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Soliton microcomb generation by cavity polygon
modes
Botao Fu1,4, Renhong Gao1,6, Ni Yao2, Haisu Zhang3, Chuntao Li3,
Jintian Lin1,5*, Min Wang3, Lingling Qiao1 and Ya Cheng1,3,4,6,7*

Soliton microcombs, which require the hosting cavity to operate in an anomalous dispersion regime, are essential to inte-
grate photonic  systems.  In  the past,  soliton microcombs were generated on cavity  whispering gallery  modes (WGMs),
and the anomalous dispersion requirement of the cavity made by normal dispersion material was achieved through struc-
tural dispersion engineering. This inevitably degrades the cavity optical quality factor (Q) and increases pump threshold
power for soliton comb generation. To overcome the challenges, here, we report a soliton microcomb excited by cavity
polygon modes. These modes display anomalous dispersion at near-infrared while optical Q factors exceeding 4×106 are
maintained. Consequently, a soliton comb spanning from 1450 nm to 1620 nm with a record low pump power of 11 mW
is demonstrated, a three-fold improvement compared to the state of the art on the same material platform.
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Introduction
Optical  frequency  comb (OFC)  sees  a  plural  of  applica-
tions in building optical clocks, searching Earth-like exo-
planets,  exploring  quantum  optics,  optical  frequency
synthesis,  lidar,  telecom  communication,  microwave
photonics,  and  many  others1−9.  In  recent  years,  on-chip
soliton microcomb, which finely balances the dispersion
with  Kerr  nonlinearity1−3,  has  become  one  of  the  most
important members of the comb family due to their high
efficiency,  compact  size,  robustness,  and high repetition
rate,  providing  new  opportunities  in  miniaturizing  and

has been demonstrated in various material platforms. To
form a stable soliton pulse train in time for comb genera-
tion,  the  cavity  is  required  to  operate  in  an  anomalous
dispersion  regime.  In  the  past,  such  a  requirement  was
fulfilled through structural dispersion engineering of the
cavity whispering gallery mode (WGM), which is highly
sensitive  to  geometrical  dispersion  and  fabrication  im-
perfection10,  leading  to  degraded Q-factors  and  higher
pump  threshold11.  Moreover,  in  popular  material  plat-
forms such  as  lithium niobate  (LN)12−16,  which  has  high
second-order  nonlinearity  and  strong  electro-optic  ef-
fect17−28,  soliton comb generation can be easily  impaired 
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by the competing stimulated Raman scattering due to its
high Raman activities, causing even higher pump thresh-
old  power  for  soliton  formation.  For  these  reasons,  the
Kerr  soliton  microcomb  has  not  yet  been  observed  in
single  normal  dispersion  microresonators,  allowing  low
pump  power  operation  by  leveraging  the  ultra-high Q
factors.

Here,  in  contrast  to  using WGM, we generate  soliton
microcomb  with  a  high-Q polygon  mode.  Excited  by
weak  perturbations  of  a  tapered  fiber,  cavity  polygon
modes are formed through the coherent combination of
quasi-degenerate WGMs. Unlike the WGM counterpart,
light in polygon modes propagates in a trajectory that is
mostly  away  from  the  rough  cavity  edge  and  light  cou-
pling  element.  Consequently,  the  edge  induced  scatter-
ing  loss  is  significantly  reduced and the  coupling  loss  is
low  even  the  tapered  fiber  is  placed  in  contact  with  the
cavity, leading to higher overall Q factor29−32. Meanwhile,
the spatial  distribution characteristics of polygon modes
have  small  modal  overlaps  with  other  mode  families,
which further suppresses Raman effects and mode cross-
ings.  More  importantly,  compared  with  WGMs,  poly-
gon mode induced by weak perturbation is protected by
the classical orbit, thus a lower dispersion occurs in poly-
gon  mode  due  to  its  stable  geometrical  conditions.  As
shown in this article, polygon modes possess anomalous
group velocity dispersion (GVD) of −4.9 ps2/km even the
fundamental WGM displays a normal dispersion of 25.5
ps2/km,  enabling  soliton  microcomb ranging  from 1450
nm  to  1620  nm.  Due  to  these  advantages,  an  on-chip
pump  power  threshold  as  low  as  11.1  mW  is  recorded,
which is only one third of the state of the art demonstrat-
ed on LN platform25−28. 

Soliton microcomb formation in high-Q LN
microresonators by mode recombination
 

The fabrication of the normal dispersion LN
microresonator
To demonstrate  the  Kerr  soliton microcomb generation
in the telecom band through coherent mode recombina-
tion,  a  Z-cut  LN  microdisk  with  transverse-electrically
(TE)  polarized  fundamental  WGMs  under  normal  dis-
persion conditions is  fabricated by photolithography as-
sisted  chemo-mechanical  etching12.  The  details  of  the
fabrication can be found in the Supplementary informa-
tion Section S1. The microdisk possesses a radius of 62.3
μm, a wedge angle of 21°, a thickness of ~950 nm, and an
ultra-smooth surface with roughness ~0.1 nm, as shown
in the inset of Fig. 1(a). 

Raman comb generated from fundamental WGM
sequences with normal dispersion
We firstly pump the LN microdisk with the fundamental
TE polarized WGM around 1561.32 nm via  the  tapered
fiber with a diameter of 2 μm. The tapered fiber is placed
in  contact  with  the  edge  of  the  microdisk  to  couple  the
light  into  and  out  of  the  microdisk.  The  experimental
setup  can  be  found  in  the  Supplementary  information
Section  S2.  Pump  power  is  controlled  at  a  low  level  to
avoid nonlinear and thermo-optic effects for characteriz-
ing the mode structure. The transmission spectrum with
the  Lorentz  profile  in Fig. 1(a) shows  a  loaded Q factor
QL of  3.0×106 at  1561.32  nm. Figure 1(b) depicts  the
overall transmission spectrum of WGMs as a function of
wavelength ranging from 1555 nm to 1570 nm, indicat-
ing a  large  number of  high-order  spatial  WGM families
exist within each free-spectral range (FSR) of the funda-
mental  WGMs.  Such  dense  high-order  WGM  families
inevitably  trigger  mode  crossing  and  stimulated  Raman
scattering when the fundamental  WGM is pumped, due
to  the  various  Raman-active  phonon  bands  in  LN  and
high modal overlap between WGMs12−16.

When the on-chip pump power is  raised to 54.1 mW
at 1561.33 nm, the Raman comb is observed with a broad
spectral  range,  as  demonstrated  in Fig. 1(c).  Several
comb lines  of  high  intensity  within  the  broad  envelope,
corresponding to the Raman phonon frequency shifts of
235  cm−1,  436  cm−1,  and  878  cm−1 are  observed.  When
the pump wavelength is  blue detuned to the wavelength
of 1561.31 nm, comb lines spanning over a broader spec-
trum range from 1450 nm to 2230 nm are generated due
to the multiple and cascaded Raman scattering, as shown
in Fig. 1(d).  The  FSR  of  the  main  comb  lines  around
1562  nm  is  344.29  GHz,  as  depicted  in Fig. 1(e).  More-
over,  several  sub-comb lines  between the  adjacent  main
comb  lines,  which  are  resonant  with  spatial  high-order
WGMs  induced  by  mode  crossing,  can  be  observed,  as
shown in Fig. 1(f).  These  spectra  indicate  the  comb line
phases are not mutually locked. In this condition, we are
not able to generate the Kerr soliton because of the nor-
mal  dispersion of  fundamental  WGMs as  well  as  multi-
ple strong Raman scattering and mode crossing. 

Soliton comb generated from high-Q polygon mode
sequences with anomalous dispersion by mode
recombination
The  difficulties  in  the  generation  of  soliton  microcomb
can  be  overcome  through  the  coherent  combination  of
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WGMs  to  satisfy  anomalous  dispersion  conditions  re-
quired by  soliton comb formation in  the  LN microdisk.
Here,  we  introduce  such  a  mode  control  technique  that
can induce the formation of polygon mode protected by
classical  orbits  through  weak  perturbations29−32,  thereby
overcoming  the  influence  of  boundary  curvature  of  the
microdisk  and  significantly  increasing  the  freedom  in

setting  soliton  parameters.  The  details  of  the  polygon
mode formation utilizing the coherent mode recombina-
tion can be found in the Supplementary information Sec-
tion S3. The polygon mode at the wavelength of 1542.80
nm  is  characterized  by  tunning  the  input  wavelength
across the resonance of the microdisk, and the measured
loaded Q factor QL is  4.13×106 by  Lorentz  fitting  of  the
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Fig. 1 | Raman comb generation. (a) The loaded Q factor of the fundamental WGM around 1561.32 nm wavelength. Inset: the scanning elec-

tron microscope (SEM) image of the fabricated microdisk, and the scale bar is 20 μm. (b) The transmission spectrum of the WGMs, where the

fundamental mode family is labeled with red dots. (c) The spectrum of Raman comb when pumped at 1561.33 nm. Inset: The optical micrograph

of the fundamental WGMs. (d) The spectrum of Raman comb when pumped at 1561.31 nm. (e) and (f) The enlarged spectral region labelled with

the colored boxes in Fig. 1(d).
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transmission spectrum as  shown in Fig. 2(a).  This  load-
ed Q factor is higher than that of the fundamental WGM
because  the  polygon  mode  suffers  from  less  scattering
loss on its propagation path29,32,  which leads to a signifi-
cant  reduction  of  the  pump  power  for  soliton  micro-
comb  generation.  The  optical  micrograph  of  the  reso-
nant mode confirms the formation of a square mode, as
depicted in  the  inset  of Fig. 2(a).  It  is  worth noting that
the  polygon  mode  is  frequently  confined  inside  the  mi-
crodisk  and  endures  reduced  defect  from the  microdisk
sidewall,  in  comparison to  the  fundamental  WGM. The
mode  spectrum  obtained  under  the  coupling  condition
of polygon mode is characterized by scanning the pump
laser  wavelength,  as  shown  in Fig. 2(b).  Although  there
are  also  lots  of  high-order  modes  within  one  FSR,  once
the pump light wavelength is tuned to excite one square
mode,  only  the  modes  of  sufficient  spatial  overlap  with
the square mode can be efficiently excited29 through cas-
caded  four-wave  mixing  processes  for  the  soliton  comb
generation.  The  rest  of  the  high-order  modes,  although

can in principle  survive  in the microdisk resonator,  will
have  little  chance  of  being  excited  with  the  pump  laser
due to the insufficient mode overlap between the two.

By  scanning  the  input  wavelength  across  the  reso-
nance  from  the  red-detuned  side  to  the  blue-detuned
side,  the  single-soliton  comb  spanning  a  spectral  range
from  1450  nm  to  1620  nm  is  generated  at  the  pump
wavelength of 1542.79 nm and the on-chip pump power
of  11.1  mW,  which  is  confirmed  by  a  smooth  sech2

shaped spectrum envelope, as presented in Fig. 2(c). The
FSR of the comb lines is 374.31 GHz. Figure 2(d) shows
the  low-frequency  radio-frequency  (RF)  noise  spectrum
of the soliton comb in Fig. 2(c).  The sech2 shaped enve-
lope  in Fig. 2(c) shows  a  flat  spectrum  extending  to  the
direct-current  (DC)  end in Fig. 2(d),  evidencing  the  co-
herent nature of the soliton state. 

Numerical modeling
To  understand  the  underlying  physics  behind  the  soli-
ton comb generation in the polygon modes, the dispersion
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is  calculated31.  The  effective  index  of  the  WGM  can  be
expressed as follows, 

neff = ncosΘ , (1)
cosΘ

cosΘ
x = nkR

cosΘ

where n and  are the effective index of the thin film
and the mode chord angle cosine, respectively. The 
can be represented by m/x,  here m and  are the
azimuthal mode number and eigenvalue, and k and R are
the  wave  vector  in  vacuum  and  the  radius  of  the  mi-
crodisk, respectively.  represents the ratio of the an-
gular  momentum of  the  microdisk  to  the  total  momen-
tum, which can be used to describe the modal geometri-
cal characteristic. It is worth noting that the geometrical
condition of the WGMs varies with the azimuthal mode
number,  and the  modal  dispersion of  the  WGM cannot
be  ignored  in  microdisks.  In  contrast,  the  formation  of
such polygonal modes relies on the equilibrium between
quasi-degeneracy  of  WGMs  within  the  microresonator
and mode recombination induced by perturbation. Gen-
erally,  the  perturbation  introduced  by  the  optical  ta-

pered fiber is exceedingly weak, primarily causing the ex-
change  of  components  between  adjacent  eigenmodes
with geometrical features closest to each other. The per-
turbation intensity solely hinges on the difference in rela-
tive  quantum  numbers,  thereby  resulting  in  the  recom-
bined  modes  possessing  symmetry  akin  to  classical  or-
bits.  The  detailed  comparison  of  the  modal  dispersion
between  the  fundamental  WGM  and  the  square  mode
families  can be  found in  the  Section Discussion.  The  ef-
fective  refractive  index  of  the  square  mode  can  be  ex-
pressed as, 

nsquare
eff = neff

cosΘsquare

cosΘλ,R
. (2)

Based on Eq.  (1) and Eq.  (2),  the group refractive  in-
dices of fundamental TE0 and square modes as functions
of  wavelengths  are  presented  in Fig. 3(a).  Simulated
group velocity dispersion (GVD) curves of  fundamental
TE0 and square modes are shown in Fig. 3(b).  Here,  the
grey and blank regions indicate the anomalous dispersion
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Dint

VNL

cosΘλ,R

(GVD<0) and normal dispersion (GVD>0), respectively.
The  black  dashed  line  represents  the  zero-dispersion
point.  We  find  that  the  fundamental  mode  TE0 at  1550
nm  wavelength  is  of  a  GVD  of  25.5  ps2/km,  indicating
the  normal  dispersion  condition  and  in  turn,  hindering
the comb generation. In contrast, the GVD of the square
mode at 1550 nm is calculated to be −4.9 ps2/km, featur-
ing an anomalous dispersion. The striking difference in-
dicates  the  feasibility  of  dispersion  engineering  utilizing
the  generation  of  the  polygon  mode. Figure 3(c) illus-
trates the integrated dispersion  of the TE0 mode and
square mode changes with relative mode number, which
agrees  well  with  the  measured  result  denoted  by  black
dots.  Furthermore,  the  effective  cavity  nonlinear  vol-
umes2 of  the WGMs and square mode as a function
of  are compared in Fig. 3(d). Here the black and
red dashed lines are WGMs and square modes with dif-
ferent  excited  states31,  respectively,  and  the  blue  circle
represents  the  fundamental  square  mode.  We  find  that
the mode volume of the fundamental square mode is re-
duced  significantly  compared  to  the  corresponding
WGM, which reduces the threshold of comb generation.
 

Discussion
Generally, abundant quasi-degenerate modes exist in mi-
croresonator, the neighboring WGMs with the fixed an-
gular quantum number difference with N allow the mode
recombination,  forming the polygon modes with N-fold
symmetry. More details are discussed in ref.31. Generally,
the weak perturbation introduced by the tapered fiber is
not strong enough to cause longitudinal mode energy ex-
change,  only  involves  the  quasi-degenerated  mode  se-
quence recombination. To clearly describe the difference
between WGMs and polygon modes, the mode distribu-
tion  characteristics  are  demonstrated  in Fig. 4.  We  ob-
serve  that,  the  mode  orbit  is  related  to  the  mode  eigen-
value,  as  plotted  by Fig. 4(a).  The  mode  distribution
characteristics  and  close-up  images  of  the  WGM  orbits
for  the  relative  mode  numbers  of −50,  0,  and  50  of  the
fundamental  WGM are  shown in Fig. 4(b) and 4(c),  re-
spectively.  Interestingly,  the  mode  distribution  depends
on  the  relative  mode  number,  thus  modal  dispersion  is
generated. In contrast, the formation of square orbit de-
pends  on  the  microresonator  mode  degeneracy  con-
trolled  by  classical  orbit,  thus  the  polygon  mode  is
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constrained  by  the  classical  orbits  under  conditions
when  the  perturbation  depends  only  on  the  relative
quantum  number  difference,  as  illustrated  in Fig. 4(d).
The  mode  distribution  characteristics  and  close-up  im-
ages  of  the  square  orbits  for  the  relative  mode numbers
of −50, 0, and 50 are demonstrated in Fig. 4(e) and 4(f),
respectively,  validating the square mode is  strictly limit-
ed by the classical orbits.

To further illustrate the evolution of the soliton comb
generation, the laser wavelength is scanned from the red-
detuned side  of  1542.85  nm to  the  blue-detuned side  of
1542.77 nm with a speed of 6.3 GHz/ms. When the laser
pump  wavelengths  are  set  at  1542.83  nm  and  1542.82
nm,  four-wave  mixing  and  cascaded  four-wave  mixing
for  spectral  broadening  are  subsequently  observed,  as
demonstrated  in Fig. 5(a) and 5(b),  respectively.  When
the laser wavelength is tuned to 1542.81 nm, the chaotic
comb  is  generated  as  shown  in Fig. 5(c),  which  is  con-
firmed  by  the  curvy  low-frequency  RF  noise  spectrum
shown in the inset of Fig. 5(c). As the laser wavelength is
further  blue-detuned  to  1542.79  nm  wavelength,  a  soli-

ton step appears in the transmission spectrum as plotted
in Fig. 5(d),  in consistent with the soliton comb genera-
tion shown in Fig. 2.

To  further  improve  the  integration  of  the  device,  the
tapered fiber can be replaced by an on-chip waveguide33.
Generally,  broadband  anomalous  dispersion  engineer-
ing34,  ultra-high Q factors35,  spectral  shaping and power
amplification  can  be  utilized  to  make  the  generated
comb more practical. 

Conclusions
In conclusion, we have demonstrated Kerr soliton gener-
ation  in  the  LN  microdisk  of  normal  dispersion  in  the
telecom  band.  Ultra-high Q polygon  modes  are  coher-
ently formed through coherent mode recombination and
utilized to realize anomalous dispersion, which facilitate
soliton  comb  generation  with  low  pump  power  opera-
tion and greatly  suppress  the  mode crossing and stimu-
lated  Raman  scattering.  Our  technique  makes  the  Kerr
soliton microcomb generation insensitive to the geomet-
rical dispersion of the microresonators, and allows higher
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Q factors for low pump power operation, which has pro-
found  implication  because  otherwise  there  is  an  in-
evitable  high  price  to  pay  for  achieving  a  qualified  mi-
croresonator that has an ultra-high Q factor and anoma-
lous  dispersion  property,  allowing  soliton  microcomb
generated with low pump power.
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