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Streamlined photonic reservoir computer with
augmented memory capabilities
Changdi Zhou1,2, Yu Huang1,2, Yigong Yang1,2, Deyu Cai1,2, Pei Zhou 1,2,
Kuenyao Lau 1,2, Nianqiang Li1,2* and Xiaofeng Li1,2*

Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intel-
ligence,  among  which  photonic  time-delay  reservoir  computing  (TDRC)  is  widely  anticipated.  While  such  a  computing
paradigm can only employ a single photonic device as the nonlinear node for data processing, the performance highly re-
lies on the fading memory provided by the delay feedback loop (FL), which sets a restriction on the extensibility of physi-
cal implementation, especially for highly integrated chips. Here, we present a simplified photonic scheme for more flexi-
ble parameter configurations leveraging the designed quasi-convolution coding (QC), which completely gets rid of the de-
pendence on FL. Unlike delay-based TDRC, encoded data in QC-based RC (QRC) enables temporal feature extraction,
facilitating  augmented memory capabilities.  Thus,  our  proposed QRC is  enabled to  deal  with  time-related tasks or  se-
quential data without the implementation of FL. Furthermore, we can implement this hardware with a low-power, easily
integrable vertical-cavity surface-emitting laser for high-performance parallel processing. We illustrate the concept valida-
tion through simulation and experimental  comparison of  QRC and TDRC, wherein  the simpler-structured QRC outper-
forms across various benchmark tasks. Our results may underscore an auspicious solution for the hardware implementa-
tion of deep neural networks.

Keywords: photonic  reservoir  computing; machine  learning; vertical-cavity  surface-emitting  laser; quasi-convolution
coding; augmented memory capabilities
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Introduction
The  rapid  advancement  of  artificial  neural  networks
(ANNs)  has  significantly  contributed  to  the  progress  of
artificial  intelligence  (AI),  demonstrating  unparalleled
competitiveness in fields such as image processing, game
playing,  and  protein  structure  prediction1−4.  Although
conventional  software-based  ANNs  rooted  on  the  von
Neumann  computing  architecture  embody  successfully
mimicked  human  cognitive  abilities  in  complex  tasks,

they confront several formidable challenges, especially in
energy  consumption  and  processing  speed5,  as  dictated
by  Moore's  Law.  Therefore,  ANNs  based  on  physical
platforms,  including  electronics6−8,  spintronics9−11,  pho-
tonic hardwares12−17,  and others18−21,  offer alternative so-
lutions to meet the extensive computing demands of AI.
Photonics-based  technology,  in  particular,  is  a  capable
candidate due to its extremely fast processing speed and
ultra-low  power  consumption16,22−24.  Significantly, 
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reservoir  computing  (RC),  a  simplified  machine  learn-
ing scheme derived from recurrent neural  networks25−27,
is known as an amenable paradigm to analog implemen-
tation because only the RC output  layer  requires  simple
algorithm-based  training.  This  desirable  feature  signifi-
cantly  reduces  the  complexity  and  cost  of  the  training
procedure,  making  it  a  hardware-friendly  and  high-
speed computing implementation alternative. Especially,
many photonic RC schemes can be further simplified by
the  so-called  time-delay  RC  (TDRC),  which  only  con-
tains  a  single  physical  node  with  a  time-delay  feedback
loop  (FL)28,  employing  time-multiplexing  to  establish
virtual  nodes  in  contrast  with  the  need  of  large-scale
physical nodes in the spatial RC. The fading memory ca-
pability provided by the FL enables such TDRC a unique
advantage in handling time-dependent tasks.

However,  FL  significantly  influences  both  the  net-
work  flexibility  and  capabilities  of  TDRC,  posing  chal-
lenges  for  hardware  implementation.  The  introduction
of  FL  provokes  a  multifaceted  trade-off,  typically  in-
duces  complex  nonlinear  dynamics  within  the  system,
necessitating  precise  parameters  control,  e.g.,  external
optical  injection  or  frequency  detuning,  to  stabilize  the
output  of  semiconductor  laser-based RCs.  Furthermore,
the  length  of  FL  has  a  significant  impact  on  the  perfor-
mance of  TDRC. Extending the delay line to accommo-
date  more neurons also results  in  a  larger  footprint  and
reduced information-processing rates29, whereas a short-
er  delay  line  compromises  the  computing  accuracy  due
to the limited network size. These issues have prompted
the exploration of novel structures, such as next-genera-
tion RC (NG-RC)30,31.  The NG-RC obviates the need for
a  reservoir,  directly  constructing  output  feature  vectors
through various nonlinear combinations of both present
and historical data. This approach has demonstrated im-
pressive  performance across  multiple  tasks  by  achieving
reduced training  and warm-up times.  However,  it  com-
promises  physical  openness,  thus  presenting  challenges
for  neuromorphic  implementations.  Moreover,  feed-
back-free RC (FFRC) or extreme learning machines have
been also proposed and demonstrated32,33. Account of the
absence  of  the  FL,  which  leads  to  the  loss  of  a  fading
memory,  conventional  FFRC  may  showcase  equivalent
performance in discrete data processing, e.g., data recov-
ery  or  image classification34−36,  but  poor  performance in
time-related  or  high-memory  requirements  tasks.  To
compensate for the loss of memory ability, Takano et al.
preliminarily introduced a weighted sum of past data to
the  original  one  and  successfully  achieved  the  satisfied

prediction performance of the Santa-Fe time series37, but
without accounting for the connection between indepen-
dent sampling-period data. Zeng et al. theoretically pro-
posed  three  different  pre-processing  and  post-process-
ing  methods  based  on  Takano’s  work38.  Besides,  the  re-
quired  FL  or  memory  capability  can  also  be  provided
through  the  inherent  characteristics  of  some  specific
physical devices. Phang reported a novel RC based on an
optical-fiber and loop-free kernel configuration utilizing
the  intrinsic  memory  property  of  stimulated  Brillouin
scattering39. In Zhang et al.’s work, the pulse broadening
effect  caused  by  dispersion  in  optical  fiber  provides  a
short-term fading  memory40.  This  undoubtedly  imposes
specific requirements on hardware components. In light
of the pressing demands for hardware compatibility and
high integration, it is crucial to explore novel neural net-
works  with  flexible  yet  simple  structures  for  high-speed
and high-performance operations.

In  this  work,  we  propose  a  streamlined  photonic  RC
with  augmented  memory  capabilities  based  on  the  de-
signed quasi-convolution coding (QC). Through analyz-
ing  and  optimally  selecting  key  parameters  of  QC,  such
QC-based  RC  (QRC)  can  acquire  fading  memory  from
encoding data, analogous to the function of FL in TDRC,
thereby  significantly  simplifying  the  processing  system
by obviating FL. For such a photonic neural network, we
employ  a  vertical-cavity  surface-emitting  laser  (VCSEL)
featuring  a  low  threshold  current  and  dual  polarization
modes  to  facilitate  low-power  parallel  processing.  Its
compact  size  also  offers  significant  advantages  in  terms
of  integration.  Notably,  the  dual  modes  of  the  VCSEL
enable parallel  data insertion and processing,  where dif-
ferent  data  can  be  loaded  simultaneously,  allowing  pro-
cessing latency by half41. Herein, the crosstalk between X
polarization mode (XM) and Y polarization mode (YM)
establishes a connection between the original and encod-
ing data, imitating the interaction between the input and
the  memory  in  human  brains42,  which  greatly  benefits
time-related tasks.  The prominent  performance of  QRC
is  confirmed  theoretically  and  experimentally  through
detailed  comparisons  with  the  conventional  TDRC
across  several  benchmark  tasks.  Additionally,  we  com-
pare  this  work  with  existing  experimental  results  for
TDRC  based  on  semiconductor  lasers,  further  demon-
strating  the  feasibility  of  our  proposed  scheme.  There-
fore, our approach might provide a viable alternative for
the  hardware  implementation  of  easily  integrated  high-
performance RC systems. 
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Methodology
 

Algorithms 

Quasi-convolution coding
Traditional  convolutional  coding  (CC)  involves  multi-
plying  the  source  pixel  with  the  convolution kernel  and
summing up to obtain the target pixel.  The convolution
kernel  then  slides  in  a  predetermined  direction  and  re-
peats  the  above  operation  to  generate  all  outputs.  This
encoding method has proven highly effective in extract-
ing data features, especially in machine vision43.

∑Q

1

Drawing  on  the  operational  criterion  of  CC  and  the
remarkable  memory  framework  of  the  human  brain,
where  the  neuronal  responses  can  be  maintained  by  a
pure  feedforward  mechanism44,  we  propose  a  QC  algo-
rithm,  detailed  in Fig. 1(a−c). Figure 1(a) illustrates  the
weighted  sum  process  in  QC.  Here,  the  input  is  firstly
transformed  into  a  one-dimensional  (1-D)  vector  via
matrix transformation to facilitate the encoding process,
while the sliding step is designed based on the step coef-
ficients β and  sampling  period T. Figure 1(b) illustrates
the  input  or  sliding  direction  of  the  original  data  (blue
line) and the convolution kernel (red line). The convolu-
tion  kernel  coefficients  of j-th  sliding cj (j=1,  2,  …, Q)
gradually decrease after each sliding to mimic the fading
memory  of  the  human  brain,  determined  by  the  size  of

kernel Q,  which  is  designed  as cj=(Q+1−j)/ and  the

denominator of cj means the sum of integers from 1 to Q.
Figure 1(c) vividly showcases the stretch-out view of QC.
We simplify the encoding process by sliding through the
entire  sampling  period,  which is  equivalent  to  encoding
individual points separately, and thus, can be expressed as: 

sj(t) = s0[t− j(βT)] , (1)
 

sM(t) =
Q∑
j=1

cjsj(t) , (2)

where t represents the continuous time, s0(t) is the origi-
nal data, which can be a time-continuous input stream or
time-discrete input, and we take the former as an exam-
ple here. The stride of the kernel is jointly determined by
the step coefficient β and single sampling period T,  rep-
resented as βT, i.e., the product of them. The s0[t−j(βT)]
in Eq.  (1) indicates  that  the  original  data s0(t)  has  slid j
times  with βT as  the  step  size,  in  the  time  dimension.
Each slid data sj(t) is firstly multiplicated with the corre-
sponding  convolution  kernel  coefficients cj and  then
summed up to yield the final encoding data sM(t), from j
equals  to  1  to  the  kernel  size Q,  where j is  a  positive
integer.

As  we  know,  the  size  of  convolution  kernels  and
stride,  which  define  the  receptive  field  of  the  filter  and
step  size  for  moving  the  filter  across  the  input,  have  a
crucial  influence  on CC performance,  and in  the  subse-
quent  research  analysis,  we  shall  also  focus  on  their
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Fig. 1 | Concept of QC and RC structures. (a−c) Design of the proposed QC, which has a similar operational criterion to convolutional coding in

data processing, but meanwhile can extract features in the temporal dimension and provide memory capability. (d−f) Schematic diagram of differ-

ent RC structures. The comparison of the nodes’ states between (d) Spatial RC, (e) TDRC and (f) proposed QRC verifies that the encoding data

will provide the memory capability through QC. NL, nonlinear nodes.
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effects on QC. Through QC, we can establish the connec-
tion of information across each independent period and
extract  features  in  the  time  dimension,  where sM(t)  en-
dows  the  system  with  a  memory  capability  akin  to  hu-
man brain memory. 

Reservoir computing
In  general,  the  RC  implementation  has  two  main  ap-
proaches:  spatial  RC and TDRC as  depicted  in Fig. 1(d)
and 1(e),  respectively.  The  temporal  evolution  of  the
reservoir  state  in the spatial  RC can be described as  fol-
lows [Fig. 1(d)]45: 

X(n) = f[Winu(n) +WresX(n− 1)] , (3)

where n and  the Nin dimensional  vector u(n)  stand  for
the discrete time and input vector, respectively. The Nres

dimensional  vectors X(n)  and X(n−1)  denote  the  state
vectors of the neuron nodes in the reservoir layer at the
current  time  and  previous  moment,  respectively.  While
Win is  a  complex Nres×Nin matrix  indicating  the  input-
to-reservoir  connections, Wres is  a  complex Nres×Nres

matrix  accounting  for  the  weight  matrix  of  the  internal
connections  of  the  reservoir.  The  function f represents
the  activation  function  (AF)  in  the  reservoir  layer,  e.g.,
sigmoid.

This high-dimensional state space can also be generat-
ed  in  a  time-delay  dynamic  system  as  follows  [Fig.
1(e)]46: 

Ẋ(t) = f [t,X(t),X(t− τ)] , (4)
 

X(n) = f
[
P(n) + R(n)X

(
n− τ

θ

)]
, (5)

Ẋwhere τ is the delay time, and (t) represents the deriva-
tive  of X(t)  relative  to  dimensionless t.  The trained out-
put  weights Wout of  the  TDRC rely  on  the  transient  re-
sponse matrix obtained from the discrete sampling of the
reservoir. So we can transform Eq. (4) into Eq. (5) by dis-
crete sampling to describe the state of the reservoir layer.
θ is the interval between virtual nodes, and R(n) reflects
the internal connections of the reservoir. Herein, the vir-
tual  nodes  are  obtained  by  sampling  the  transient  re-
sponse  of  the  reservoir  layer  within  the  single  sampling
period T, i.e., the duration of one signal. The number of
virtual nodes m refers to the number of the hidden layer’s
transient  responses,  obtained  through  sampling  with
equal interval θ.  The number of virtual nodes m,  virtual
node  interval θ,  and  single  sampling  period T satisfy
m=T/θ. The original data P(n) is obtained from the prod-

uct of the mask M(n) and the input S(n). Notably, the ex-
istence of X(n−τ/θ) in Eq. (5) provides memory capabili-
ty for the TDRC.

In Fig. 1(f),  we  demonstrate  that  the  proposed  QRC
can  also  provide  prominent  memory  ability  leveraging
the  encoding  data  acquired  through  QC,  without  the
need for FL. The current state of the QRC in the hidden
layer Xtot(n)=[X(n), Xenc(n)] can be described by: 

Xtot(n) = f[P(n) + R2(n)Xenc(n) + Penc(n) + R1(n)X(n)] ,
(6)

where Penc(n) and Xenc(n) are the encoding data and cor-
responding  state  of  the  reservoir,  respectively.  The
square  bracket  [  ]  means  the  merging  of  arrays.  In  the
QRC, X(n)=f[P(n)+R2(n)Xenc(n)], Xenc(n)=f[Penc(n)+
R1(n)X(n)],  while R1 and R2 represent  the  connections
between  nonlinear  nodes  just  like  the  synaptic  connec-
tion  weights  between  neurons.  As  depicted  in Eq.  (6),
Penc(n)  and Xenc(n)  provide  the  required  memory  capa-
bility  for  this  feedback-free  configuration.  The  subse-
quent simulations and experiments will verify the superi-
ority of the proposed QRC, that is, this extremely simpli-
fied neural network, with a flexible parameter configura-
tion, possesses augmented memory capability. 

Simulation model
Figure 2(a) illustrates the VCSEL-based schematic archi-
tecture  of  both  the  TDRC  and  the  QRC.  The  final  out-
put Yout is  derived  using  output  weights Wout,  trained
from the transient response matrices of XM and YM [Vx,
Vy], where the crosstalk effect between these dual polar-
ization modes  simulates  the  subtle  memory interactions
in the human brain effectively.

Herein,  we  use  the  renowned spin-flip  model  to  ana-
lyze  the  nonlinear  dynamics  of  the  VCSEL  with  optical
injection, whose rate equations can be modified as47: 

dEx

dt
=κ(1+ iα)(NEx − Ex + inEy)

− (γα + iγp)Ex + kinjεx(t) + Fx , (7)
 

dEy

dt
=κ(1+ iα)(NEy − Ey − inEx)

+ (γα + iγp)Ey + kinjεy(t) + Fy , (8)
 

dN
dt

= γN[μ−N(1+|Ex|2+|Ey|2)+in(ExEy
∗−EyEx

∗)] , (9)
 

dn
dt

= −γsn− γN[n(|Ex|2 + |Ey|2) + iN(EyEx
∗ − ExEy

∗)] ,

(10)
where Ex and Ey represent slow-varying complex electric
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field  amplitudes  of  XM  and  YM,  respectively, N stands
for  the  total  population  inversion  between  the  conduc-
tion  and  valence  bands,  and n accounts  for  the  differ-
ence  between  the  carrier  reversal  with  opposite  spins.
The  last  terms  in Eqs.  (7) and (8) are  the  spontaneous
emission  noises  described  by  the  Langevin  sources,
which can be written as48: 

Fx =
√

βsp/2[
√

(N+ n)ξ1 +
√
(N− n)ξ2] , (11)

 

Fy = −i
√
βsp/2[

√
(N+ n)ξ1 −

√
(N− n)ξ2] , (12)

where  the  spontaneous  emission  rate βsp is  set  to  10−6

ns−1,  and ξ1,2 represents  independent  Gaussian  white
noise  of  unitary  variance  and  zero  mean  value.  The  in-
jected  terms  are  described  in  the  third  term  in Eqs.  (7)
and (8), kinj stands for the injected strength and εx,y(t) is
the  output  of  Mach-Zehnder  Modulator  (MZM)  de-
scribed as49,50: 

εx,y(t) =
|ε0|
2

{1+ ei[P , enc(t)+Φ0]}ei2πΔfx,yt , (13)

where |ε0| represents the amplitude of the injection field,
Φ0 is  the  bias  voltage  of  MZM,  and  Δfx (Δfy)  is  the  fre-

quency  detuning  between  the  injection  field εx(t)  [εy(t)]
and  the  XM (YM) of  the  VCSEL.  For  simplicity,  we  set
Δfx=Δfy=Δf.

Note here that the rate equations of Eqs. (7) to (10) are
solved using a fourth-order Runge-Kutta algorithm with
a time step of 2 ps, and the main simulation parameters
are  tabulated  in Table 141.  The  nonlinear  processes  de-
scribed in Eqs. (7) to (10) demonstrate the implementa-
tion of  the nonlinear function f in Eq.  (6).  In this  work,
we select three commonly used benchmark tasks to eval-
uate  system  performance,  including  chaotic  time-series
prediction, nonlinear channel equalization, and memory
capacity. The normalized mean square error (NMSE) be-
tween the target and predicted values is utilized to assess
the accuracy of model predictions; the symbol error rate
(SER), defined as the ratio of the error recognition num-
ber to the total testing number, represents the classifica-
tion ability of the system for discrete signal in the chan-
nel equalization task; the memory capacity (MC) reflects
the retention for past input signals, which is beneficial in
processing  time-dependent  tasks  (detailed  in  Supple-
mentary information, Section 1). 
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Fig. 2 | Schematic diagram of the TDRC and the QRC, as well  as their physical implementation based on the VCSEL. (a) Schematic architec-

tures of the TDRC and QRC based on the VCSEL. Experimental setup of (b) the TDRC and (c) the QRC. PC, polarization controller; Att, attenua-

tor; MZM, Mach-Zehnder Modulator; DL, delay line; EDFA, erbium-doped fiber amplifier; OBPF, optical bandpass filter; PBS, polarization beam
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line represents the optical (electrical) connection. (d) Optical spectra of the VCSEL. The black line represents the optical spectra of the free-run-

ning VCSEL. The red line represents XM and YM separated by PBS and PC.
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Experimental setup
Figure 2(b) and 2(c) show  the  experiment  setup  for  the
TDRC  and  the  proposed  QRC,  respectively.  Two  tun-
able  lasers  (TLs,  i.e.,  TLD-C20 and NLC13) serve as  the
drive lasers providing two optical carriers, whose ampli-
tudes  are  adjusted  by  attenuators  and  polarizations  are
aligned with the MZMs through polarization controllers
(PCs).  Here,  the original  signal P(n)  obtained from S(n)
masked by a binary random mask {−1,  1}  and encoding
signal Penc(n)  are  generated  from  two  arbitrary  wave-
form generators (AWGs, i.e., AWG70001B and 81150A),
and then loaded on the two optical carriers via MZMs. It
should be noted that the original signal P(n) and the QC-
encoded signal Penc(n) in this work are firstly created on
a personal computer during the preprocessing phase and
then sent to the AWGs to generate the input in the elec-
trical domain. However, the entire encoding process can
be  expected  to  be  implemented  in  hardware.  For  in-
stance, a Field-Programmable Gate Array (FPGA) can be
utilized  to  function  as  an  adder  and  multiplier,  thereby
executing  the  complete  encoding  process.  By  configur-
ing  specific  kernel  coefficients  within  the  FPGA,  which
are  multiplied  with  the  slid  original  signals  and  subse-
quently  summed  up,  the  encoded  signals  are  generated.
The  dual  paths  of  the  modulated  light,  which  are  re-
aligned with the polarizations of the XM and YM of the
off-the-shelf  VCSEL  separately,  are  combined  with  a
50∶50  optical  coupler  (OC).  The  main  difference  be-
tween  the  two  experimental  setups  shown  in Fig. 2(b)
and 2(c) relies  on  the  existence  of  the  FL  in Fig. 2(b),
which  additionally  contains  a  delay  line  (DL)  used  to
control the delay time τ, as well as an attenuator used to
adjust the FL strength. The output of the VCSEL can be
considered as  70% light  of  the  OC [TDRC in Fig. 2(b)],

or the Port 3 of the circulator [QRC in Fig. 2(c)], is first
attenuated  to  within  the  working  range  of  the  erbium-
doped  fiber  amplifier  (EDFA)  before  being  amplified,
and  then  filtered  by  the  optical  bandpass  filter  (OBPF,
WLTF-NM-S-1550-60/0.8-SM-0.9/1.0-FC/APC)  to  sup-
press  the  noise  caused  by  optical  injection.  Herein,  we
use  the  polarization  beam splitter  (PBS)  combined  with
the  last  PC,  by  observing  the  center  wavelength  of  the
two optical  paths through the optical  spectrum analyzer
(OSA,  AQ6370D),  to  separate  the  XM  and  YM  of  the
VCSEL  into  two  independent  optical  paths  [shown  in
Fig. 2(d)].  The  transient  responses  of  the  reservoir  state
are  sampled  through  a  real-time  oscilloscope  (OSC,
WaveMaster  820Zi-B)  after  being  detected  by  the  pho-
todetectors  (PDs).  In  the  experiment,  considering  the
bandwidth  limitation  of  the  used  AWG,  we  set θ=1  ns
and the number of neurons in each mode m=100, so that
the sampling period is T=100 ns (T=θ×m), and the feed-
back  delay  time  is τ=T.  Due  to  the  two  polarization
modes of VCSEL, the total neuron number is 2m. Addi-
tionally,  the  sampling rates  of  the  AWG and OSC are  1
GSa/s and 40 GSa/s, respectively. 

Results
 

Simulation results
During  the  simulation  phase,  we  initially  compare  the
performance of the TDRC and QRC, to identify their op-
timal parameter space. We establish the FFRC as an ad-
ditional control group to highlight the importance of en-
coding  data.  We  then  systematically  analyze  the  impact
of two key parameters of QC on the QRC, including the
size of kernel Q and the step coefficient β (similar to the
kernel size and stride in CC), and also determine the op-
timal  parameter  space.  Additionally,  we  explore  the

 

Table 1 | Some key parameters of the VCSEL used.
 

Symbol Parameter Value

κ Field decay rate 300 ns−1

α Linewidth enhancement factor 3

γα Linear dichroism 0.1 ns−1

γp Linear birefringence 10 ns−1

γN Decay rate of N 1 ns−1

γs Spin-flip rate 50 ns−1

μ Normalized bias current of the VCSEL 1.01

|ε0| Injection field amplitude 1

Φ0 Bias voltage of the MZM 0 V

Δf Frequency detuning 0 GHz

θ Virtual nodes interval 2×10−11 s
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impact of AF in post-processing along with the injection
methods of encoding data, where the sigmoid function is
selected  as  the  AF  in  the  output  layer  to  nonlinearly
transform  the  transient  response  matrix,  i.e.,  an  array
composed of equidistant samples of the laser output, in-
to  an  extended  new matrix,  which  is  used  to  enrich  the
neural representation by increasing the number of virtu-
al nodes. 

Performance comparison of different RCs
On account of the existence of the FL, which will enrich
the  dynamics  of  the  VCSEL51,  the  bifurcation  diagram
with kinj as  the  control  parameter  is  given  in Fig. 3(a).
When the feedback strength is kd=20 ns−1, it can be clear-
ly  seen  that  the  VCSEL is  operating  in  the  chaotic  state
during  the  range  of kinj ∈ [2  ns −1,  16  ns−1],  and  only
when kinj >  16  ns−1,  the  VCSEL  can  be  stabilized  again,
i.e.,  staying  in  a  stable  region,  in  which  good  perfor-
mance of RCs can be guaranteed28. After eliminating the
FL,  that  is,  by  setting kd=0  ns−1,  the  stable  region  is  re-
markably  broadened,  which  may  enable  the  proposed
QRC to exhibit the desired performance in a much wider
parameter space. Figure 3(b−d) reveal the significant dif-

ferences  between  these  three  kinds  of  RCs  on  bench-
mark tasks, while the detailed results of the chaotic time-
series  prediction  are  more  intuitively  depicted  in Fig.
3(e). Compared with the TDRC, the FFRC and QRC are
much more  insensitive  to  changes  of kinj due  to  the  ab-
sence  of  the  FL.  As  expected,  TDRC  will  perform  satis-
factorily  under  moderate  feedback  intensity  due  to  the
rich  dynamics  brought  by  the  FL,  while  excessive  self-
feedback strength can make the VCSEL enter the chaotic
region from the stable state and severely damage its per-
formance.  Note  here  that  a  lower  NMSE  or  SER  means
the  better  performance  of  the  RC,  while  a  higher  MC
means  that  the  RC  possesses  stronger  memory  ability.
Remarkably,  our  proposed  QRC  with  a  streamlined
structure  can  still  exhibit  competitive  performance,  that
is,  comparable  to  or  outperforming  the  conventional
TDRC, especially in terms of memory ability. This can be
attributed  to  the  combination  of  the  proposed  QC
method and the intrinsic crosstalk effect between the two
orthogonal polarization modes of the VCSEL.
Furthermore, we analyze the optimal parameter space of
the  systems.  The  two-dimensional  maps  of  the  NMSE,
SER and MC of these RCs in the parameter space of kinj
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and  Δf are  provided  in Fig. 4,  where  the  regions  of
NMSE<0.01,  SER<0.01  and  MC>10  are  marked  with
white lines. We can hardly find these optimal parameter
space  in  the  FFRC  [Fig. 4(a−c)],  and  only  limited  opti-
mal  parameter  space  for  the  TDRC [Fig. 4(d−f)],  whose
optimal  parameter  space  is  closely  related  to  the  injec-
tion locking region, where the data loaded onto the drive
laser will be well received and processed by the response
laser  due  to  the  injection  locking  effect.  As  expected,
QRC  [Fig. 4(g−i)]  enables  a  more  flexible  setting  of  the
parameters,  which significantly expands the optimal pa-
rameter space, thus revealing the exceptional advantages
of hardware implementation.

These  comparisons  further  confirm  the  reliability  of
the  proposed  scheme.  Incorporating  QC-encoded  data
enables QRC augmented memory, making it suitable for
a wider range of complex tasks, while maintaining a rela-
tively simple network model. 

Analysis of key parameters in QC
The impact of the kernel size Q and the step coefficient β

is  subsequently  analyzed.  Interestingly,  the  important
role  played  by  the  crosstalk  between  the  dual  polariza-
tion  modes  can  be  figured  out  in Fig. 5.  Here,  the  blue
dashed  lines  depict  the  performance  when  the  original
data is independently injected into XM, i.e.  without YM
and encoding data, serving as a baseline. When the origi-
nal  and encoding  data  are  injected  into  XM and YM in
parallel,  the  performance  of  the  XM  will  change  along
with  the  variation  originated  from  the  YM  injection  ef-
fect.  Surprisingly,  with the crosstalk effect,  YM can pro-
vide  the  desired  memory  ability  for  XM  [Fig. 5(c) and
5(f)].  In  addition,  the  results  of  these  benchmark  tasks
trained only based on the optical injection terms with en-
coding signals are represented in the red dashed lines, in-
tuitively reflecting the importance of the reservoir layer,
i.e., the VCSEL in this work. In Fig. 5(a−c), the resulting
performance of QRC on the three selected tasks exhibits
similar trends,  i.e.,  as Q is  increased,  it  is  first  improved
and  then  gradually  deteriorates  after  reaching  its  best.
We deduce that a larger Q means a wider receptive field,
which  may also  lead  to  the  loss  of  details. Figure 5(d−f)
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reflect  the  impact  of  the  step  coefficient β.  When β=0,
QRC is equal to a conventional FFRC, which has almost
no  memory  ability  and  is  much  worse  than  the  TDRC.
Notably, when β is quantized in half-integer increments,
especially  when  it  aligns  with  integer  values,  there  is  a
noticeable drop in the QRC performance. Sliding by the
integer multiples of a single sampling period dilutes sam-
ple correlation, rendering the encoding data a linear su-
perposition  of  multiple  independent  periods,  i.e.,  just
severely distorted original  data.  The black lines in Fig. 5
reveal  the  performance  can  be  further  improved  when
XM and YM are combined with AF. Importantly, the en-
coding data loaded into YM performs poorly in nonlin-
ear  channel  equalization  tasks,  yet  excels  when  com-
bined with XM.

Similarly,  the  two-dimensional  maps  of  the  NMSE,
SER and MC of QRC in the parameter space of Q and β
are  depicted  in Fig. 6.  The  remarked  regions  in Fig. 6
show  the  optimal  parameter  space,  where  the  claw-like
structures are consistent well with Fig. 5(d−f), i.e., a non-
negligible  decrease  in  performance  will  occur  when β is
quantized  in  half-integer  increments. Figure 6(a−c) and
Fig. 6(d−f) showcase the results without and with AF, re-
spectively.  It  can  be  found  that  when  the  transient  re-

sponse matrixes [Vx, Vy] are combined with the extend-
ed matrices [Vfx, Vfy] obtained from AF, the optimal pa-
rameter space of QRC will expand. However, the effect of
AF on MC exhibits marginal improvement, as MC main-
ly relies on the input or the structure of the system itself,
like the kernel size Q and the step coefficient β of QC, or
the  delay  time τ of  the  FL,  rather  than  the  nonlinear
mapping in the output.

Additionally,  the  distinct  data  injection  methods  of
QRC  are  considered,  where  our  findings  suggest  that
parallel injection of the original and encoding data holds
significant  potential  for  time-related  tasks  (see  Supple-
mentary information, Section 2). 

Experiment results
In the experiment, we fix the temperature of the VCSEL
at  28.82  °C,  and  the  bias  current  at  2.15  mA,  which  is
slightly below the threshold current of 2.16 mA52. At this
condition,  the  central  wavelengths  of  XM  and  YM  are
around 1558.372 nm and 1558.240 nm, respectively, and
the output of the free-running VCSEL is 0.4856 μW ap-
proximately.  The central wavelengths of two TLs are set
at  1558.372  nm  and  1558.240  nm,  implementing  injec-
tion without frequency detuning. Here, the XM and YM
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possess  similar  output  strengths,  so  both  polarization
modes  can  simultaneously  handle  various  loaded  data
for parallel  processing.  The injection powers of  the VC-
SEL and the feedback power of the FL are adjusted by the
attenuators. In the experiment, the injection power of the
dual modes is set to be almost the same. This experimen-
tal  structure  is  greatly  simplified  due  to  the  absence  of
the FL, making it easier to integrate and more flexible for
parameter selection. For the FFRC and QRC, the impact
of  the  injection  power  on  the  performance  is  explored.
For the TDRC, the injection power is fixed at 1292.4 μW
(almost equal to 1297.2 μW, corresponding to the maxi-
mum of the considered injection power of the FFRC and
QRC),  where  the  effect  of  feedback  strength  is  uncov-
ered.  It  is  worth  noting  that  the  introduced  noise  be-
tween  the  experimental  equipment  or  optical  compo-
nents  poses  challenges  in  achieving  the  expected  high
performance acquired in the simulation phase.

Figure 7 illustrates  the  experimental  results  for  com-
paring the FFRC, TDRC and QRC on the previously in-
troduced  tasks  just  as  we  did  in  simulations. Figure
7(a−c) display expected trends, similar to those shown in
Fig. 3(b−d).  The  existence  of  FL  can  undoubtedly  im-
prove  the  performance  at  moderate  feedback  strength,
but  excessive  feedback  strength  can  disrupt  the  stable
state  of  the  system28,51,  thereby  reducing  the  perfor-
mance.  Specifically,  the optimal NMSE, SER and MC of
the TDRC can be achieved at 0.0169, 0.0267 and 1.9263,
respectively. When focusing on the FFRC and QRC, the

performance is almost synchronously improved with the
increase of the injection power. It is mainly attributed to
an improvement in the quality of the transient response
matrixes  due  to  the  improved  signal-to-noise  ratio.  The
optimal  performance of  the NMSE,  SER and MC in the
considered  injection  power  can  achieve  0.0411,  0.0572,
and 0.4895  for  the  FFRC,  as  well  as  0.0157,  0.0027,  and
3.4605  for  the  QRC.  Obviously,  when  the  system  lacks
memory  ability,  there  will  be  a  significant  decrease  in
performance  yet  can  be  improved  by  the  proposed  QC.
Interestingly, QRC, whose memory ability is provided by
the encoding data, exhibits excellent performance in sev-
eral kinds of benchmark tasks, especially in discrete data
processing  and  memory  ability.  Meanwhile,  compared
with TDRC, QRC also demonstrates superiority in ener-
gy  consumption  due  to  lower  injection  power  require-
ments  and  reduced  power  loss.  The  flexible  parameter
configurations in QRC allow for the reduced demand of
injection  power,  in  turn  reducing  energy  consumption,
whereas  the  FL  in  TDRC  often  results  in  higher  injec-
tion power  to  ensure  the  system working in  a  stable  re-
gion28.  For  instance,  in  the  channel  equalization  task,
QRC and TDRC will exhibit comparable performance in
experimental  (simulated)  conditions  when  the  injection
power (strength) is approximately 600 μW and 1300 μW
(9 ns−1 and 20 ns−1), as illustrated in Fig. 7(b) [Fig. 3(c)].
Additionally,  QRC  avoids  the  extra  energy  costs  from
beam  splitting  or  coupling  in  FL,  thus  improving  the
overall energy efficiency.
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Figure 7(d) further shows the details of QRC on non-
linear  channel  equalization.  The  performance  of  loaded
encoding data  through YM is  far  inferior  to  XM, which
loads  original  data.  However,  significant  performance
improvement  will  occur  after  merging  the  transient  re-
sponse  matrixes  obtained  from  XM  and  YM,  which  is
highly consistent with the simulation results in Fig. 5(b)
and 5(e). Figure 7(e) showcases  the  memory  details  of
the three networks mentioned above. The graph demon-
strates  that  the  superior  memory  capacity  of  the  QRC,
can maintain a mc(4) value of 0.7787, indicative of its re-
tention  for  the  4th past  input  signal.  In  contrast,  the
mc(4)  of  the  FFRC  (TDRC)  drops  sharply  from  0.4194
(0.9649) to 0.0027 (0.0024). Thus, the enhanced memory
capability of QRC also renders it more adept at handling
complex tasks.

Finally, the influence of the number of virtual nodes is
also taken into account through oversampling [see Sup-
plementary  information,  Section  3],  which  will  lead  to
higher  accuracy  and  faster  computational  speed53.  The
optimal average value of the NMSE (SER, MC) is 0.0054
(0.001,  3.8818)  achieved  at  the  total  neuron  number  set
at  1600  (800,  800),  respectively.  Additionally,  the  com-

parison of this work and existing competitive experimen-
tal results based on semiconductor lasers is summarized
in  Supplementary  information,  Section  4,  Table  S1,
where  our  scheme  offers  high-speed  and  high-perfor-
mance parallel  computing through a  simple,  yet  flexible
structure with the off-the-shelf hardware configuration. 

Conclusions
In this study, we have proposed and validated both theo-
retically and experimentally a novel QRC with enhanced
memory capabilities,  which removes the dependence on
FL and demonstrates advanced performance in a stream-
lined  structure.  As  a  proof-of-concept  prototype,  we
have  utilized  an  easily  integrated  low-power  VCSEL for
parallel  processing.  The  dual  polarization  modes  of  the
VCSEL enable original  and encoding data insertion and
processing  in  parallel,  reducing  processing  latency  by
half. The encoding data from QC endows QRC with the
desired memory capability and the crosstalk between XM
and YM links the original and encoding data, mimicking
the  input-memory  interaction in  a  human brain.  More-
over,  both  simulation  and  experimental  results  consis-
tently  demonstrate  the  feasibility  and superiority  of  this
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QRC scheme compared to the well-studied TDRC. Elim-
inating  the  reliance  on  FL  via  pre-processing  encoding
offers  a  viable  solution  for  simplifying  experimental  se-
tups,  easing  hardware  implementation  challenges,  and
allowing  for  more  flexible  parameter  configurations,
which  pave  the  way  for  the  development  of  high
integration.

Future  work  will  be  focused  on  extending  the  pro-
posed  QC  to  the  recently  widely  studied  deep  RCs54,55,
noted  for  their  excellent  ability  to  handle  complicated
tasks. Despite the challenge of hardware implementation
due to their extremely complex structure,  QC may offer
an  auspicious  approach  to  enhance  the  extensibility  of
deep physical ANNs.
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