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Data-driven polarimetric approaches fuel
computational imaging expansion
Sylvain Gigan*

Incorporating polarization in computer vision tasks provides new solutions to high-level analytics, in particular when cou-
pled with machine learning frameworks such as convolutional neural networks (CNN). A recent review in Opto-Electronic
Science reports on the developments in data-driven polarimetric imaging, including polarimetric descattering, 3D imag-
ing,  reflection  removal,  target  detection  and  biomedical  imaging.  The  review  carefully  analyzes  these  new trends  with
their advantages and disadvantages, and provides a general insight for future research and development.
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Polarization,  a  fundamental  physical  property  of  light,
reveals  many  intrinsic  characteristics  of  the  media  light
traverses  during  its  propagation.  Harnessing  polariza-
tion thus  provides  a  very  valuable  additional  dimension
of information in computational imaging.

Traditional polarization imaging is often limited in ac-
curacy or resolution. Complementing polarization-sensi-
tive acquisition with machine learning schemes provides
an interesting  solution,  leveraging  its  excellence  at  non-
linear  expression  and  information  extraction  based  on
large datasets.  This helps bridge the gap between theory
and  practical  implementation.  While  data-driven  based
polarimetric  imaging  develops  from  the  mid-2010s,  but
in  the  past  years,  the  combination  of  deep  learning  and
polarization imaging has become a very active field, and
researchers  have  used  deep  learning  to  explore  the  po-
tential for processing and analyzing polarimetric data in
more diverse domains. Today, the synergy between deep
learning  and  polarimetric  imaging  continues  to  evolve
with  advancements  in  models,  algorithms  and  applica-
tions.  In  recent  work  published  in Opto-Electronic  Sci-
ence,  Kui  Yang  and  his  colleagues  at  Xidian  University

provide  a  comprehensive  overview  of  the  research
progress  in  data-driven  polarization  imaging,  focusing
on trends, applications, information utilization, and they
also discuss the potential future development1.

Data-driven polarimetric imaging aims at compensat-
ing for the defects of physical model relying on a singu-
lar  information.  It  broadens the application fields  and a
better use of polarization information. The utilization of
polarization  information  has  been  extended  from direct
polarization  data  acquisition  to  preprocessed  polariza-
tion  features.  Furthermore,  physical  insight  is  crucial
during  network  training.  Incorporating  physical  models
is  playing  an  increasingly  integral  role  in  guiding  and
planning  the  design  and  training  of  neural  networks.
Based  on  the  polarimetric  information  fused  into  the
network, other physical properties of light have also been
introduced into network training, expanding the applica-
tion domain from the realm of image processing to more
high-level tasks such as classification or segmentation.

Data-driven  polarization  imaging  technologies  have
gradually  found  applications  in  descattering  imaging2,
denoising3,  demosaicing4,  dynamic range enhancement5, 
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reflection  removal6,  low-light  imaging7,  3D  reconstruc-
tion  shape8,  semantic  segmentation9,  camouflage  object
detection10,  classification11,  pathological  diagnosis12,  to
cite just a few, as illustrated in Fig. 1. In a nutshell, NNs’
high-order  non-linear  representation  enables  higher-di-
mensional  information  extraction  from  complex  imag-
ing media and scenes. It significantly improves the inter-
pretation and reconstruction of physical properties, even
in  challenging  low  signal-to-noise  ratio  environments,
such as natural settings, scattering media, noise, ambient
light  interference,  low  dynamics,  and  biological  tissues.
As  an  additional  degree  of  freedom,  polarization  ex-
pands  the  application  scope  of  intensity-based  deep
learning algorithms from target  segmentation,  authenti-
cation, camouflage target identification, medical diagno-
sis to domains including 3D reconstruction and physical
information transformation. It is a powerful tool for im-
proving imaging quality, enhancing target interpretation
accuracy,  and driving  the  progress  of  emerging applica-
tion areas.

Data-driven  polarization  imaging  nowadays  stands

out  as  a  novel  interdisciplinary research area,  where the
complementary strengths of data-driven approaches and
physical  models  effectively  enhance  information  inter-
pretation  and  imaging  performance.  The  review  details
how in the future deeper integration with existing physi-
cal  models  may  optimize  network  training  results,  im-
prove  the  interpretability  of  neural  networks  and  pro-
vide  a  research  foundation  for  developing  comprehen-
sive synthetic  datasets.  Deep learning architectures  such
as  semi-supervised  learning,  unsupervised  learning,
transfer  learning,  multi-task  learning  and  federated
learning  have  also  been shown to  play  a  significant  role
in  reducing  dependence  on  datasets,  further  improving
existing imaging outcomes and holding significant impli-
cations for expanding into new applications. Finally, the
review  details  how  leveraging  advanced  manufacturing
technologies  like  metasurfaces  and  meta-lenses  as  novel
optoelectronic  devices  will  allow  for  precise  manipula-
tion of light in specific polarization states. These new ca-
pabilities  enable  optimized  acquisition,  separation  and
interpretation  of  polarized  light,  potentially  enhancing
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Fig. 1 | Applications of data-driven polarization imaging1.
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the sensitivity and accuracy of polarization imaging. It is
clear  that  data-driven  polarization  imaging  holds  sub-
stantial potential for future applications.
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