The bright field
intensity  images  of  the  samples  recorded  on  the  image
plane  are  also  shown  in Fig. 9(a2) and 9(b2) for  better
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understanding  and  comparison  with  the  phase  results.
Based on the above performance analysis, θ = 3 was uti-
lized in all experiments. The results were uniformly nor-
malized, to investigate imaging contrast and background
smoothness  ability.  Compared  with  the  other  methods,

both the profiles along the blue lines and the 3D view of
the  reconstructed  results  from  MPPN-PSR  are  more
consistent  with  the  actual  situation.  Not  only  clear
display  of  more  details  and  lower  background  noise
shows  the  advantages  of  the  proposed  MPPN-PSR
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Fig. 9 | Experimental images of the phase step (a1–a7) and PMMA beads (b1–b7) processed with back propagation, TwIST-TV-PSR, PnP-FFD-

Net-PSR, PN-PSR, and MPPN-PSR methods, respectively. The down-sampling rate is θ = 3, consistent with all  subsequent experiments. The

cross-section phase profiles (along the blue lines) were also measured in insets and the corresponding optical thickness maps are shown. The

reconstruction size is 1200×1200 pixels, corresponding to the FOV of 130×130 µm2. The red scale bar measures 20 µm.
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method in  quantitative  phase  imaging  with  pixel  super-
resolution, twin-image, and noise suppression. An excit-
ing  phenomenon  worth  noting  is  the  inevitable  occur-
rence of speckle noise in experiments,  reflected in holo-
grams  and  bright  field  images.  MPPN-PSR  treats  it  as
noise and eliminates it together. The averaged phase val-
ue of the phase step calculated according to the envelope
curve is φ = 0.824π rad, corresponding to a thick of h =
λφ/2π(n–1) = 619.45 nm, which is consistent with actual
value.  The  material  of  the  phase  step  is  SiO2 and its  re-
fractive index (RI) is n = 1.455633, while the RI of around
air medium is 1.  The PMMA beads were immersed in a
glycerol medium, the averaged maximum phase value of
PMMA beads calculated according to the envelope curve
is φ =  1.678π  rad,  corresponding  to  a  height  of h =
λφ/2π(n–n0)  =  20.165  µm,  which  is  also  in  agreement
with  the  nominal  value  of  20  µm.  The  RI  of  PMMA
beads is n = 1.4969, and that of glycerol is n0 = 1.468433.
This experiment proves the MPPN-PSR method has high
reliability  in  the  phase  reconstruct  from  a  single-shot
DIHM hologram.

The  imaging  experiments  were  further  conducted  on
biological specimens including butterfly wing, fish ovary,
TOMM20  antibody  and  frog  intestine.  The  recorded

holograms  and  reconstructed  phases  from  different
methods  are  shown  in Figs. 10 and 11.  The  results
demonstrate that the proposed method can achieve pixel
super-resolution  and  suppress  twin-images  effectively.
Specifically,  as  shown in Fig. 10(a),  the  fine  structure  of
butterfly wings, both ridges along the longitudinal length
of the scales and cross ribs connecting these ridges34, can
be observed in the reconstructed phase of Fig. 10(a7) us-
ing the MPPN-PSR method. In contrast,  only the ridges
can  be  observed  with  other  methods  in Fig. 10(a3−a6)
due  to  the  limited  resolution.  Similarly,  the  ovary  cell
boundaries  are  more  easily  distinguished using the  pro-
posed method as shown in Fig. 10(b7), where the fluctu-
ations  of  the  envelope  curve  reveal  more  details  about
the cells due to the pixel super-resolution reconstruction.
Moreover,  MPPN-PSR  exhibits  stronger  imaging  con-
trast  and better  background smoothness  compared with
other  reconstructions  in Fig. 11.  This  is  more  pro-
nounced in the corresponding optical thickness distribu-
tion  display,  with  the  background  closer  to  0  rad  but
more  prominent  and  clearer  phase  information  of  tar-
gets  compared  with  other  reconstructions.  All  of  them
prove  the  excellent  twin-image  and  noise  suppression
ability of the MPPN-PSR.
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In addition, the NPBMs are summarized and present-
ed in Table 3. An averaged NPBM of MPPN-PSR reach-
es  about  0.23,  representing  MPPN-PSR  can  provide
more accurate edge information, richer texture structure,
and  higher  frequency  components  of  phase  maps.  Fur-
thermore, the signal-to-noise ratio (SNR) was investigat-
ed to quantitatively assess the reconstruction results and
focus more on measuring the noise level31,  which is also
summarized  in Table 3.  Similar  to  the  performance
change trend obtained from NPBM analysis,  with occu-
pying  the  best-average  SNR  of  above  40  dB,  the  results
validate  the  MPPN-PSR method is  competent  for  phase
retrieval  in  the  presence  of  sub-pixel  information  loss,
the twin-image, and other experimental noises including
the speckle noise and the shot noise. Moreover, in terms
of  the  resolution,  the  autocorrelation  functions  corre-
sponding  to  the  magnified  view in Fig. 10 are  shown in

Fig. 12, wherein it can be observed that the main lobe of
the  MPPN-PSR  is  narrower  than  other  lobes.  The
FWHM of each lobe in Fig. 12 was measured, and the av-
eraged value of MPPN-PSR can reach to a resolution en-
hancement  of  about  2.26-fold  than  that  of  TwIST-TV-
PSR, which is consistent with the simulation.
 

High-throughput quantitative phase imaging
We  further  demonstrate  the  full-field  high-resolution
phase  recovery  from  experimentally  acquired  intensity
images of the quantitative phase target using MPPN-PSR
through  a  10×  objective  lens  (NA =  0.25,  Nikon  Inc.,
Japan).  As  can  be  seen  in Fig. 13(a) and 13(b),  the  low-
resolution  (LR)  hologram  suffers  from  the  loss  of  sub-
pixel  information,  where  the  high-frequency  compo-
nents  almost  completely  disappear  in  the  extremely  low
contrast  and oversized  pixels.  With  the  LR hologram as
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Fig. 11 | Imaging results of (a) TOMM20 antibody and (b) frog intestine by different methods. The reconstruction size is 2700 × 2700 pixels, i.e.

θ=3, corresponding to the FOV of 293×293 µm2. The red scale bar measures 40 µm.

 

Table 3 | Quantitative results of NPBM/SNR of different methods②.
 

NPBM/SNR (dB) Back propagation TwIST-TV-PSR PnP-FFDNet-PSR PN-PSR MPPN-PSR

Butterfly wing 0.43/18.24 0.42/25.01 0.34/26.99 0.28/31.37 0.21/39.94

Fish ovary 0.41/16.33 0.37/16.70 0.36/17.50 0.31/23.16 0.24/41.11
TOMM20 antibody 0.43/28.00 0.36/31.32 0.36/32.89 0.29/35.66 0.22/46.10

Frog intestine 0.38/23.56 0.38/24.84 0.37/26.17 0.31/30.71 0.21/38.64
②The NPBM ranges from 0 to 1 (lower is better).
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input, TwIST-TV-PSR and PN-PSR could provide phase
images  with  relatively  enhanced  resolution  (Fig. 13(a)),
but  still  create  a  great  obstacle  to  the  observation of  the
detailed  structure.  In  contrast,  MPPN-PSR  has  a  mini-
mum requirement  and possesses  PSR capability.  With a
single  frame  of  LR  hologram as  the  only  input,  MPPN-
PSR generates the PSR phase image with 5700×5700 pix-
els (Fig. 13(b)), achieving 3-fold expansion in pixel num-
ber.  As  shown  in  three  enlarged  ROIs  in Fig. 13(d) and
their  corresponding  bright  field  images  in Fig. 13(c),
MPPN-PSR  enables  the  precise  observation  of  plentiful
features of the phase target, such as the profiles along the
blue line marked on the 6-th element of the 8-th group.
In contrast, TwIST-TV-PSR only resolves the features of
the 6-th element at the 7-th group, representing that the
optical  resolution  can  reach  a  2-fold  enhancement.  Al-
though  PN-PSR  appears  to  have  extent  resolution,  by
measuring the cross-sectional envelope along the orange-
colored  line,  the  peak-to-peak  value  also  indicates  that
the  contrast  of  MPPN-PSR  is  about  2.78  times  higher
than that of PN-PSR, indicating that MPPN-PSR has bet-
ter  background  and  noises  suppression  ability.  With
showcasing more details, MPPN-PSR improves the reso-
lution without  sacrificing  FOV,  enhancing  the  through-
put  of  the  system  effectively.  In  addition,  the  results  of
cascading non-PSR reconstruction with outstanding pix-
el  super-resolution  networks,  i.e.  state-of-art  BSRGAN
and  BSRNet35,  have  also  been  demonstrated,  although
this approach represents over-smooth and artifacts.

We  also  verified  the  feasibility  of  MPPN-PSR  to
achieve high throughput single-shot DIHM for a biologi-
cal  sample. Figure 14 shows  the  full  FOV  phase  predic-
tion for the sample of TOMM20 antibody. The input LR

hologram has a wide FOV of about 1.37 mm2,  matching
the  FOV  size  of  the  objective  lens  with  10×  magnifica-
tion. The input intensity image has a resolution of 1800 ×
1800 pixels with a pixel  size of 6.5 × 6.5 μm2.  The high-
throughput  phase  reconstruction  is  displayed  in Fig.
14(a),  which  shows  that  our  MPPN-PSR  is  able  to
achieve a 3-fold enhancement in the pixel number from
1800 × 1800 pixels to 5400 × 5400 pixels while maintain-
ing the large FOV size of  1.17 × 1.17 mm2,  as  the effec-
tive pixel size improves to 2.17 × 2.17 μm2. The compari-
son between the predicted phase of two ROIs is shown in
Fig. 14(b),  accompanied  with  corresponding  optical
thickness  maps  in Fig. 14(c).  The  recovered  phases  dis-
play  improved  overall  contrast  of  cell  structures  and
highlight high-spatial-frequency cellular details.  Similar-
ly, BSRGAN and BSRNet networks introduce unsatisfac-
tory over-smooth and artifacts with non PSR reconstruc-
tion. These experimental results validate the efficacy and
promptness  of  the  MPPN-PSR  utilization  within  a
DIHM microscopy system.

All these imaging results and analyses show that com-
pared  with  the  MPPN-PSR  approach,  other  methods
cannot  produce  enough  fine  detail  and  completely  sup-
press  the  twin-image  due  to  the  limited  resolution  and
noise  effects.  It  is  also  found  that  the  TwIST-TV-PSR
method  is  usually  ineffective  when  facing  the  require-
ments of pixel super-resolution and noise suppression si-
multaneously,  whereas  the  PnP-FFDNet-PSR  method
produces  over-smoothed  results  under  the  strong  noise
conditions. On the contrary, with the assistance of spar-
sity  constraint, ℓ-1  regularization  and  a  physical  propa-
gation  model,  the  phase  reconstruction  of  MPPN-PSR
can  achieve  the  best  results,  and  converge  faster  than
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PN-PSR.  For  MPPN-PSR,  the  specific  parameters  of
imaging  have  been  integrated  into  the  forward  physical
model, including wavelength, pixel size of camera, down-
sampling rate, diffraction distance, etc. When the experi-
mental conditions change, we only need to adjust the pa-
rameters in the forward model accordingly to obtain the
corresponding  pixel  super-resolution  outputs,  which  is
also  very  convenient  and  meets  the  imaging  rules  in
practical utilization. Besides, no additional requirements
are imposed on either the method of data acquisition or
the  illumination  conditions.  Both  simulation  and  real-
world  data  captured  by  experiments  have  verified  the
outperformance  of  MPPN-PSR  scheme.  However,  cur-
rent MPPN-PSR does not perform well for phase modu-
lation  ranges  larger  than  2π.  In  other  words,  the  phase
unwrapping  problem  is  not  focused  and  investigated  in
this study, which should be explored in future research. 

Conclusion
In  terms  of  DIHM,  high-throughput  imaging  faces  two
major obstacles posed by sub-pixel information loss and
twin-image  problem.  In  optical  systems,  detectors  are
used to collect intensity information and are typically de-
signed with large pixel sizes to accommodate high photo-
sensitivity and large FOVs for high-throughput imaging.
However,  large  pixel  sizes  may  lead  to  inadequate  sam-
pling  or  digitization  of  the  transmitted  intensity,  result-
ing in low pixel resolution and even leading to the infa-
mous  under-sampling  problem.  The  sub-optimal  use  of
spatial  bandwidth  product  (SBP)  in  imaging  systems
leads  to  a  trade-off  between  pixel  resolution  and  FOV.
For  another,  while  some  holographic  setups  capable  of
eliminating  the  twin-image  have  been  presented,  they
add complexity to the recording process. In this study, a
novel  deep  learning-based  technique  of  MPPN-PSR  is
introduced  for  phase  retrieval  with  pixel  super-resolu-
tion,  twin-image-free  and  noise  insensitive  capability.
This  technique  encapsulates  the  physical  model  prior,
the  sparsity  prior  and  the  deep  image  prior  into  an  un-
trained  deep  neural  network.  The  physical  model  prior
represents  the  DIHM  imaging  process  and  down-sam-
pling of the detector, while the sparsity prior further en-
hances  the  imaging  resolution.  The  performance  of  the
proposed  MPPN-PSR  method  was  evaluated  and  com-
pared with other retrieval  methods by using the metrics
such as  SSIM, PSNR, NPBM, etc.,  to  quantitatively  ana-
lyze  the  imaging  results.  Through  the  MPPN-PSR,  the
pixel  resolution of  phase  imaging  can be  increased by  3

times compared with phase retrieval without PSR, while
the optical resolution can be improved by about 2 times
compared  to  TwIST-TV-PSR.  Given  its  capability  of
achieving  quantitative  phase  imaging  with  pixel  super-
resolution,  twin-image-free  and  high-throughput  from
single-shot  hologram  over  conventional  DIHM  micro-
scope hardware, the proposed approach is expected to be
widely  adopted  in  biomedical  workflow  and  industrial
measurement.
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