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Agile cavity ringdown spectroscopy enabled by
moderate optical feedback to a quantum
cascade laser
Qinxue Nie1, Yibo Peng2, Qiheng Chen1, Ningwu Liu1, Zhen Wang1,
Cheng Wang2* and Wei Ren 1*

Cavity ringdown spectroscopy (CRDS), relying on measuring the decay time of photons inside a high-finesse optical cavi-
ty, offers an important analytical tool for chemistry, physics, environmental science, and biology. Through the reflection of
a slight amount of phase-coherent light back to the laser source, the resonant optical feedback approach effectively cou-
ples the laser beam into the optical cavity and achieves a high signal-to-noise ratio. However, the need for active phase-
locking mechanisms complicates the spectroscopic system, limiting its  primarily  laboratory-based use.  Here,  we report
how passive optical feedback can be implemented in a quantum cascade laser (QCL) based CRDS system to address
this issue. Without using any phase-locking loops, we reflect a moderate amount of light (–18.2 dB) to a continuous-wave
QCL simply using a fixed flat mirror, narrowing the QCL linewidth from 1.2 MHz to 170 kHz and significantly increasing
the laser-cavity coupling efficiency. To validate the method’s feasibility and effectiveness, we measured the absorption
line (P(18e), 2207.62 cm−1) of N2O in a Fabry–Perot cavity with a high finesse of ~52000 and an inter-mirror distance of
33 cm. This agile approach paves the way for revolutionizing existing analytical tools by offering compact and high-fideli-
ty mid-infrared CRDS systems.
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Introduction
Cavity ringdown spectroscopy (CRDS), first invented for
use  with  pulsed  lasers1 and  subsequently  adapted  with
continuous wave (CW) lasers2, is a well-established spec-
troscopic  technique  renowned  for  its  high  sensitivity,
resolution and accuracy3−6. Different from direct absorp-
tion  spectroscopy,  which  measures  intensity
attenuation7−10,  CRDS  extracts  the  absorption  informa-
tion  by  measuring  the  ringdown  time  of  photons  in  an
optical cavity. This method employs a high-finesse opti-

cal  cavity  featuring  two  (or  more)  high-reflectivity  mir-
rors separated by a certain distance (known as the cavity
length),  often  used  to  increase  the  effective  path  length.
As  a  result,  the  intracavity  gas  absorption  is  relevant  to
the ringdown time by the following equation2:
 

α =
1
c

(
1
τ
− 1

τ0

)
, (1)

where α is  the  absorption  coefficient  of  the  gas  inside
the  cavity, c is  the  speed  of  light,  and τ0 and τ are  the 
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ringdown time of the cavity in vacuum and the presence
of gas,  respectively.  Hence,  CRDS is  less  sensitive to the
intensity noise of the laser source compared to direct ab-
sorption spectroscopy. Over the past decades, CRDS has
been well adapted to different types of lasers such as dis-
tributed  feedback  (DFB)  diode  lasers,  external  cavity
diode  lasers  (ECDLs),  quantum  cascade  lasers  (QCLs)
and  interband  cascade  lasers  (ICLs),  for  many  spectro-
scopic and sensing applications11−16.

High-sensitivity  CRDS  typically  employs  an  optical
cavity  with a  higher  finesse  or  a  larger  inter-mirror  dis-
tance.  This  evitably  reduces  the  transmission  width  of
the cavity mode down to kHz level, significantly narrow-
er than the linewidth of  single-mode tunable lasers  (i.e.,
DFB lasers),  normally  in  the  MHz range.  Hence,  only  a
fraction  of  the  incident  light  can  be  effectively  coupled
into  the  optical  cavity,  leading  to  a  noisy  or  distorted
output signal17,18.  Effectively injecting the laser  beam in-
to  the  high-finesse  cavity  remains  a  challenge,  which
could be addressed by minimizing the laser linewidth19,20.

Utilizing optical feedback, which reflects emitted light
coherently back into the electromagnetic field inside the
laser  cavity,  proves  to  be  an  effective  approach  for
linewidth reduction or laser stabilization21.  Here,  we de-
fine  the  feedback  rate  (φ)  as  the  ratio  of  the  power  re-
turned  to  the  laser  to  the  original  output  power.  Weak
optical  feedback  (φ < −30  dB)  can  narrow  the  laser
linewidth  if  the  phase  of  the  feedback  light  is  precisely
controlled to compensate for the phase mismatch caused
by environmental variations22. In this scheme, a V-shape
optical  cavity  is  often  used,  where  feedback  comprises
only  the  light  leaked  from  the  optical  cavity.  Thus,  the
cavity-filtered  (narrow  spectrum)  phase-coherent  light
seeds  the  laser  and  narrows  the  emission  spectrum23.
This resonant optical feedback approach, known as opti-
cal  feedback  (OF)-CRDS24−27,  has  facilitated  advance-
ments  in  high-sensitivity  and  high-precision  molecular
spectroscopy.  However,  these  spectroscopic  systems  re-
quire the feedback light to be precisely in phase with that
inside  the  laser  gain  medium,  necessitating  an  active
phase-locking loop as a key element in OF-CRDS28. This
requirement  renders  the  measurement  system less  flexi-
ble, less robust, and more costly.

Moderate (φ = −30 dB to −10 dB) or strong (φ > −10
dB) optical feedback is mostly avoided in optical systems
due to the risk of coherence collapse, which easily desta-
bilizes  the  laser  and  significantly  broadens  the  laser
linewidth21,29.  However,  recent  findings  have  challenged

this  notion,  particularly  in  the  case  of  QCLs,  which  are
unipolar devices cascading electrons to directly generate
mid-infrared  radiation.  Due  to  their  ultrashort  carrier
lifetime  and  small  linewidth  broadening  factor30,  QCLs
may  exhibit  high  stability  against  moderate  and  strong
optical  feedback31.  In  fact,  studies  have  shown  that  the
linewidth  of  QCLs  gradually  becomes  insensitive  to  the
feedback  phase  with  increasing  feedback  rates32.  Hence,
there  is  potential  to  develop  an  OF-CRDS  system  for
molecular  spectroscopy  without  using  any  phase-lock-
ing schemes.

In this work, we demonstrate an agile method for per-
forming  low-noise  CRDS  by  employing  moderate  opti-
cal feedback into a QCL. Using a continuous-wave DFB-
QCL  with  MHz-level  linewidth  and  sub-mW  emission
power, we seed it with moderate optical feedback (−18.2
dB),  leading  to  a  significant  linewidth  narrowing  with-
out  the  need  for  any  phase  control.  As  a  proof-of-con-
cept  experiment,  we  tune  the  QCL  wavelength  across  a
mid-infrared absorption line  (4.53  μm) of  nitrous  oxide
(N2O), which is diluted to ppb levels and filled in a high-
finesse  (~52000)  optical  cavity.  Our  method  paves  the
way  for  the  advancement  of  next-generation  CRDS  us-
ing  QCLs  or  other  semiconductor  lasers,  offering  a
straightforward  configuration  suitable  for  a  wide  range
of spectroscopic applications. 

Principle and experimental setup
Figure 1 depicts  the  schematic  diagram  of  the  proposed
QCL-based  CRDS  with  moderate  optical  feedback.  The
commercial  QCL  (Hamamatsu  Photonics)  undergoes
polarization control via a half-wave plate (HWP), and is
then split by an acousto-optic modulator (AOM): the ze-
ro-order  (undiffracted)  portion  is  used  for  optical  feed-
back, while the first-order beam is sent to a Fabry–Perot
cavity for cavity ringdown measurements. A gold-coated
plane  mirror  reflects  the  zero-order  beam  to  the  QCL,
wherein  the  optical  feedback  rate  can  be  finely  adjusted
via  a  polarizing  beamsplitter  (PBS)  and  monitored  by
routing  idle  light  to  a  power  meter.  It  is  worth  noting
that  power  monitoring  is  not  required  during  actual
ringdown  measurements.  The  first-order  diffraction  is
injected  into  the  Fabry–Perot  cavity,  which  comprises
two plano-concave dielectric mirrors. Note that an opti-
cal isolator (34 dB isolation) is used to block the light re-
turned from the optical cavity. The two mirrors are sepa-
rated  by  33  cm,  and  the  inter-mirror  distance  can  be
dithered  via  a  piezoelectric  actuator  (PZT)  attached  to
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the rear mirror of the cavity. To ensure ringdown events
occur  at  each  laser  frequency,  the  longitudinal  mode  of
the  cavity  is  swept  using  the  PZT.  The  cavity  output  is
captured  by  a  mercury  cadmium  telluride  (MCT)  pho-
todetector  with  a  bandwidth  of  10  MHz.  A  segment  of
the  photodetector  signal  is  sent  to  a  comparator  circuit,
which triggers the AOM driver to interrupt the first-or-
der beam and synchronizes the data acquisition card for
recording  the  ringdown  signal.  Hence,  the  entire  OF-
CRDS  system  is  established  without  relying  on  any
phase-locking loop, which significantly reduces the con-
figuration complexity. 

Results and discussion
 

Characterization of QCL linewidth and ringdown
signal
We  first  quantitatively  investigated  the  effect  of
linewidth  reduction  using  the  passive  optical  feedback
approach. To assess the QCL linewidth32, the optical cav-
ity  described  in Fig. 1 was  replaced  by  a  1-cm  gas  cell
filled  with  15-Torr  pure  CO  to  convert  laser  frequency
noise  into  intensity  noise.  As  shown  in Fig. 2(a),  the
AOM is turned on to ensure the first-order beam consis-
tently  enters  the  reference  gas  cell  containing  carbon
monoxide (CO). A typical transmission signal is illustrat-
ed  in Fig. 2(b),  with  the  blue  side  of  the  CO absorption
line at 2209.5 cm−1 serving as a frequency discriminator.
This gives a frequency-intensity conversion factor of 45.2

mV/MHz  in  a  linear  frequency  span  of  approximately
150 MHz; further details are available in Supplementary
information  Section  1.  As  shown  in Fig. 2(c),  the  free-
running QCL exhibits a linewidth of about 1.2 MHz with
a  0.2-ms observation time,  decreasing  to  a  minimum of
170  kHz  at  a  feedback  rate  of −16.8  dB.  However,  in-
creasing  the  feedback  rate  beyond  this  point  does  not
further reduce the linewidth; instead, it  results in multi-
mode emission when the feedback rate exceeds −11.6 dB.

We  then  directed  the  first-order  QCL  beam  into  the
optical  cavity,  as  shown  in Fig. 1,  to  explore  the  cavity
output  at  different  levels  of  optical  feedback.  To initiate
laser-cavity resonance, the cavity length was swept every
0.1 s using a 5-Hz triangle waveform. Figure 3 compares
cavity-transmitted signals of the QCL with different opti-
cal  feedback  rates  alongside  the  signal  of  the  free-run-
ning  QCL,  spanning  two  periods;  four  cavity-transmit-
ted signals are shown in the same figure. It is evident that
the cavity-transmitted signal exhibits significant fluctua-
tions  when  the  QCL  is  operating  in  free-running  mode
or with weak optical feedback (−49 dB). In contrast,  the
cavity-transmitted signal shows greater consistency with
moderate optical feedback (−18.2 dB and −14.8 dB), dis-
playing an expected asymmetric profile characterized by
a  rapid  build-up  phase  followed  by  a  gradual  decay33.
More  importantly,  the  signal  amplitude  reaches  a  large
value  of  0.8  V.  In  the  following  cavity  ringdown
measurements,  we  used  the  feedback  rate  of −18.2  dB,
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considering  the  relatively  favorable  signal-to-noise  ratio
(SNR).

To showcase the effectiveness of the proposed method,
we reduced the QCL power to a very low level of 0.4 mW
by using a lower injection current to investigate the capa-
bility of observing the ringdown events under low-pow-

er  conditions.  Upon  the  photodetector  signal  reaching
the threshold voltage (i.e., 80 mV), the incident laser was
promptly  interrupted  by  the  AOM  to  initiate  an  intra-
cavity  ringdown. Figure 4(a) illustrates  a  representative
ringdown event, which can be well-fitted by an exponen-
tial function. The ringdown time constant is determined
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to  be  18.25  μs  for  the  cavity  in  a  vacuum  (see  Supple-
mentary  information  Section  2),  corresponding  to  a  re-
flectivity of 99.994% for the two identical cavity mirrors.
The  measurement  is  in  good agreement  with  the  nomi-
nal reflectivity of 99.992%, provided by the manufactur-
er  (LohnStar  Optics  Inc.).  The  methods  of  determining
the ringdown time and the mirror reflectivity are provid-
ed  in  Supplementary  information  Section  2.  Given  the
known  mirror  reflectivity  and  cavity  length,  the
linewidth  of  the  optical  cavity  is  determined  to  be  8.7
kHz. The system’s stability was also evaluated by contin-
uously  recording  over  300  ringdown  events  (Fig. 4(c))
and  calculating  the  Allan  deviation  of  the  cavity  ring-
down time. As depicted in Fig. 4(b), the precision of the
ringdown time measurement can be improved to 0.02 μs
after averaging 20 ringdown events. 

Spectrometer performance
The  QCL-based  CRDS  system  is  characterized  by  mea-
suring  the  absorption  line  of  N2O.  Over  the  spectral
range  covered  by  the  DFB-QCL  (2207-2212  cm−1),  we
aim  to  exploit  the  strong  N2O  absorption  line,  P(18e),
centered at 2207.62 cm−1. This particular absorption line
exhibits  minimal spectral  interference from other atmo-
spheric molecules, which is illustrated in Supplementary
information  Section  3  through  spectral  simulation.  To
demonstrate the high sensitivity and reliability of the de-
veloped  CRDS  system,  we  conducted  measurements  of

ppb-level  N2O  mixtures  by  diluting  a  N2O/N2 cylinder
with a certified volume fraction of 1.2 ppm N2O. Howev-
er, we found that the ultrahigh-purity (> 99.999%) N2 gas
cylinder  used  for  dilution  contains  about  74  ppb  N2O
and 85 ppb CO as impurities  (see Supplementary infor-
mation  Section  4).  A  similar  discovery  of  impurities  in
ultrahigh-purity N2 gas cylinders has also been reported
previously34.  To prepare the ppb-level  N2O gas samples,
we  diluted  the  certified  1.2  ppm  N2O  with  high-purity
helium  (He)  (>  99.995%)  using  a  high-precision  auto-
matic gas mixing system (LaSense Technology Ltd.). The
uncertainties  associated  with  the  nominal  concentra-
tions  are  mainly  attributed  to  the  accuracy  of  the  mass
flow controllers (±1%). It should be noted that N2O has a
tendency  for  surface  adsorption.  Hence,  all  subsequent
experiments  were  conducted  under  flowing  conditions
with a volume flow rate of 2 L/min to ensure a more ac-
curate nominal N2O concentration.

Figure 5(a) depicts the typical absorption spectrum of
10  ppb  N2O  measured  at  atmospheric  pressure;  the  ab-
sorption coefficient was derived from the ringdown time
using Eq.  (1).  Each  data  point  in  the  spectrum  was  ac-
quired by scanning the laser current in a step-wise man-
ner with a step size of 0.5 mA, characterized to align with
the cavity’s free spectral range (FSR). The absorption co-
efficient  at  each laser  frequency was  determined by tak-
ing  300  averages  of  the  ringdown  time  measurements.
The  measured  spectrum  can  be  well  fitted  by  the
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Lorentzian function, with a relative fitting residual with-
in 3%, as shown in the bottom panel of Fig. 5(a). The rel-
ative residual is  obtained by dividing the fitting residual
by the peak absorbance. The SNR of the measured spec-
trum is evaluated to be 75, which is obtained by dividing
the peak absorbance by the 1-σ standard deviation of the
absolute fitting residual. With the knowledge of the line-
strength,  gas  pressure,  and  line-shape  function,  the  vol-
ume  fraction  of  N2O  can  be  determined  from  the  mea-
sured absorption coefficient at 2207.62 cm−1 (see Supple-
mentary  information  Section  2). Figure 5(b) compares
the CRDS-determined volume fractions,  ranging from 1
to  10  ppb,  with  the  nominal  values  determined  by  the
mixing ratio. The high degree of linearity in the fit, with
an R-square value over 0.999, illustrates the accurate re-
sponse of the spectrometer to N2O measurements. Con-
sidering the  Allan deviation analysis  shown in Fig. 4(b),
the minimum detection limit of the spectrometer is eval-
uated  to  be  1.9×10−9 cm−1 in  absorption  coefficient  and
20 ppt in N2O concentration at atmospheric pressure. 

Conclusion
In conclusion,  our research demonstrates that moderate
optical  feedback  to  a  QCL  enables  agile  and  low-noise
CRDS. By employing an AOM to split the QCL beam in-
to  two  paths,  we  used  the  zero-order  beam  for  optical
feedback  and  directed  the  first-order  diffraction  to  the
optical  cavity  for  ringdown measurements.  Without  us-
ing  any  active  phase  control  of  the  reflected  light,  we
demonstrated  a  considerable  reduction  in  linewidth  us-
ing  moderate  optical  feedback  (–18.2  dB).  We  verified

the effectiveness of the spectrometer by resolving a mid-
infrared  absorption  line  of  ppb-level  N2O  with  a  high
SNR. Considering the similar behavior of ICLs35, this ap-
proach  can  extend  to  ICLs  with  relatively  low  emission
power.  We  also  remark  that  this  approach  can  be  ap-
plied  to  other  cavity-enhanced spectroscopic  techniques
beyond CRDS. Leveraging the narrowed QCL linewidth,
we can mitigate laser-cavity locking noise, enhancing the
detection limit  of  mid-infrared cavity-enhanced absorp-
tion spectroscopy (CEAS) and noise-immune cavity-en-
hanced  optical  heterodyne  molecular  spectroscopy
(NICE-OHMS)36,37. Additionally, the increased laser-cav-
ity coupling efficiency results in higher intracavity pow-
er, making it promising for techniques such as cavity-en-
hanced  photoacoustic  spectroscopy  and  photothermal
spectroscopy38,39.  Furthermore,  the  development  of  the
QCL frequency comb allows for  the  use  of  optical  feed-
back  to  potentially  enhance  frequency  stability40,41.
Hence,  we  envision  widespread  adoption  of  this  novel
spectroscopic  approach  across  various  fields  that  de-
mand highly sensitive,  accurate,  simplified and compact
systems for chemical analysis.
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