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Ultra-high-Q photonic crystal nanobeam cavity
for etchless lithium niobate on insulator (LNOI)
platform
Zhi Jiang1, Cizhe Fang1,3, Xu Ran1, Yu Gao1, Ruiqing Wang1,
Jianguo Wang2, Danyang Yao1*, Xuetao Gan2*, Yan Liu1,3, Yue Hao1 and
Genquan Han1,3

The expansive spectral coverage and superior optical properties of lithium niobate (LN) offer a comprehensive suite of
tools  for  exploring  novel  functionalities.  Achieving  high-quality  (Q)  photonic  resonator  cavities  is  crucial  for  enhancing
light-matter interactions. However, this task is challenging as the device performance is heavily dependent on the fabrica-
tion quality of the LN. In this paper, we present experimental validation of an etchless approach to fabricating high-Q pho-
tonic crystal nanobeam cavities (PCNBCs). We successfully fabricate PCNBCs with Q factors exceeding 105 while main-
taining high transmittance by capitalizing on the low waveguide loss and high fabrication tolerance of TE-polarized mode.
Remarkably, the Q factor achieved here exceeds previous reports on etchless LN PCNBCs by over an order of magni-
tude. Benefiting from this advancement,  we further explore a variety of  optical  functions, including thermo-optic tuning,
optically induced bistability, and Fano line shapes generation. These findings present promising prospects for a versatile
platform  technique,  facilitating  the  development  of  high-performance  electro-optic  or  acousto-optic  modulators,  optical
logic devices, and quantum photonics, highlighting its significant impact in the field of photonic integration.
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Introduction
The interaction between light and matter establishes the
first  basis  for  essential  components  that  enable  on-chip
photon  manipulation  technologies1.  Conventional  sili-
con-based photonic crystal nanobeam cavities (PCNBCs)
strongly confine light with both high-quality (Q) factors
and  small  mode  volumes,  dramatically  enhancing  these

interactions2. Additionally, these cavities can further syn-
ergize  with  the  thermo-optic  (TO)3 or  free-carrier  dis-
persion (FCD) effect4,  enabling a broad spectrum of ap-
plications  across  multiple  disciplines.  Notable  examples
include  high-efficiency  optical  modulators  and
switches5,6,  ultra-compact  filters7,  and  advanced  nonlin-
ear  optics8.  However,  the  modulation  speed  of  silicon 
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photonics  is  primarily  constrained  by  its  inherent  ab-
sorptive and nonlinear characteristics, which has led to a
plateau in its development, making it challenging to sat-
isfy the exponentially increasing demand for large-capac-
ity  interconnects  and  communications9.  On  the  other
hand,  lithium  niobate  (LiNbO3,  LN),  although  an “old”
and extensively studied material, has played a crucial role
in  advancing  photonics  and  acoustics  for  several
decades10.  From  enabling  high-speed  optical  communi-
cations11 to  the  development  of  acoustic  filters  used  in
mobile terminals12, LN has proven its versatility and reli-
ability.  Specifically,  in  photonics,  its  extraordinarily
strong  and  highly  linear  electro-optic  (Pockels)  proper-
ties  have  propelled  LN optical  modulators  into  the  Ter-
abit era13.

Inheriting  the  exceptional  optical  properties  of  LN,
thin-film  lithium  niobate  on  insulator  (LNOI)  has  re-
cently been recognized as a cutting-edge platform that is
leading  another  revolution  in  integrated  photonics  on
chip14−16.  Contrasting  with  the  CMOS-compatible  pro-
cess  of  silicon  photonics,  LNOI  photonics  encounters  a
significant  barrier  in  manufacturing  low-loss  waveg-
uides and nanoscale optical components10. The principal
challenge  is  the  high-quality  etching  of  LN.  While  pre-
cise  methods  like  ion  beam  etching17 and  focused  ion
beam  (FIB)  milling18 are  accurate,  they  can  damage  the
crystal lattice and introduce ion contamination. An alter-
native  technique,  the  femtosecond  laser  photolithogra-
phy  assisted  chemo-mechanical  etching  (PLACE)  tech-
nique19−21,  overcomes  these  issues  and  ensures  an  ultra-
smooth surface but lacks sufficient etching selectivity for
fabricating  sophisticated  structures  such  as  PCNBC.
Moreover,  methods  such  as  reactive  ion  etching  (RIE)
and inductively coupled plasma etching (ICP-RIE), while
compatible  with  batch  fabrication,  suffer  from  signifi-
cant  redeposition  issues10.  These  challenges  collectively
hinder  the  enhancement  of  optical  performance  in  LN-
based devices.

Recently,  a  novel  route  has  been  proposed  that  in-
volves  spinning  and  patterning  a  low-refractive-index
polymer (~1.5) on top of the LNOI substrate22.  This ap-
proach  allows  for  the  creation  of  a  polymer-loaded  rib-
waveguide  capable  of  accommodating  both  transverse
electric  (TE)  and  transverse  magnetic  (TM)  modes.
Nonetheless,  most  research  efforts  have  primarily  fo-
cused  on  TM-polarized  modes  produced  by  photonic
bound states  in  the  continuum (BIC)23.  On this  etchless
platform, various intriguing physical phenomena24,25 and

high-performance  key  optical  components  have  been
demonstrated26−28.  In  addition,  many  other  novel  appli-
cations  have  also  been  unlocked  in  the  metasurfaces
based  on  the  BIC  regime29,30.  However,  there  are  chal-
lenges  when  it  comes  to  manufacturing  high-Q res-
onator  cavity  devices  due  to  the  highly  sensitive  radia-
tion losses of the TM mode associated with the polymer
stripe  widths.  In  comparison,  the  TE  modes  represent
standard bound modes that propagate without radiation
losses  for  any  width  within  their  supported  range31.
Therefore,  the  design  strategy  for  the  polymer/LN  hy-
brid structure still has room to be developed.

In this paper, we present an experimental demonstra-
tion  highlighting  the  significant  potential  of  TE-polar-
ized  polymer-loaded  waveguides  as  a  feasible  pathway
for  the  realization  of  highly  efficient  and  productive
nanocavities. To the best of our knowledge, the achieved
Q factor is over one order of magnitude higher than any
previously reported etchless LN PCNBCs (~0.1×10⁵)26,32.
This  remarkable  enhancement  in Q inspire  a  series  of
strong  light-matter  interaction  phenomena,  including
highly efficient  thermo-optic  (TO) tuning,  exceptionally
strong  optical  bistability,  and  facile  generation  of  Fano
resonances.  Our  successful  demonstration  of  high-Q
LNOI photonic cavities represent a significant milestone
towards  the  development  of  LN  nanophotonics,  merg-
ing  the  unique  material  properties  of  LN  with  versatile
nanophotonic  device  design  and  fabrication  methods.
This breakthrough holds tremendous promise for a wide
range  of  applications,  including  nonlinear  photonics,
electro-optic  (EO)  or  acousto-optic  (AO)  tunable  de-
vices, optical logic devices, and quantum photonics. 

Methods
 

Device design
Figure 1(a) depicts the cross-section view of the polymer
-loaded waveguide, which is placed on a y-cut LNOI sub-
strate. The loaded polymer has a thickness of 0.4 μm and
a width of w. To obtain the optimal w, the finite element
method  (FEM)  is  employed  to  model  the  propagation
loss of this waveguide. In our simulations, the refractive
index of the polymer is set to 1.53, and the refractive in-
dex  of  ordinary  (no)  and  extraordinary  (ne)  for  LN  are
2.21 and 2.14, respectively. Figure 1(b) illustrates the re-
lationship  between  the  propagation  loss  and  waveguide
width w for  different  modes  at  the  wavelength  of  1550
nm. It is observed that TM modes exhibit minimal losses
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at  certain  specific  waveguide  widths.  This  behavior  can
be  explained  from the  perspective  of  the  photon  poten-
tial23, as shown in the inset of Fig. 1(b). The energy of the
TM  mode  can  couple  into  the  TE  continuum  through
the  edges  of  the  waveguide  due  to  the  potential  well  of
the  TM  mode  being  located  within  the  TE  continuum.
By  adjusting w,  it  is  possible  to  eliminate  coupling  loss
through  destructive  interference  between  the  coupling
channels. In this mechanism, the TM mode exhibits lower
loss at w of 2.1 μm compared to 3.0 μm, due to stronger
confinement  within  the  potential  well.  By  contrast,  for
TE modes, the potential well has the lowest energy and is
not coupled with TE continuum in the LN substrate (not
shown).  Therefore,  the  propagation loss  of  TE modes  is
low and stable, decreasing as w increases. Consequently,
TE modes are robust compared to TM modes, a charac-
teristic of critical importance given that fabrication toler-
ances have a lesser impact on device performance.

To reveal the light propagation mechanism within the
waveguide,  an  analysis  of  optical  modes  with  electric
field  profiles  was  performed. Figure 1(c) displays  the
electric  field  profiles  of  |Ey|  for  both  TM00 and  TM01

modes,  revealing  energy  concentrated  in  the  upper  and
lower  cladding  layers.  Correspondingly, Fig. 1(d) illus-
trates electric field profiles of |Ez| for both TE00 and TE01

modes,  confirming  the  predominant  localization  within
the LN layer,  which facilitates the effective utilization of
the  outstanding  material  properties.  Compared  to  the
TM modes, the TE modes exhibit relatively weaker con-
finement in the z-direction, potentially resulting in larg-
er losses in designs involving curved waveguides. Never-
theless, the transmission characteristics of the TE modes
are instrumental  in avoiding the disruption of  BIC con-
dition  caused  by  the  anisotropy  of  LN.  This  feature  is
very important for the design of high-Q PCNBC.

Based  on  the  discussion  of  waveguide  modes  and
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optical losses above, we further investigate the losses in-
side  the  nanocavity.  As  illustrated  in Fig. 2(a),  the  pro-
posed  PCNBC  is  constructed  by  a  series  of  dielectric
blocks in two regions, including taper and mirror, which
are  symmetrical  with  the  red  dashed  line.  The  width  of
the polymer waveguide is 2 μm, and the fixed lattice con-
stant  of a =  0.43  μm  enables  phase  matching  for  each
unit cell.  In the taper region, pulling the confined mode
with a Gaussian-shaped field profile away from the light
line effectively minimizes radiation loss33. It is realized by
establishing a parabolic distribution of the filling factor34,

which is utilized to define the dimension of the dielectric
block.  Here,  the  filling  factor f is  defined  as  the  ratio  of
the air area to that of the unit cell. The relationship of the
filling factor from the center of PCNBC (fc) to the end of
the taper region (fe) is 

fi = fc − (fc − fe)i2/N2
t , (1)

where Nt represents  the  number  of  dielectric  blocks  in
the taper region, and i is an integer increasing from 0 to
Nt. fc and fe are determined by mirror strength γ,  which
is determined by34
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γ =

√
(ω0 − ω1)

2/(ω0 + ω1)
2 − (ωres − ω2)

2/ω2
2 , (2)

where ωres is  the  target  resonance  frequency of  the  fun-
damental mode, and ω0, ω1, ω2 are the air band edge, di-
electric  band  edge,  and  midgap  frequency  of  each  seg-
ment. Figure 2(b) shows  the  band  diagram  of  the  TE00

mode.  The  filling  factors  of  0.3  and  0.42  are  chosen,
which correspond to the maximum mirror strength and
the  minimum  mirror  strength  (see Fig. 2(c)).  As  shown
in Fig. 2(b), a photonic band gap (PBG) is obtained at f =
0.3 (blue curves). When f is 0.42 (red curves), the dielec-
tric band is pulled into the PBG. It means that the funda-
mental  mode becomes a discrete mode.  As a result, fc is
set  to  0.42  and fe to  0.3.  The  filling  factor  is  gradually
changing from f = 0.3 to f = 0.42 according to Eq. (1). At
the  mirror  region,  the  filling  factor  remains  the  same
(i.e., fe = 0.3).

Next,  we  investigate  the  optical  mode  field  profile  of
the  PCNBC  based  on  the  above  parameters.  To  better
confine optical  mode, the transition from fe to fc should
be smoother. Thus, the numbers of Nt and Nm are set to
Nt =  120  and Nm =  100,  respectively. Figure 2(d) illus-
trates  the  simulation results  for  the  profile  of  Gaussian-
shaped electric field energy for the fundamental and sec-
ond-order  modes.  It  indicates  that  the  PCNBC  we  de-
signed has the capability to support other high-order res-
onant  modes.  Furthermore,  as  depicted  in Fig. 2(e),  the
electric  field  distribution  of  the  fundamental  mode  is
parallel to the z-axis of the LN crystal. Thus, it confirms
the optical mode of the PCNBC is based on TE00 mode.
The  relationship  between w, Nt, Nm,  and Q will  be  dis-
cussed in detail in the next section. 

Device fabrication
Devices  were  fabricated  on  a  custom-made y-cut  LNOI
substrate  with  a  0.3  μm LN layer  (NanoLN Corp.).  The
substrate  is  cleaned  sequentially  in  N-methyl-2-pyrroli-
done  (90  °C),  isopropyl  alcohol  (ultrasonic),  deionized
water  (ultrasonic),  and  piranha  solution  (90  °C)  for  10
minutes,  respectively.  Then  a  0.4  μm  polymer  (ARP-
6200.13) was spin-coated on the substrate and prebaked
on a hot plate at 180 °C for 10 minutes. The pattern was
transferred  to  the  polymer  by  e-beam  lithography
(NanoBeam, nB5).  Finally,  the residual  polymer was re-
moved  with  the  developer. Figure 3(a) shows  the  scan-
ning  electron  microscope  (SEM)  image  of  the  sample.
The  polymer  waveguide  is  well-defined,  which  guaran-
tees its process stability. 

Device characterization
To  characterize  the  proposed  device,  the  light  from  the
tunable  semiconductor  laser  (Santec,  TSL-550)  is
pumped into the grating coupler  through a  polarization
controller, which is used to adjust the polarization of the
pump light. The transmitted light of PCNBC is collected
by  the  optical  power  meter  (Thorlabs,  PM100D)  from
the  other  grating  coupler.  Throughout  the  testing  pro-
cess,  the  chip  is  placed  on  a  high-accuracy  thermoelec-
tric  cooler  (TEC)  with  a  stabilized  temperature  of  21.5
°C.  As shown in Fig. 3(b),  there exist  several  peaks.  The
fundamental  mode  is  located  at  1528.320  nm,  which  is
close to the simulated result of 1530.612 nm (the funda-
mental  mode  resonance  wavelength  in Fig. 2(d)).  The
slight deviation can be attributed to the influence of the
fabrication.  Other  high-order  modes  appear  at  larger
wavelengths.  Compared with  the  high-order  modes,  the
fundamental mode has a higher Q factor of 0.47×105 (see
the inset in Fig. 3(b)) and a lower transmission of 52.4%.
Since only the fundamental mode is optimized, the high-
order modes suffer a larger radiation loss. Moreover, the
coupling loss quality factor (Qc) from the PCNBC to the
bus waveguide and the radiation loss  quality  factor  (Qr)
can be used to determine transmission (T)35
 

T = Qr
2/(Qc + Qr)

2 . (3)

For  radiation-Q-limited  PCNBC, Qc is  much  larger
than Qr. According to Eq. (3), the high-order modes ex-
hibit  larger  transmissions  due  to  their  smaller  values  of
Qc. Figure. 3(c) describes the relationship between the Q
factor of  the fundamental  mode and w (Nt = 120, Nm =
100, fc = 0.42, and fe = 0.3). The Q factor becomes larger
along with w because a larger w results in a smaller prop-
agation loss (see Fig. 1(b)).

Here,  we  discuss  the  influence  of  the  dielectric  block
on  the Q factor. Figure 3(d) presents  the  transmission
spectrum  at  different Nt,  revealing  that  as Nt increases,
the Q factor  correspondingly  rises,  while  the  transmis-
sion  gradually  diminishes.  A  similar  behavior  is  ob-
served  in Fig. 3(e) for  varying  values  of Nm.  These  re-
sults can be attributed to three mechanisms. First, an in-
creased  number  of  dielectric  blocks  in  the  taper  region
leads to a more gradual parabolic distribution of the fill-
ing  factor,  ranging  from  0.3  to  0.42.  This  design  facili-
tates  a  more  uniform  confinement  of  the  optical  Gaus-
sian-shaped  field  profile  along  the x-direction,  thereby
minimizing  the  scattering  of  optical  energy  into  radia-
tion  modes.  Second,  a  higher  value  of Nm enhances  the
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mirror  reflectivity,  which  significantly  strengthens  the
confinement of  the Gaussian-shaped field profile  within
the  PCNBC.  Third,  an  increase  in  both Nt and Nm can
reduce the coupling losses, which result in reduced trans-
mission, as illustrated in Eq. (3). Combining these mech-

anisms,  the increasing Q factors  with the number of  di-
electric  blocks  can  be  attributed  to  a  tighter  Gaussian-
shaped  field  profile,  resulting  in  reduced  cavity  losses
and  coupling  losses.  Thereby,  the  properly  optimal Nm

and Nt parameters  are  crucial  for  achieving  high-Q and
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high-transmission  PCNBCs  that  are  much  more  desir-
able  for  high-efficient  optical  modulators.  Despite  a  de-
crease in transmission, the Q increases to above 1.87×105

when Nm is set to 200, as shown in the inset of Fig. 3(e).
Table 1 presents a comparison of the reported LN-based
PCNBCs. Noted that, our PCNBCs exceed the most sim-
ilar  cavities  on  LN  substrate,  featuring  a  much  simpler
fabrication process36. 

Discussion on Q-induced optical
phenomena
The high Q factor  of  PCNBCs enhance  the  light-matter
interactions,  enabling the exploration of  intriguing nov-
el optical phenomena. In this section, the potential func-
tions of the Q-induced phenomen based on our LN PC-
NBCs are examined and studied. 

Thermo-optic tuning

dne/dT ≈ 3.3× 10−5 K−1

TO  tuning  is  one  of  the  most  efficient  methods  to  ma-
nipulate  photons,  providing  a  significant  refractive  in-
dex  change  almost  without  optical  loss40,41.  This  mecha-
nism  plays  a  crucial  role  in  photonic  integrated  circuits
(PICs),  where  TO  switches  and  modulators  are  indis-
pensable  components42,43.  For  example,  optical  devices
like microring resonators and PCNBCs, are highly sensi-
tive  to  fabrication  errors  leading  to  resonance  wave-
length shifts. This problem can be solved by integrating a
heater  near  the  waveguide.  The  optical  material  with  a
large TO coefficient is critical for achieving highly ener-
gy-efficient  TO  tuning.  Nevertheless,  in  the  proposed
LNOI platform, the maximum TO coefficient of  the LN
is , which is smaller than that of
the  polymer  material  as  reported44.  For  our  PCNBCs,
polymer serves not only as the structural element but al-
so  facilitates  TO  tuning  compared  to  monolithic  LN,

since  part  of  the  optical  mode  is  distributed  within  the
polymer layer. The TO tuning capability of polymers has
been demonstrated in various types of PCNBCs45,46. Gen-
erally,  to  evaluate  the  modulation  efficiency  of  the  TO
modulator, the π-phase shift temperature ΔTπ is calculat-
ed by47
 

ΔTπ = πδλ0(Δλ/ΔT)−1 , (4)

where  δλ0 is  the  linewidth,  corresponding  to  the  full
width  at  half  maximum  (FWHM)  of  the  transmission
spectrum,  and  Δλ/ΔT is  the  sensitivity  of  temperature,
which  is  determined  by  the  material  properties.  To  im-
prove  modulation  efficiency,  it  often  involves  complex
structures  and  fabrication  processes,  such  as  suspended
device  structures  and p-n junction waveguides48,49.  High
modulation  efficiency  and  a  simple  fabrication  process
are  desirable  for  TO  tuning,  especially  in  LN  photonics
with a weak TO coefficient.

To study the thermal tuning characteristics of our PC-
NBCs, the chip is heated from 20 °C to 30 °C at a step of
2 °C. The transmission spectra for a PCNBC operating in
the  fundamental  mode  are  presented  in Fig. 4(a).  The
resonance  peak  redshifts  obviously  as  the  temperature
rises  and  ΔTπ of  2.36  °C is  obtained.  Therefore,  the  de-
vice  possesses  TO  tuning  capability.  In  general,  an  in-
crease in the Q tends to reduce the ΔTπ of the TO modu-
lator, as shown in Eq. (4), indicating a lower power con-
sumption. For this purpose, devices with different Q fac-
tors are measured under the same condition. The corre-
sponding  ΔTπ and  Δλ/ΔT are  shown  in Fig. 4(b).  With
the increase in the Q factor, the ΔTπ reduces. It is due to
a  larger  optical  energy  density  that  enhances  light-mat-
ter  interactions.  A  device  with  a  larger Q is  suitable  for
temperature-sensitivity  applications.  The  sensitivity  of
temperature remains around 26 pm/°C as the Q increas-
es, which reveals the Δλ/ΔT of this platform. ΔTπ reaches

 

Table 1 | Comparison of various PCNBCs on LN substrate.
 

Device structure Polarization modes Q (×105) Transmission (%) Extinction ratio (dB) Footprint (μm2)

Si3N4 PCNBC/LNOI37 TE 0.09 - 32 1.6×140

LN PCNBC/Suspend38 TE 1.09 24 - 0.75×37

Si PCNBC/LN39 TE 1.2 1.6 - 1.8×35.5

LN PCNBC/LNOI36 TE 1.34 - 11.5 1.2×30

Polymer PCNBC/LNOI32 TM 0.07 38 - 1.8×118

Polymer PCNBC/LNOI26 TM 0.12 15 - 2.1×122

Polymer PCNBC/LNOIthis work, A TE 1.04 16.6 25 2×189

Polymer PCNBC/LNOIthis work, B TE 1.87 2 22 2×223
Dimensions of A: w = 2 μm, Nt = 120, Nm = 140, fc =0.42, and fe = 0.3.
Dimensions of B: w = 2 μm, Nt = 120, Nm = 200, fc =0.42, and fe = 0.3.
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its  minimum  value  of  1.05  °C  when  the Q reaches
1.87×105,  surpassing  the  performance  of  a  device  em-
ploying  TO  tuning  with  an  integrated  metal  heater7,45.
Through  the  measured  data  and  the  results  from  FEM
calculations, the TO coefficient of the polymer is extract-
ed as 0.8×10−4 K−1. Most importantly, the demonstration
of  thermal  tuning  indicates  that  the  proposed  high-Q
PCNBCs  provide  a  novel  solution  to  the  TO  tuning  is-
sues experienced by LN photonics while also allowing for
easy fabrication processes. 

Optical bistability
Optical  bistability  is  a  phenomenon observed in  high-Q
silicon  photonics,  predominantly  attributed  to  complex
nonlinear  effects  such as  two-photon absorption (TPA),
the TO effect, FCD, and the Kerr effect50. This bistability
is critical for the development of next-generation all-op-
tical  applications,  including  high-speed  modulation  and
optical logic circuits51,52. LN, despite its widespread use in
photonic  applications,  has  a  poor  TO  coefficient  and
lacks  a  mechanism for  TPA at  1550  nm due  to  its  wide
bandgap of 3.78 eV53. Therefore, it is nontrivial to excite
optical  bistability  even  in  microcavities,  limiting  its  po-
tential  for  all-optical  modulation.  In  contrast,  the  poly-
mer  introduces  inherent  defect  absorption  and  has  a
large  TO  coefficient  as  previously  discussed  in  TO  tun-
ing.  Moreover,  the  high-Q PCNBC  may  facilitate  this
process  due  to  the  small  mode  volume  and  strong  con-
finement of the Gaussian-shaped field profile. Taking in-
to  account  the  above-mentioned analysis,  it  is  a  feasible
solution  to  facilitate  the  application  of  LN  photonics  in

all-optical information processing. Consequently, we in-
vestigate  optically-induced  bistability  in  the  proposed
high-Q PCNBCs.

First,  we  set  the  tunable  semiconductor  laser  with
wavelength  increment  steps  of  1  pm,  and  the  required
sample  time  is  0.37  seconds  for  each  point.  Second,  we
measure the transmission spectrum for the fundamental
mode  at  different  input  power  levels.  At  this  state,  the
power-dependent  transmission  spectra  for  one  of  the
PCNBCs  are  shown  in Fig. 5(a).  As  the  power  injected
into  the  cavity  increases  from  72.4  μW  to  738.9  μW,
there are two significant changes are observed. The reso-
nance  peak exhibits  a  pronounced redshift,  which is  in-
duced by the positive TO coefficient of LN and polymer.
Additionally, the measured line shapes gradually change
from a Lorentzian type to a bistability feature induced by
the  TO  effect.  The  optical  bistability  comes  into  being
when  the  shift  (Δλ)  of  the  transmission  spectrum  satis-
fies the Eq. (5)54. Meanwhile, Eq. (5) indicates that a PC-
NBC with a large Q factor (small  linewidth) will  benefit
under the identical condition, which requires lower opti-
cal power to induce bistability. The corresponding inject-
ed  power  is  defined  as  the  threshold  power Pt.  For  this
device, Pt is 160 μW. 

Δλ ⩾
√
3δλ0/2 . (5)

Figure 5(b) illustrates  the  threshold  power  of  optical
bistability  for  different  devices  with  varying Q factors
and  transmissions.  Initially,  the  threshold  power  gradu-
ally  decreases  as  the Q increases,  which  agrees  with  our
prediction.  The underlying mechanism is  mainly due to
the dramatically enhanced optical energy density in PC-
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NBC. When the Q exceeds 1.63×105, the threshold pow-
er begins to increase. It is caused by the decline in trans-
mission  intensity  with  increasing Q.  Therefore,  achiev-
ing high-efficient optical bistability depends on the care-
ful design of PCNBCs with both high Q factors and opti-
mal  transmission  characteristics.  This  experiment  vali-
dates the feasibility of LN photonics devices with optical
response,  potentially  paving  the  way  for  the  develop-
ment of LN all-optical logic chips. 

Fano resonance
Fano resonance, characterized by its sharp and asymmet-
ric  line  shape,  opens  up  extensive  prospects  for  the  ad-
vancement  of  the  field  of  photonics,  especially  proving
immensely attractive in the realms of switching and sens-
ing55,56.  Numerous  efforts  have  been put  to  demonstrate
high-performance  Fano  resonance57,58.  However,  these
devices often suffer from a larger footprint and complex
tunability.  Recently,  the  tunable  Fano  line  shapes  have
been  demonstrated  in  the  silicon-based  1D  PCNBC  by
adjusting  the  position  of  the  input  and  output  fibers59.
This  efficient  Fano tunability  benefits  from two aspects.
First,  the  high-index-contrast  silicon  waveguide  ensures
strong  confinement  of  light  within  the  waveguide.  Sec-
ond,  the  rectangular  photonic  crystal  grating  couplers
provide heightened light sensitivity. All these factors en-
hance  the  dependency  of  the  grating  on  the  position  of
the  fiber.  However,  achieving  highly  efficient  Fano  tun-
ability on this etchless LNOI platform remains challeng-
ing  due  to  the  wake  interaction  between  discrete  state

(cavity  resonance  mode)  and  continuum  state  (waveg-
uide  propagating  mode).  Therefore,  the  high-Q PCN-
BCs provide a  good platform for studying the high-effi-
ciency generation of Fano resonance.

When  the  pump  laser  is  near  the  resonance  wave-
length of the PCNBC, part of the energy is converted in-
to  the  high-order  leak TE mode,  which serves  as  a  con-
tinuous state and can propagate through the PCNBC59,60.
Then,  it  interferes  with  the  discrete  fundamental  mode.
The transmission spectrum produced by  the  interaction
is described as follows61
 

|T(ω)|2 = T0 + k [q+ 2(ω− w0)/Γ]2

1+ [2(ω− w0)/Γ]2
, (6)

 

q = cotφ , (7)

where T0 and k are the constant factors of offset and scal-
ing factor.  And q, φ, w0,  and Γ are  the  Fano asymmetry
factor, the phase difference between the continuum state
and discrete state,  the resonance frequency of  the cavity
mode, and the resonance linewidth, respectively.

To introduce the interference, the positions of the in-
put  fiber  (left  red  dot)  and  output  fiber  (right  red  dot),
located  at  the  top  of  the  grating  couplers,  are  gradually
altered,  as  illustrated  in Fig. 6(a).  When  two  fibers  per-
fectly  coincide  with  the  center  of  the  grating  couplers,
the phase difference φ between the continuum state and
the  discrete  fundamental  mode  is  zero,  and  the  mea-
sured transmission spectrum has a Lorentzian line shape.
However,  the  phase  difference φ is  not  zero  when  the
fibers  are  off-center  from  the  grating  couplers,  the  two
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modes  start  to  interfere  with  each  other,  and  the  mea-
sured  transmission  spectrum  has  an  asymmetric  Fano
line  shape.  In  this  approach,  the  transmission  spectrum
will experience a π phase shift change in theory. That is,
the  transmission  spectrum  will  go  through  Lorentzian,
Fano,  quasi-Lorentzian,  inverted  Fano,  and  Lorentzian
line shapes62.

The  measured  transmission  spectra  are  displayed  in
Fig. 6(b).  For  simplification  and  effective  monitoring  of
the interference, the output fiber is fixed at yo = 3 μm. To
change  the  phase,  the  input  fiber  is  moved  from yi =  2
μm to yi = 6 μm in the direction of yi at  a step of 2 μm.
During  this  process,  the  measured  transmission  spectra
show a significant change. With the increase in yi, the ex-
tinction ratio (ER) reaches 15.14 dB, 19.03 dB, and 25.43
dB  for  the φ values  of  0.24  rad,  0.43  rad,  and  0.58  rad.
When the  input  fiber  goes  along −yi with  the  same dis-
placement,  the  inverted  Fano  line  shapes  are  obtained.
The  corresponding  ER is  25.83  dB,  16.38  dB,  and  12.89
dB, with φ being −0.09 rad, −0.19 rad, and −0.22 rad. In
sharp Fano line shapes, a large ER enables low-power op-
eration.  The effect  of  the Q factor on Δφ is  also investi-
gated in Fig. 6(c).  Here,  Δφ is  defined as  the sum of the
absolute  phase  difference  between  two  antisymmetric
Fano line shapes (yi = |−yi|), corresponding to the varia-
tion  degree  of  the  line  shape.  The  Δφ tends  to  increase
with Q at yi/|−yi|  =  4  μm.  A  larger Q factor  means  less

displacement  shift  of  the  input  fiber  to  attain  the  same
Δφ.  Although  there  is  much  room  for  improvement  in
Fano tuning, the impact of the Q factor on the phase tun-
ability  of  the  Fano  line  shapes  is  demonstrated  for  the
first  time  on  the  LNOI  platform.  This  discovery  intro-
duces  a  new avenue  of  research  for  ultra-compact  Fano
resonance tunability photonic devices.
 

Conclusion
In this paper, we theoretically proposed and experimen-
tally demonstrated a method for achieving high-Q PCN-
BCs based on LNOI platform. The design principle  of  a
radiation-limited  cavity  enabled  the  successful  fabrica-
tion  of  nanocavities  with Q factors  exceeding  105 and
high  transmittance.  To  the  best  of  our  knowledge,  the
achieved Q is  over  one  order  of  magnitude  higher  than
the previous reports on etchless LN PCNBCs. Moreover,
we explore the application potential of high Q microcavi-
ties  in  the  interaction  between  light  and  external  fields,
demonstrating efficient modulation effects in TO tuning,
optically-induced bistability, and Fano line shapes gener-
ation.  These  results  hold  tremendous  promise  for  pro-
viding  a  versatile  platform  technique  to  develop  high
performance EO or AO modulator, optical logic devices,
and  quantum  photonics,  demonstrating  significant  po-
tential in the field of photonic integration.
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