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Adaptive decentralized AI scheme for signal
recognition of distributed sensor systems
Shixiong Zhang1, Hao Li1, Cunzheng Fan1, Zhichao Zeng1, Chao Xiong5,
Jie Wu6, Zhijun Yan1,3,4, Deming Liu1 and Qizhen Sun 1,2,3,4*

Artificial intelligence (AI) plays a critical role in signal recognition of distributed sensor systems (DSS), boosting its appli-
cations in multiple monitoring fields. Due to the domain differences between massive sensors in signal acquisition condi-
tions, such as manufacturing process, deployment, and environments, current AI schemes for signal recognition of DSS
frequently  encounter  poor  generalization  performance.  In  this  paper,  an  adaptive  decentralized  artificial  intelligence
(ADAI) method for signal recognition of DSS is proposed, to improve the entire generalization performance. By fine-tun-
ing pre-trained model with the unlabeled data in each domain, the ADAI scheme can train a series of adaptive AI models
for all target domains, significantly reducing the false alarm rate (FAR) and missing alarm rate (MAR) induced by domain
differences.  The field  tests  about  intrusion signal  recognition  with  distributed optical  fiber  sensors  system demonstrate
the efficacy of the ADAI scheme, showcasing a FAR of merely 4.3% and 0%, along with a MAR of only 1.4% and 2.7%
within two specific target domains. The ADAI scheme is expected to offer a practical paradigm for signal recognition of
DSS in multiple application fields.

Keywords: artificial  intelligence  (AI); signal  recognition; distributed  sensor  systems  (DSS); distributed  optical  fiber
sensors (DOFS)
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Introduction
Distributed sensor systems (DSS) consist of multiple sen-
sors that can monitor various parameters such as acous-
tic  wave,  temperature,  and  strain,  whose  implementa-
tion forms include sensor network1,  and sensor array2−4,
etc.  The  signal  recognition  of  DSS  necessitates  the  pro-
cessing of  massive and complex data5,6.  By learning pat-
terns from massive existing data without explicit model-
ing, AI can enable real-time processing and robust recog-

nition in various fields of DSS7,8, such as realizing move-
ment recognition and vital signs monitoring in wearable
applications9,  improving  diagnostic  result  quality  in  in-
dustrial  fault  detection10,  detecting  raw  water  quality  in
environmental  monitoring11,  and  classifying  the
healing  versus  nonhealing  status  of  wound  in  medical
applications12.

An important factor that limits the application of DSS
is  the  poor  generalization  of  AI  models  on  massive 
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sensors,  which  is  caused  by  the  data  distribution  differ-
ences between different sensors and insufficient training
data13.  Specifically,  massive  sensors  are  inevitably  dis-
tributed  in  multiple  domains  where  signal  acquisition
conditions  are  diverse,  such  as  manufacturing  process,
deployment,  and  environments,  etc.  The  corresponding
sensing  signals  will  exhibit  differences  in  data  distribu-
tion, further leading to poor generalization performance
when  using  the  same  AI  model  for  all  domains14.  To
tackle  this  problem,  massive  labeled data  from each do-
main is  needed to train the corresponding model,  but it
is not cost-effective when there are many domains. Thus,
how to fully utilize the existing data for model training to
improve generalization performance in each domain, has
become  a  common  goal15.  The  existing  data  mainly
comes  from  source  domain  and  each  target  domain16.
The  target  domain  refers  to  the  domain  where  recogni-
tion  task  will  be  carried  out,  in  which  labeled  data  is
available  and  unlabeled  data  can  be  acquired  automati-
cally.  While,  the  source  domain  can  provide  additional
labeled  data  and  pre-trained  model.  Due  to  the  differ-
ences  in  types  of  existing  data  in  various  fields  of  DSS,
corresponding researchers have different data utilization
methods. To improve efficacy of crack identification, the
synthetic data generated by a finite element model in tar-
get domain is used to train recognition model by super-
vised  learning  (SL)  method17.  Then,  the  data  of  hand
movement  sampled  by  nanomesh  sensors  in  target  do-
main is  used by  unsupervised  learning (UL)  method,  to
realize data-efficient of gesture recognition18. Additional-
ly,  to  improve  earthquake  detection  performance,  the
conventional  seismic data recorded by seismic networks
in source domain and the acoustic data acquired by dis-
tributed acoustic sensors in target domain are utilized by
semi-supervised learning (SSL) method7.  Due to the un-
derutilization of the potential properties and available in-
formation  of  unlabeled  data  from  all  domains,  these
studies  encounter  difficulties  in  specifying  adaptive
recognition  schemes  for  each  domain,  which  needs  to
optimize data utilization method for the improvement of
model generalization performances.

Distributed  optical  fiber  sensor  (DOFS),  as  a  typical
type  of  DSS,  performs  sensing  by  demodulating  the
changes in optical signals19. Assisted with AI technology,
DOFS has performed various tasks about signal recogni-
tion, such as recognizing signals of ships and marine or-
ganisms  with  CNN  in  ocean  monitoring20,  pre-warning
the  intrusion  signals  with  support  vector  machine  in

structure  health  monitoring21,  and  detecting  integrity
threats  with  Hidden Markov Models  in  pipelines  moni-
toring22,23. Due to the domain differences in signal acqui-
sition  conditions,  such  as  geographic  conditions,  fiber
coupling  status,  and  noise  in  environment  and  system,
the intrusion signal recognition of DOFS faces the prob-
lem  of  high  false  alarm  rate  (FAR)  and  missing  alarm
rate  (MAR).  To  solve  this  problem,  existing  researches
pursue better data utilization methods, which can be di-
vided into three categories: information extraction of la-
beled  data  from  target  domain,  information  mining  of
unlabeled  data  from  target  domain,  and  knowledge  ex-
ploitation of pre-trained model from source domain. The
labeled data in target domain contains the abundant in-
formation, and many researchers focus on the SL meth-
ods24.  These  studies  pursue effective  features  and strong
classifiers, and utilize data augmentation methods to ex-
pand  dataset,  such  as  Conditional  GAN  and  Cycle-
GAN25−27.  These  methods  extracted  valuable  informa-
tion from acquired labeled data, while they still need ade-
quate  labeled  data  in  each  target  domain.  Once  DOFS
system has been installed in practical  applications,  mas-
sive  unlabeled  data  will  be  continuously  generated  in
each  target  domain.  Traditional  SL  methods  are  unable
to  utilize  the  unlabeled  data.  Thus,  researchers  shifted
their focus towards the UL and SSL methods28−30. Among
them,  unsupervised  spiking  neuron  network  is  used  to
extract  information  of  unlabeled  data31,  Fixmatch
method is employed to train model with pseudo-labeled
data32,  and  the  auto-encoder  (AE)  model  is  pretrained
with unlabeled data33. The above methods only mine da-
ta  information  from  target  domain,  which  can  be  im-
proved  by  exploring  knowledge  from  source  domain.
Some  researchers  pre-trained  the  model  on  existing
dataset from source domain and then fine-tuned it  with
labeled data from target  domain34,35,  while  they still  lack
utilization  of  the  unlabeled  data  from  each  target  do-
main.  Thus,  a  gap  in  existing  research  is  to  establish  a
model  transferring scheme that  can utilize data from all
domains,  reducing  overall  FAR  and  MAR  by  adapting
each transferred model to corresponding domain.

In  this  paper,  an  adaptive  decentralized  AI  (ADAI)
scheme for signal recognition of DSS is proposed. By uti-
lizing the existing data from all  domains,  ADAI scheme
trains  a  series  of  adaptive  AI  models  for  all  target  do-
mains, which can improve generalization performance of
the  entire  DSS.  For  the  model  training  in  a  specific  tar-
get  domain,  ADAI  scheme  employs  domain  adaptation
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(DA) to bridge the labeled data from source domain and
unlabeled  data  from  this  target  domain,  achieving  the
historical  models  at  different  training epochs.  Then,  the
ensemble  pseudo  labeling  (EPL)  method  is  proposed  to
label  the  unlabeled  data,  selecting  the  most  adaptive
model  from  historical  models.  Notably,  ADAI  scheme
performs  significantly  in  reducing  the  FAR  and  MAR,
even when the available  unlabeled dataset  contains  only
negative samples. To verify the effectiveness of the ADAI
scheme,  this  paper takes  the DOFS system for  intrusion
signal  recognition  as  an  example.  Since  ADAI  scheme
targets the common issues of utilizing unlabeled data to
reduce  data  distribution  differences  between  multiple
sensors,  this  work  is  also  applicable  to  other  fields  of
DSS. 

Method
 

Adaptive decentralized artificial intelligence method
Since  unlabeled  data  is  sampled  on  the  distribution  of
test  data,  it  contains  the intrinsic  information about  the
corresponding domain, which can be reflected in the da-
ta distribution coverage. As shown in Fig. 1(a), although
there  is  a  certain  gap  between  the  distribution  coverage
of unlabeled data and test data in each domain, this gap
will be narrowed as unlabeled data accumulates. This ac-

cumulation  process  is  automatic  when  the  DSS  have
been installed. As depicted in Fig. 1(b), the data distribu-
tion  between  different  domains  varies  with  the  domain
differences. The recognition ability of pre-trained model
is limited to the data distribution in source domain (Do-
main-S), making it hard to cover the data distribution in
target domains. Fortunately, the distribution of accumu-
lated unlabeled data covers a portion of the distribution
of  test  data,  which  can  provide  additional  information.
Thus, the ADAI scheme is proposed to fine-tune the pre-
trained model  with unlabeled data  from each target  do-
main,  achieving  the  adaptive  decentralized  models  that
can  cover  the  corresponding  data  distributions.  ADAI
scheme  decomposes  the  decentralized  model  training
task into a series of model transferring tasks from source
domain  to  all  target  domains. Figure 1(c) illustrates  the
process  of  ADAI  scheme  on  a  model  transferring  task.
ADAI  scheme  first  fine-tunes  the  pre-trained  model  by
DA  method,  achieving  historical  models  at  different
training  epochs.  However,  these  historical  models  have
diverse recognition coverages for the data distribution of
a specific domain (Domain-T). Thus, ADAI scheme fur-
ther  employs  the  EPL  method  to  select  the  most  adap-
tive model from historical models for Domain-T. 
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Fig. 1 | (a) The characteristics of unlabeled data. (b) The model transferring tasks by ADAI scheme. (c) The process of ADAI scheme.
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Domain adaptation for model training

DS DT

DS DT

For  the  model  transferring  from Domain-S  to  Domain-
T,  test  data from two domains are transformed through
the  feature  extractor  of  pre-trained  model,  yielding  fea-
ture distributions  and .  The data  distribution dif-
ference caused by domain differences will map as the off-
set between  and . It further leads to the poor per-
formance with the classifier of pre-trained model in Do-
main-T.  Specifically,  the  formula  for  error  limit  is  uti-
lized  to  explain  this  domain  mismatch36,  which  can  be
represented by: 

εT(h) ⩽ εS(h) +
1
2
dHΔH (DS,DT) + λ , (1)

εT

λ
εS

dHΔH(DS,DT) DS DT

εT
lS lS−T εS

dHΔH(DS,DT) lS

lS−T

where (h)  represents  the  expected  error  of  test  data
from Domain-T,  which is  limited by three terms on the
right  side  of  the  inequality.  The  is  a  small  constant,
which  is  expected  to  be  negligible.  The (h)  represents
the  expected  error  of  test  data  from Domain-S,  and  the

 denotes  the offset  between  and .  To
reduce  the  upper  limit  of  error (h),  DA  method  de-
signs  two  loss  functions  of  and  to  reduce (h)
and ,  respectively.  As shown in Fig. 2(a), 
is  the  cross-entropy  loss  function  that  calculates  the
recognition  error  of  model  on  labeled  dataset  from
source domain (Dataset-S),  and  is  measured by the
distance  metric  function  of  Local  Maximum  Mean  Dis-
crepancy (LMMD), which computes the weighted sum of
distances for each class between Dataset-S and unlabeled
dataset from target domain (Unlabeled dataset-T'). Com-
pared  with  the  Maximum  Mean  Discrepancy  (MMD),
LMMD mitigates  the  interference  caused by  data  distri-
bution  differences  between  signals  of  different  classes,
making it a more precise method to measure the feature
distribution offset37,38. The target loss function can be re-
formed by: 

l = rS−T · lS−T (DS,DT) + rS · lS (yS, ŷS) , (2)

rS−T rS lS−T (DS,DT)

lS (yS, ŷS) ŷS
where  and  are  the  ratios  of  and

,  respectively.  The  is  the  model  output  for

ySsample  in  Dataset-S  and  is  the  corresponding  label
vector. Through the optimization process with the target
loss  function l,  models  at  different  training  epochs  are
achieved  during  model  transferring  from  Domain-S  to
Domain-T. 

Ensemble pseudo labeling method for model
selecting

yT
XT

ȳT ȳT XT

XT, ȳT

Historical  models  at  different  training  epochs  have  dif-
ferent  recognition  performances  on  Domain-T.  Thus,  it
generally  needs  a  labeled  dataset  to  evaluate  model  per-
formance  on  loss  or  accuracy,  selecting  the  most  adap-
tive model. However, labeled data may be unavailable in
target  domains  for  signal  recognition  tasks  that  require
cost  control.  Thus,  it  is  necessary  to  establish  a  valida-
tion set  by utilizing the existing unlabeled data  and his-
torical models. Pseudo labeling (PL) technology believes
that  the  predicted  labels  of  effective  unlabeled  samples
can be used for model training, and it will be increasing-
ly accurate as model iteratively optimizes39,40. Intuitively,
the ensemble-based method can vote for a statistical op-
timal prediction based on historical models, and this pre-
diction  may  be  used  for  PL  technology41.  As  shown  in
Fig. 2(b),  the EPL method builds  an ensemble model  by
combining historical models, and then uses its output to
assign the original pseudo label  for unlabeled sample

. Subsequently, data cleaning is used to get pure pseu-
do labels .  Finally, the  and  are combined as the
effective sample [ ]  for validation set.  The adaptive
model with the highest accuracy on this validation set is
selected from historical models. 

A typical application of ADAI scheme: intrusion
signal recognition with DOFS system
As a typical type of DSS, DOFS system can acquire spa-
tio-temporal  acoustic  signals  over  hundreds  of  kilome-
ters using a single fiber. As shown in Fig. 3, the intrusion
signal recognition of DOFS system is applied in scenes of
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Fig. 2 | The detailed process of ADAI scheme. (a) The model training by DA method. (b) The model selecting by EPL method.
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underground  structure  monitoring  (Domain-T2),  pipe
monitoring  (Domain-T1),  and  perimeter  security  (Do-
main-S).  Optical  fiber  is  attached  near  the  monitoring
structure,  to  acquire  surrounding  acoustic  signals.  The
acoustic  signals  in different scenes are recognized by AI
algorithm, detecting the potential intrusion events. How-
ever,  sensing  fiber  will  pass  through  various  domains
within evolving and complicated signal  acquisition con-
ditions, such as geographic environments, fiber coupling
states, background noises, event action modes, etc. Addi-
tionally, the optical devices in sensing system have time-
varying  noise,  and  the  different  parts  of  fiber  have  di-
verse  backscattering  effects  due  to  the  differences  in
manufacturing  processes.  These  differences  will  cause
data  distribution  differences  across  each  domain,  and
further  lead  to  the  high  FAR  and  MAR  when  using  the
same  model  for  all  domains.  Thus,  the  intrusion  signal
recognition  of  DOFS  system  is  a  typical  application  of
DSS,  which  is  suitable  for  verifying  the  effectiveness  of
ADAI scheme.  Intuitively,  the  unlabeled dataset  in  each
domain  contains  intrinsic  information  about  the  corre-
sponding domain, such as static acquisition information
and  dynamic  response  information  of  intrusion  signals.
Based on these intrinsic information, ADAI scheme fine-
tunes pre-trained model AI-S with the unlabeled dataset
from  each  target  domain  and  existing  labeled  data,
achieving  the  adaptive  decentralized  AI  models  (AI-T1
and AI-T2) for all target domains. Compared with AI-S,

AI-T1 and AI-T2 are  more suitable  for  intrusion recog-
nition in Domain-T1 and Domain-T2. 

Experimental settings
 

Experimental scenes
To  validate  the  robustness  of  ADAI  scheme  for  intru-
sion signal recognition task in three domains, the intru-
sion signals  monitoring system assisted with distributed
acoustic  sensing  (DAS)  technology  is  utilized  for  field
tests. As a type of DOFS technology, DAS technology has
the  advantages  of  high signal  fidelity  and accurate  posi-
tioning,  making  it  suitable  for  intrusion  signal  recogni-
tion task42.  As shown in Fig. 4(a),  four typical events in-
cluding  background  noise,  vehicle  driving,  manual
knocking,  and  excavator  are  monitored  in  three  do-
mains,  labeled as  0,  1,  2,  and 3,  respectively.  The scenes
of  Domain-S,  Domain-T1,  and  Domain-T2  are  perime-
ter,  factory  pipelines,  and  underground  tunnel,  respec-
tively.  The  fiber  in  Domain-S  is  buried  in  clay  and  the
event model is relatively single. To ensure the diversity in
geographical  environment  and  fiber  coupling  state,  the
fiber in Domain-T1 passes through sand, clay, and drain.
Furthermore,  the  events  in  Domain-T2  have  different
event  action  modes:  vehicle  driving  (car  and  truck),
manual knocking (digging and jumping on the ground),
and excavator (scrapping and hitting). The demodulated
waveforms of four events in three domains are shown in
Fig. 4(b).  For  all  waveforms,  the  horizontal  and  vertical
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AI-T1
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Domain-T2 Domain-S
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Fig. 3 | A typical application of ADAI scheme about intrusion signal recognition with DOFS system.
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axes represent time and amplitude, which are both scaled
within the same interval. Due to differences in signal ac-
quisition  conditions,  the  same  type  of  signals  may
present  different  waveforms,  which  may  be  confused
with other types of signals. 

Dataset information
Table 1 illustrates  the  details  of  dataset  information  in
three  domains.  Dataset-S,  Dataset-T1,  and  Dataset-T2
are all labeled datasets from Domain-S, Domain-T1, and
Domain-T2.  The  Unlabeled  dataset-T1' and  Unlabeled
dataset-T2' are datasets whose labels are removed during
the model training. Although the event types of two un-
labeled datasets are limited to 0 and 1 in this work, their
waveforms  still  contain  the  intrinsic  information  about
corresponding  domain.  The  data  of  background  noise
contains static acquisition information, such as the noise
distributions  in  DAS  system  and  external  environment.
Additionally, the data of vehicle driving can provide dy-
namic response information, such as geographical condi-

tions  and  fiber  coupling  status.  Thus,  the  unlabeled
dataset  can  provide  additional  information  for  model
transferring. 

Settings of model training

1× 1000

The architecture of AI model is shown in Fig. 5. The in-
put  and  output  are  one-dimensional  sample  and  event
type, whose shape are  and 4, respectively. Tran-
sition block includes layers of batch normalization (BN),
ReLU,  convolution  (Conv),  and  average  pooling  (Avg
Pool).  Dense  block  is  composed  of  layers  of  BN,  ReLU,
and  Conv.  Bottleneck  layer  is  achieved  with  1×1  Conv.
Noted that the layers from Conv+Pool to bottleneck lay-
er  are  combined as  the  feature  extractor,  where  the  fea-
ture distribution is achieved. 

Methods comparison
Baseline is the method without any operation on the pre-
trained model. The Fixmatch and AE are two typical se-
mi-supervised methods43,44. They perform well in the ap-
plications of DOFS, which are replicated for comparison

 

b

a

b
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Domain-S

Domain-T1Domain-T2 Domain-S

Background noise Vehicle driving Mannul knocking Excavator

DAS

Intrusion eventsNon-intrusion events

Fig. 4 | (a) The experimental scenes of three domains. (b) The demodulated waveforms of four typical events in three domains.

 

Table 1 | Details of dataset information.
 

Non-intrusive events Intrusion events

Background noise (0) Vehicle driving (1) Manual knocking (2) Excavator (3)

Dataset-S 2054 2248 462 2121

Dataset-T1 900 378 857 329

Dataset-T2 983 463 117 1604

Unlabeled dataset-T1' 1224 = 1000 (0) + 224 (1) - -

Unlabeled dataset-T2' 1465 = 1000 (0) + 465 (1) - -
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in this paper32,33. Compared with the methods of AE and
Fixmatch,  ADAI  has  the  improvements  of  better  loss
function, EPL module for model selecting and decentral-
ized AI training. The loss functions of AE and Fixmatch
only  calculate  mapping  loss  and  pseudo-labeled  loss  on
unlabeled data in target  domain,  while  the ADAI calcu-
lates  the  loss  of  labeled  data  in  source  domain  and  the
offset  loss  between  labeled  data  in  source  domain  and
unlabeled  data  in  target  domain,  which  can  effectively
learn  all  the  existing  information.  The  EPL  module  in
ADAI can establish a pseudo-labeled validation set to se-
lect the adaptive model by PL technology and ensemble-
based  method,  which  is  not  available  in  AE  and  Fix-
match.  The existing researches only discuss about semi-
supervised  learning  in  a  specific  domain.  However,  the
decentralized  AI  training  can  achieve  adaptive  models
for each domain, which will improve the recognition ac-
curacy of the entire system. 

Model naming
Different  datasets  and  methods  will  achieve  different
recognition models. Thus, the naming rule for models is
established as follows: Model - (method) – (dataset-1) –
(dataset-2).  When  using  DA  method  to  fine-tune  the
pre-trained model with Dataset-T1', the Model-(DA)-T1'
at  different  training  epochs  will  be  achieved.  Among
them,  the  best  model  selected by  EPL method is  named
as  the  Model-(ADAI)-T1'.  Besides,  the  Model-(ADAI)-
T1' trained with Dataset-T1 will be named as the Model-
(ADAI)-T1'-T1. 

Results and discussion
 

Model transferring process of ADAI scheme 

Model training by DA method
Without  labeled  data  from  Domain-T1,  the  Unlabeled
dataset-T1' is  employed  to  fine-tune  the  Model-(Base-
line),  achieving  the  Model-(DA)-T1' and  Model-(Fix-

match)-T1'. Since there is no labeled dataset available for
model  validation,  Unlabeled  dataset-T1' is  labeled  here.
As  shown  in Fig. 6(a),  the  recognition  accuracies  of
Model-(Fixmatch)-T1' are  unstable  both  on  Dataset-S
and Unlabeled dataset-T1',  and they drop shapely at  the
end of  training  epochs,  which  is  attributed  to  the  insta-
bility  of  model  classification  ability.  By  contrast,  as  the
training progresses, the recognition accuracies of Model-
(DA)-T1' on  two  datasets  tend  to  be  stabilized.  It  indi-
cates that DA method not only adapts the model to tar-
get  domain,  but  also  maintains  the  model  classification
ability.  Then,  the  accuracies  of  Model-(DA)-T1' on  two
datasets at the 1~10 training epochs are visualized in Fig.
6(b).  During the first  four training epochs,  the accuracy
changes  of  two  curves  exhibit  an  opposing  trend.  This
discrepancy  occurs  because  the  DA  method  is  narrow-
ing  the  feature  distribution  offset  between  two domains
at  the  early  stages  of  training.  In  the  following  training
epochs,  two  curves  represent  the  same  changing  trend.
This  convergence  proves  that  the  Model-(DA)-T1' can
filter  out  the  interference  of  feature  distribution  offset
and improve its recognition accuracies in both domains.
However,  this  model  adaptation  process  is  invisible  in
the  model  training  by  Fixmatch  method.  As  shown  in
Fig. 6(c), two curves have the similar changing trend and
they both drop shapely at  some epochs,  which indicates
that  its  model  training  process  is  in  a  chaotic  situation.
Overall,  DA  method  is  more  stable  than  Fixmatch
method when fed with Unlabeled dataset-T1'. 

Model selecting by EPL method
Although the DA method improves the recognition ability
of AI models in Domain-T1, it is unable to select the most
adaptive model without labeled dataset. Once the accura-
cy curve fluctuates greatly along the epoch axis, the mod-
el  selecting  will  be  difficult.  To  address  this  limitation,
the  EPL  method  is  employed  to  create  a  pseudo-label
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validation set for model selecting. Noted that the real la-
bels are assigned to Unlabeled dataset-T1', to evaluate the
recognition performance of historical models. As shown
in Fig. 7(a),  the  accuracies  of  pseudo  labels  created  by
EPL  method  are  all  above  97%  in  three  training  times,
which proves that EPL method can create a high-quality
pseudo-label  dataset.  Then,  the  accuracies  of  Model-
(DA)-T1' in  three  training  times  are  sorted  in Fig. 7(b),
where  each  training  uniformly  achieves  the  models  of
100  epochs.  The  accuracy  positions  of  three  selected
models are marked in red boxes, whose sites are all above
95%,  and  the  accuracies  of  three  selected  models  are  all
above 98%. It indicates the EPL method can stably select
an adaptive model, which is crucial for practical applica-
tions when labeled data is not available in target domain. 

Model transferring from Domain-S to other domains 

Performance evaluation on domain differences
As  shown  in Fig. 8(a),  based  on  Model-(Baseline)  and

two  unlabeled  datasets,  Model-(ADAI)-T1' and  Model-
(ADAI)-T2' are  achieved  by  ADAI  scheme.  Compared
with  the  accuracies  of  Model-(Baseline)  on  Dataset-T1
and  Dataset-T2,  the  accuracies  of  Model-(ADAI)-T1'
and Model-(ADAI)-T2' are improved by 33.2% and 73%,
respectively.  It  proves  that  ADAI  scheme  can  improve
the overall accuracy of recognition model on each target
domain. Then, the reduction of MAR and FAR by ADAI
scheme on Domain-T1 and Domain-T2 are respectively
shown  in Fig. 8(b, c).  The  Model-(ADAI)-T1' achieves
the  MAR  of  1.4%  and  FAR  of  4.3%  on  Dataset-T1,  re-
spectively,  which  are  both  smaller  than  that  of  Model-
(Baseline).  Similarly,  the  MAR  and  FAR  of  Model-
(ADAI)-T2' on Dataset-T2 are 2.7% and 0%, respective-
ly,  which  are  reduced  by  60.8%  and  9.8%  when  com-
pared  with  that  of  Model-(Baseline).  Overall,  ADAI
scheme  can  improve  model  adaptability  for  the  corre-
sponding  domain  by  utilizing  information  contained  in
unlabeled dataset.
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Additionally,  the  confusion  matrices  of  Model-(Base-
line), Model-(ADAI)-T1' and Model-(ADAI)-T2' on two
datasets  are  compared.  As  shown in Fig. 9(a, b),  Model-
(Baseline)  performs  poorly  on  Dataset-T1  and  Dataset-
T2,  especially  the  performance  on  samples  of  back-
ground noise. It reveals the significant deviations in data
distribution  between  Domain-S  and  other  target  do-
mains.  To  narrow  this  deviation,  ADAI  scheme  is  used
to mine more information from two unlabeled datasets.
As shown in Fig. 9(c, d), Model-(ADAI)-T1' and Model-
(ADAI)-T2' significantly  improve  overall  recognition
performance  of  four  events  on  corresponding  domains
when compared with  Model-(Baseline).  These  improve-
ments  are  attributed  to  the  additional  information  con-
tained  in  non-intrusive  samples  from  two  unlabeled

datasets.  Since  there  are  no  unlabeled  samples  corre-
sponding  to  intrusion  events  in  target  domain,  ADAI
may  not  learn  the  effective  information  about  intrusion
events,  which  may  perform  poorly  in  some  types  of
events,  such  as  the  event-3  on  Dataset-T1.  To  improve
the  accuracy  of  these  intrusion  events,  expanding  unla-
beled datasets and improving their quality is  considered
in  future  work.  Furthermore,  a  simulated  experimental
field and corresponding mathematical model will  be ex-
plored  to  collect  data,  which  can  simulate  sensing  pro-
cesses, such as sound excitation, sound propagation, and
fiber sensing. To tackle the new types of events in target
domain, incremental learning and GMM will be applied
as  the  supplement  to  ADAI  scheme,  which  can  retain
knowledge of events type in Domain-S and Domain-T. 
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Robustness evaluation
Based  on  the  statistical  amplitude  of  0.02  for  back-
ground  noise,  Gaussian  noise  of  the  amplitude  0.02  is
added to  each sample  with the  ratios  from 0% to  100%.
To simulate condition of information loss, each sample is
shifted with the points of [−250, −125, 0, 125, 250] on the
time  axis,  where −250  means  that  the  sample  of  length
1000 is shifted left by 250 points. The accuracies of Mod-
el-(ADAI)-T1' and  Model-(ADAI)-T2' on  two  datasets
under  the  conditions  of  different  time-shift  points  and
noise of  different  ratios  are shown in Fig. 10(a) and (b),
respectively.  The  accuracies  of  two  models  decrease  by
up to 3% and 7%, respectively,  which are within the ac-
ceptable range for robustness. As the noise ratio increas-
es, the overall accuracies of both models decrease. While
the  accuracy  trends  of  these  two  models  are  different
when facing time-shift, which is due to the differences in
time-shift characteristics between two datasets.

The  ROC  curves  of  Model-(ADAI)-T1' and  Model-

(Baseline)  on Dataset-T1 are  shown in Fig. 11(a),  where
two  models  both  perform  well  on  Dataset-T1  with  the
AUC value of 0.996 and 0.995, respectively. However, as
demonstrated  in Fig. 11(b),  the  AUC  value  of  Model-
(Baseline) on Dataset-T2 drops to 0.812 and the AUC of
Model-(ADAI)-T1' rises  to  1,  which  further  proves  the
robustness of ADAI scheme. 

Ablation study about model transferring with labeled
Dataset-T1
To improve the recognition performance of model on in-
trusion events, labeled samples are needed. In some cas-
es, the number of acquired labeled samples in target do-
main  is  unpredictable.  Thus,  the  recognition  perfor-
mance  of  Model-(ADAI)-T1'-T1,  Model-(Baseline)-T1,
and  Model-(AE)-T1'-T1  are  compared  when  providing
different  numbers  of  labeled  samples  from  Domain-T1.
As  depicted  in Fig. 12(a),  the  Model-(ADAI)-T1'-T1
consistently achieves the highest
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accuracy.  Its  accuracy  reaches  93.7%  when  provided
with  only  three  samples  for  each  class,  proving  the  ro-
bustness  of  ADAI  scheme.  Compared  with  the  Model-
(ADAI)-T1'-T1, the Model-(Baseline)-T1 achieves signif-
icantly lower accuracy when the number of labeled sam-
ples  is  limited  to  1  to  8.  As  for  the  Model-(AE)-T1'-T1,
its recognition accuracy is lower than that of other mod-
els,  especially when the number of labeled samples is 32
or  fewer.  Overall,  the  ADAI  scheme  not  only  incorpo-
rates  model  knowledge  from  Domain-S  but  also  lever-
ages data information from two domains. Consequently,
Model-(ADAI)-T1'-T1  learns  more  information  than
Model-(Baseline)-T1  and  Model-(AE)-T1'-T1,  enabling
its significant advantage when trained with labeled sam-
ples.  Furthermore,  the  t-distributed  stochastic  neighbor
embedding  (T-SNE)  visualizations  of  above  three  mod-
els  are  compared  when  four  labeled  samples  for  each
class are provided. As depicted in Fig. 12(b–d), the Mod-
el-(ADAI)-T1'-T1 exhibits  good intra-class compactness
and inter-class separability. While the Model-(Baseline)-

T1  shows  poor  intra-class  compactness,  in  which  the
samples of same class are distributed across different re-
gions in T-SNE figure.  And its  inter-class  separability  is
also inferior to the Model-(ADAI)-T1'-T1. The visualiza-
tion  result  of  Model-(AE)-T1'-T1  indicates  that  it  lacks
recognition capability.

The number of samples required for a satisfied accura-
cy is crucial in practical applications. As shown in Table
2, to reach the accuracy levels of 85%, 90%, and 95%, the
Model-(ADAI)-T1'-T1 requires  at  least  2,  3,  and 4 sam-
ples for each class, respectively. While, the Model-(Base-
line)-T1  necessitates  four  times  more  samples  than  the
Model-(DA)-T1'-T1  when  achieving  the  equivalent
recognition accuracy. Additionally, the Model-(AE)-T1'-
T1  needs  a  minimum  of  64  samples  for  each  class  to
achieve  the  recognition  accuracy  of  85%.  These  results
further  demonstrate  that  ADAI  scheme  can  effectively
incorporate  knowledge  from  two  domains,  thereby  re-
ducing dependence of  model training on the number of
labeled samples. 
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Conclusions
In this paper, an ADAI scheme for signal recognition of
DSS is proposed. By fine-tuning pre-trained model with
the  existing  labeled  and unlabeled  data  in  each domain,
ADAI  scheme  can  train  a  series  of  adaptive  AI  models
for  all  target  domains,  significantly  reducing  the  FAR
and  MAR  of  DSS.  The  experiment  of  intrusion  signal
recognition  with  DOFS  system  is  conducted  to  demon-
strate the efficacy of ADAI scheme, showcasing a FAR of
merely 4.3% and 0%, along with a MAR of only 1.4% and
2.7%  within  two  specific  target  domains.  An  ablation
study  about  model  transferring  with  labeled  dataset  is
further  employed  to  prove  the  robustness  of  ADAI
scheme. The ADAI scheme is expected to offer a practi-
cal  paradigm  for  signal  recognition  of  DSS  in  multiple
application fields.
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