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Smart photonic wristband for pulse wave
monitoring
Renfei Kuang1,3, Zhuo Wang1, Lin Ma2, Heng Wang2, Qingming Chen3,
Arnaldo Leal Junior4, Santosh Kumar5, Xiaoli Li1, Carlos Marques 6 and
Rui Min1*

Real-time acquisition of human pulse signals in daily life is clinically important for cardiovascular disease monitoring and
diagnosis. Here, we propose a smart photonic wristband for pulse signal monitoring based on speckle pattern analysis
with a polymer optical fiber (POF) integrated into a sports wristband. Several different speckle pattern processing algo-
rithms and POFs with different core diameters were evaluated. The results indicated that the smart photonic wristband
had a high signal-to-noise ratio and low latency, with the measurement error controlled at approximately 3.7%. This opti-
mized pulse signal could be used for further medical diagnosis and was capable of objectively monitoring subtle pulse
signal changes, such as the pulse waveform at different positions of Cunkou and pulse waveforms before and after exer-
cise. With the assistance of artificial intelligence (AI), functions such as gesture recognition have been realized through
the established prediction model by processing pulse signals, in which the recognition accuracy reaches 95%. Our AI-as-
sisted  smart  photonic  wristband  has  potential  applications  for  clinical  treatment  of  cardiovascular  diseases  and  home
monitoring, paving the way for medical Internet of Things-enabled smart systems.
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Introduction
Cardiovascular  disease,  particularly  stroke  and  ischemic
heart  disease,  has  become  the  leading  cause  of  death  in
the world, with the number expected to rise to 23.6 mil-
lion per year by 20301. Despite such a high mortality rate
from cardiovascular diseases, most of them2, such as hy-
pertension,  coronary  heart  disease,  myocardial  infarc-
tion,  and  atherosclerosis,  can  be  prevented  and  treated

through  pre-diagnosis  in  conjunction  with  daily  moni-
toring of physiologic signals. Conventional health moni-
toring systems are flawed in terms of wearability,  porta-
bility, and intelligence, and are failing to collect clinical-
grade  personal  vital  indicators  for  health  diagnosis  in
daily  life3.  The  need  for  affordable  and  comfortable
biomedical devices for continuous monitoring continues
to  be  a  significant  barrier  to  promoting  the  utility  of
intelligent  systems  like  Internet  of  Things-enabled 
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technology  in  healthcare  monitoring.  Pulse  waves  are  a
prominent component of physiological signaling and in-
volve  abundant  health  information that  can reveal  indi-
vidual conditions, including heart problems (such as ar-
rhythmia),  blood pressure,  pulse wave velocity,  exercise,
sleep status, and so on4−6.  Real-time monitoring of pulse
signals  and  effective  medical  analysis  are  of  clinical  sig-
nificance for the monitoring and diagnosis of the cardio-
vascular system7−9.

In  addition  to  diagnosing  fundamental  diseases,  the
more  in-depth  analysis  of  pulse  waves  plays  an  active
role  in  various  fields,  including multi-location monitor-
ing to aid in traditional Chinese medicine diagnosis, and
gesture  recognition.  For  thousands  of  years,  traditional
Chinese  medicine  has  utilized  the  pulse  wave  to  predict
and  prevent  diseases  in  their  early  stages.  Empirical  ap-
proaches  have  been  proposed  to  analyze  the  physical
state  of  pulse  waves,  rendering  pulse  wave  surveillance
indispensable for this practice. However, traditional Chi-
nese  medicine  is  unable  to  continuously  monitor  pulse
waves,  limiting  the  accuracy  of  the  assessment  results10.
On the other hand, it is well known that gesture recogni-
tion  provides  a  broad  arena  for  the  development  of  ad-
vanced  areas  such  as  human-computer  interaction  and
intelligent medical robotics11. With the innovation of ar-
tificial  intelligence  (AI),  IoT,  and  5G/6G  technologies,
electronic  sensors  based  on  different  detection  princi-
ples have been developed and used for obtaining data on
pulse  waves12.  Currently,  various  types  of  electronic
wearable sensors are used to acquire the pulse signal, in-
cluding  piezoelectric13−15,  resistance16−18,  and
capacitance19−21.  These sensors have received widespread
attention  for  their  ability  to  monitor  pulse  signals  in  a
non-invasive  manner  for  efficient,  rapid,  and  accurate
diagnosis  of  cardiovascular  diseases.  However,  electro-
magnetic interference, a narrow linear-time response in-
terval,  lack  of  wearability,  and  safety  issues  restrict  the
practical  applications  of  electronic  sensors  to  some
extent4.

In recent years, optical fiber sensing and optical com-
munication  network  technologies  have  experienced
rapid  development22,  and  different  optical  fiber  sensing
technologies  have  been  successfully  applied  in  various
application  fields.  Optical  fiber  sensors  provide  a
promising  alternative  to  electronic  sensors  due  to  their
distinct  advantages  of  sensitivity,  linearity,  resistance  to
drift,  inherent  electric  safety,  and electromagnetic  inter-
ference immunity. However, poor electromagnetic com-

patibility  of  some  electrical  medical  sensors  leads  them
cannot be used in specific  medical  settings that demand
resistance to electromagnetic interference. Consequently,
one of the reasons we chose optical fibers in pulse moni-
toring devices  is  their  immunity  to  electromagnetic  dis-
turbances.  Several  recent studies have focused on moni-
toring pulse waves based on optical  fiber sensors.  Wang
et  al.23 developed  an  ultrasensitive,  flexible  optical  fiber
sensor  with  a  fast  response  time  based  on  a  poly-
dimethylsiloxane-encapsulated  microfiber  coupler.  Ad-
ditionally, fiber Bragg gratings (FBGs) have been utilized
to detect pulse waves at various peripheral pulsatile sites,
including  the  brachial,  radial,  and  carotid  arteries,  on
several  body  parts,  such  as  the  finger,  elbow,  and
wrist24,25.  Moreover,  optical  fiber  sensors  are  compatible
with  fabric  fibers,  making  them  suitable  for  incorpora-
tion into fabrics (e.g.,  wristbands), and improving wear-
ing  comfort  in  a  manner  that  is  not  feasible  compared
with  wearable  electrical  sensors.  Li,  et  al.  demonstrated
the  first  example  of  a  fully  integrated  optical  interroga-
tor, which was integrated with a wristband, enabling the
detection of body temperature and heart sounds26.  Li,  et
al.  proposed  a  fiber-optic  wearable  wristband  system
based on fiber  end-faces  coated with  polydimethylsilox-
ane (PDMS) + Ag composite diaphragms for continuous
pulse  waveform  measurements27.  Recent  advancements
in  wearable  optical  fiber  sensors  allow  for  comfortable
and conformal integration with the human body. Never-
theless, the optical fiber sensors reported above still  face
challenges  as  wearable  devices  due  to  the  weak  physio-
logical signals from the body surface.

Fiber  specklegram sensors  (FSSs)  have  significant  ad-
vantages  in  meeting  the  above  requirements.  FSSs  are  a
type  of  optical  fiber  sensor  based  on  the  multimode  in-
terference effect and have been developed rapidly in the
past few years due to advantages such as high sensitivity,
high precision, and fast response28−32.  Herein, the details
of  the  pulse  waveform  can  be  distinguished  to  estimate
the pulse rate more accurately. Bennett et al.33 designed a
sensing system in which a silica multimode optical fiber
was placed on the wrist and chest to accomplish simulta-
neous measurement of heart rate and pulse rate. Howev-
er,  silica  optical  fiber  may  cause  damage  to  the  body  in
some  specific  sensing  scenarios,  such  as  wearable  de-
vices, due to some disadvantages of the sensors based on
silica optical fiber, such as low flexibility and fragmenta-
tion ability34. Therefore, sensors with high flexibility and
low-cost  demodulation  are  necessary  for  physiological
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signal  monitoring.  Polymer  optical  fibers  (POFs)  are
made  of  polymer  materials  such  as  polymethyl
methacrylate (PMMA)35,  TOPAS (a cyclic olefin copoly-
mer)36,  ZEONEX  (cyclo-olefin  polymer)37 and  CYTOP
(amorphous  fluoropolymers)38 with  the  advantages  of
low-cost,  high  flexibility,  strain  limits,  fracture  tough-
ness, and a low Young's modulus39−41. Therefore, the sen-
sor  based  on  POF  is  one  promising  solution  for  pulse
signal  monitoring,  which can be attempted as  a  suitable
alternative to traditional methods and fulfill the require-
ments of further clinical trials.

In  this  work,  we  analyze  multimode  optical  fiber
speckle images for wrist  pulse obtained by embedding a
POF  sensor  in  a  sports  wristband  as  a  smart  photonic
wristband. POFs with different core diameters and vari-
ous image-processing algorithms were designed to opti-
mize the sensor, and finally, combined with artificial in-
telligence  algorithms,  a  low-cost  and high-precision AI-
assisted  pulse-monitoring  device  was  obtained.  Com-
pared to other existing works, the smart photonic wrist-
band  present  here  has  improved  sensitivity,  accuracy,
and  portability  and  the  collected  pulse  signal  contained
detailed  medical  information,  enabling  pulse  palpation
measurements  similar  to  those  made  by  well-trained
practitioners  of  traditional  Chinese  medicine,  including
the  identification  of  pulse  indicators  such  as  the  pulse
positions  of  Cun,  Guan,  and  Chi.  Additionally,  the  dif-
ferent  gestures  can  be  recognized  from  the  acquired
pulse  wave  signals  utilizing  convolutional  neural  net-
work (CNN) processing,  achieving a  95% accuracy  rate.
A smartphone visual  monitoring system was also devel-
oped  for  personalized  medicine,  providing  customers
with  a  user-friendly  experience  and  facilitating  the  ad-
vancement  of  medical  cloud  IoT  technology.  Our  pro-
posed  smart  photonic  wristband  integrated  by  POFs
forms  real  wearable  "fabric  sensors"  that  will  drive  the
development of smart photonic textiles and change daily
life  in the area of  medical  IoT.  The proposed sensor of-
fers an approach to visual diagnosis that integrates both
Eastern  and  Western  medical  practices,  advancing  the
standardization  and  objectification  of  traditional  pulse
diagnostic techniques. The convergence of these two di-
agnostic  methods  enables  cross-verification  of  informa-
tion, thereby increasing the accuracy of diagnoses. 

Experimental procedure
 

Speckle pattern and system design
When the laser is coupled into a multimode optical fiber,

speckle patterns are formed at the output end of the opti-
cal fiber, showing a granular pattern that is generated by
interference  between  conduction  modes  during  trans-
mission. The far-field light speckle distribution is the co-
herent superposition of all mode amplitudes, as shown in
Eq. (1): 

A (x, y) =
∑M

m=0
am(x, y)exp [j(φm(x, y)] , (1)

am(x, y) φm(x, y)where  and  are the amplitude and phase
distributions of the m-th mode. The far-field speckle pat-
tern intensity I (x, y) captured by the CMOS camera can
be described as: 

I (x, y) =
∑M

m=0

∑M

n=0
am(x, y)an(x, y)

· exp [j(φm(x, y)− φn(x, y) )] , (2)

am an φm φnwhere  and ,  and  are the amplitude and phase
of the m-th and n-th modes on pixel (x, y), respectively.
In addition, the deformation of the fibers causes pertur-
bations in the propagation medium of each mode, which
in turn affects the variation of the speckle pattern image.
When the fibers are subjected to a physical  disturbance,
such  as  a  pulse,  these  important  physiological  signs  can
be  determined  by  tracking  and  processing  the  intensity
of the speckle pattern.

The  experimental  setup  shown  in Fig. 1 consists  of
three main parts:  the signal-generating device, the POF-
based  smart  photonic  wristband,  and  the  specklegram
processing  part.  The  optical  signal  generated  from  a
benchtop laser (THORLABS, S1FC660, 650 nm) is deliv-
ered  to  the  POF  with  a  multimode  silica  optical  fiber
(50/125 µm). In the experiment,  the employed POF was
the  commercially  available  Mitsubishi  QY40-2.2E  opti-
cal  fiber,  which  is  made  of  polymethyl  methacrylate
(PMMA)  with  the  advantages  of  high  flexibility,  strain
limits, fracture toughness, and a low Young's modulus. A
sports wristband incorporates the POF sensing part into
a smart photonic wristband through sewing and embed-
ding. To enhance sensitivity, Fig. 1(c) sets the POF-based
smart  photonic  wristband  design  into  three  circles.  The
pulse  disturbs  the  POF  close  to  the  wrist,  causing  a
change in the speckle pattern.

The specklegram processing part consists of an indus-
trial  camera  (Hikvision  MV-CA013-AOUM,  USB3.0)
and a computer equipped with MATLAB (R2020b). The
defocus  camera  captures  the  output  speckle  pattern,
which will be analyzed by the MATLAB program to ob-
tain  the  desired  pulse  signal.  The  settings  of  the  CMOS

Kuang RF et al. Opto-Electron Sci  3, 240009 (2024) https://doi.org/10.29026/oes.2024.240009

240009-3

 

https://doi.org/10.29026/oes.2024.240009


webcam  determine  the  sensitivity  and  accuracy  of  the
sensing, as shown in Table 1. In terms of image acquisi-
tion  hardware,  there  is  still  room  to  further  optimize,
such  as  using  industrial  CMOS  sensors  with  smart-
phones or portable cameras to facilitate the development
of cost-effective, portable monitoring devices. 

Specklegram processing
The overall  procedure  for  processing speckle  patterns  is
presented  in Fig. 2,  where  the  changes  in  speckle  pat-
terns are detected by the CMOS webcam. A video is cap-
tured by the webcam during the experiment. The video is
output  frame-by-frame,  and  then  each  frame  is  masked
to implement the image-denoising operation. The specif-
ic procedure is to initially set a threshold value and then
return all pixel values below the threshold value to zero.
Subsequently,  the  video  is  output  frame-by-frame,  and

then color-to-grayscale processing is performed on each
frame.

The  wrist  pulse  is  applied  to  the  sensing  area  of  the
smart  photonic  wristband,  resulting  in  changes  in  the
transmission  light  field  inside  the  POF.  Specifically,  the
mode  coupling  effect  occurs  with  the  change  in  ampli-
tude in Eq. (2), which were causes the distribution of the
speckle  field  to  change  with  the  external  perturbation.
Moreover,  for  the  phase  change,  the  real-time  speckle
field intensity I(x, y,  k)  can be compared with the refer-
ence speckle field intensity Io(x, y) to estimate the phase
deviation,  where k is  the  discrete-time  value  represent-
ing the intensity  frame.  Once mode-coupling and phase
modulation  occur  in  the  POF,  the  speckle  pattern
changes and is shown as the change in the gray value of
each  pixel  in  the  image.  The  variation  in  a  sequence  of
speckle patterns is  shown in Fig. 2 and which caused by
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Table 1 | Some webcam parameters of the video recording process.
 

Exposure type Video frame rate Focal length Video resolution Sensor area

Global shutter 30 FPS 12 mm 1280×1024 1/2''
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consecutive  external  perturbations.  The  corresponding
image  processing  algorithm  can  be  used  to  track  the
speckle  field  modulation  caused  by  any  effect.  A  simple
differential image processing method is employed to ob-
tain a one-dimensional pixel intensity signal. Specifically,
the overall speckle patterns are analyzed, and the change
information in the speckle patterns is extracted by calcu-
lating  the  difference  in  the  intensity  of  all M×N pixel
points in two speckles between frames, which is defined
as follows: 

IDM (i) = 1
M · N

∑M

x

∑N

y
|Ik(x, y)− I1(x, y)| , (3)

Ik(x, y)
where M and N represent  the  number  of  rows  and
columns in the speckle pattern, respectively, and 
corresponds to the pixel value of the coordinates (x, y) in
the k-th frame speckle image. 

Data analysis
In this section, the pulse rate can be extracted by analyz-
ing the specific area of one spectrum image. The direct-
current  (DC)  component  of  the  data  is  eliminated,  and
the power spectrum of optical power is calculated by us-
ing  Welch’ s  overlapped  segment  averaging  estimator42.
The  proposed  processing  steps  for  extracting  the  pulse
rate are as follows:

Firstly,  the pulse wave signal is divided into segments

as shown in Eq. (4): 

xi (n) = x (n+ iM−M) , 0 ≤ n < M, 1 ≤ i < L , (4)

M L
i

where  is  the window length,  is  the number of data
sample  segments,  and  is  the  number  of  each  segment.
Then, Eq.  (5) is  used  to  calculate  the  modified  peri-
odograms of each segment in a Hamming window design. 

Ii (ω) =
1
U

∣∣∣∑M−1

n=0
xi (n)w (n) exp(−jωn)

∣∣∣2,
i = 1, 2 . . . ,M− 1, with U =

1
M
∑M−1

n=0
w2 (n) , (5)

Ii (ω) w (n)

ω

where  is  the  periodogram of  each  segment, 
refers  to  the  window  function  in  symmetric  Hamming
design43,  is  the frequency, and j  is the imaginary unit.
Then, the power spectrum of the signal is obtained by su-
perposition and averaging according to Eq. (6). 

Px (ejω) =
1
L
∑L

i=1
Ii (ω) . (6)

The data are passed through a bandpass filter that cor-
responds to the frequency range of the pulse (frequency
band of 0.8–2.5 Hz) to determine the exact pulse rate. 

Results and discussion
 

Wrist pulse signal monitoring
To  obtain  accurate  pulse  signals,  a  smart  photonic
wristband  protocol  has  been  implemented  for  the  test.
Participants  were  asked  to  wear  the  smart  photonic
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wristband on the wrist comfortably, keeping the sensing
area in direct contact with the skin near the carpal artery
(see Fig. 1).  The  optical  fiber  surround  provides  a  large
sensing  area,  while  the  angle  and  distance  worn  on  the
wrist allow for minimal fitting error. Considering the re-
al-time variations of the pulse signal, the video is record-
ed along four 30 s segments for a total of 2 minutes. The
results  of  pulse  wave signal  detection by the smart  pho-
tonic  wristband  are  shown  in Fig. 3(a),  and  the  pulse
wave time series for 30 s are shown in Fig. 3(a-I), where
the amplitude and frequency of the pulse wave are unsta-
ble. Additionally, the frequency range of the signal indi-
cates  that  the  pulse  signal  cannot  be  clearly  distin-
guished, as shown in Fig. 3(a-II). To improve the accura-

cy  and  efficiency  of  monitoring,  further  investigations
are supplied here.

From the previous study,  we concluded that  differen-
tial  image  processing  methods  are  not  sufficient  to  ob-
tain desirable results, and selecting an optimal algorithm
to address the speckle field modulation is critical for ob-
taining an effective pulsed signal.  Several  algorithms for
processing speckle patterns are depicted in Fig. 4,  which
are widely used in literature to characterize the degree of
images.  These  methods  are  introduced  in  detail  in  the
supplementary  information,  which  are  mainly  selected
based on two different categories: NIPC, ZNCC, FM, and
GLCM are correlation methods,  MI and SSD are differ-
ence methods. 
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Optimization of the speckle processing methods
Based  on  the  discussion  algorithms  above,  although  the
individual algorithms work differently, the ultimate goal
is  to  obtain  one-dimensional  spectral  pixel  intensities
that  carry  the  information  of  the  speckle  pattern  varia-
tions.  To  evaluate  the  performance  of  image  processing
algorithms  in  pulse  signal  monitoring,  different  metrics
have been measured. Similar procedures in previous sec-
tion have been followed for subsequent experiments, the
experiment results in the time domain with different im-
age  processing  methods  (Fig. 3(d)),  whereas  the  other
parameters  have  been  kept  identical  to  previous  mea-
surements.  The  signal  response  in  the  frequency  spec-
trum is obtained as shown in Fig. 3(b), and the pulse rate
is depicted as the beats per minute (BPM). The ordinate
in  the  figure  corresponds  to  the  relative  amplitude after
Fourier  transforms,  and  the  abscissa  corresponding  to
the peak value is the monitored pulse rate in BPM.

As illustrated in Fig. 3(d-I/II), the poor amplitude sta-
bility  of  the  time domain signal  in  the  first  few seconds
affects  the  overall  waveform  observation  and  prevents
further  processing  and  diagnosis.  The  results  indicate
that  the  NIPC/ZNCC  method  is  more  suitable  for  pro-
cessing  linear,  regular,  and  large  amplitude  speckle  in-
tensity  changes44.  Moreover,  compared  to  the  NIPC
method, the ZNCC method accounts for the mean value
of the pixel intensities in the collected speckle images un-
der  the  same  conditions,  causing  the  calculation  results
to  be  more  robust.  Thus,  as  shown  in Fig. 3(d-IV),  the
amplitude  of  the  pulse  wave  calculated  by  the  ZNCC
method  is  two  orders  of  magnitude  larger  than  that  of
the  NIPC  method.  In  addition,  from Fig. 3(b-I/II),  the
processing effect  of  low-frequency noise signals  below 1

Hz (60 BPM) with the ZNCC method is significantly bet-
ter than that of the NIPC method.

Here, the first-order moment algorithm uses the con-
cept of mathematical expectation to address the correla-
tion  function,  which  is  not  practical  for  pulse  monitor-
ing. According to Fig. 3(d-III), there is almost no change
in the  waveform,  and it  is  unable  to  detect  the  weak vi-
bration.  In  addition,  the  performance  evaluation  of  the
MI algorithm is complicated because the process of con-
verting  the  pixel  intensity  to  an image  entropy loses  in-
formation about each pixel.

Moreover,  the accuracy and time complexity  of  those
algorithms  are  the  key  factors  affecting  the  monitoring
effect.  The  difference  between  the  pulse  rate  obtained
from  the  smart  photonic  wristband  and  the  heart  rate
measured by a standard electrocardiographic device (AD
8232)  is  recorded45.  Normally,  the  pulse  rate  and  heart
rate are consistent46. We prefer ECG to PPG as the refer-
ence  standard  because  ECG  signals  are  generally  more
accurate  than PPG signals47,  and PPG signal  acquisition
inherently  involves  measurement  errors.  The  subjects
were asked to wear the smart  photonic wristband at  the
wrist for data collection, and three ECG electrodes were
attached to the chest and abdomen as required to moni-
tor  the  reference  signals.  The  diagram  of  the  reference
monitoring  signal  acquisition  is  shown  in Fig. 3(c),
where  the  subject  pulse  signal  was  simultaneously  mea-
sured with  the  reference  signal. Table 2 shows the  pulse
rates  of  participants  who  were  monitored  in  different
states  and  the  measurements  were  repeated  three  times
in each state to assess the accuracy and specificity of the
algorithm in determining the pulse rate. As presented in
Table 2, the response indicates an error of less than 5.3%

 

Speckle pattern processing algorithms
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Fig. 4 | Processing algorithms for speckle patterns using various methods.
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for  the  pulse  rate  measurements.  FM  and  MI  methods
failed to measure the pulse rate, but the other algorithms
were effective in measuring the pulse signals.

Based  on  the  processing  time,  the  different  methods
can complete the calculation of a 30 s video within 100 s,
which is better than the correlation method. The GLDM
method is the fastest due to use the of MATLAB's built-
in function to directly measure the image gray values for
computation,  which  is  highly  encapsulated.  The  MI
method  initially  calculates  the  gray  entropy  and  then
translates it into the form of a mutual information func-
tion  with  a  long  processing  time.  As  shown in Fig. 3(d-
VI), the sum of the squared differences method success-
fully  demodulated  the  frequency  information  of  the
pulse vibration signal from the sensing curve. Due to the
SSD  processing  two  adjacent  frames,  the  results  ob-
tained  are  better  than  the  differential  image  processing
method (see Fig. 3(b-II)). In contrast, the differential im-
age processing method selects the first frame of the video
as  a  fixed  reference  state,  which  creates  uncertainty,  re-
duces the dynamic range of algorithm processing, and is
suitable  for  most  algorithms,  such  as  the  NIPC  and  the
ZNCC  method.  Therefore,  compared  with  other  algo-
rithms,  the  SSD  method  is  simple  to  implement  and
shows high sensitivity to intensity variations, as present-
ed in Fig. 3(d-VI).  The signal  response  in  the  frequency
spectrum  (see Fig. 3(b-VI))  also  reflects  optimal  moni-
toring; the main noise outside of 60–80 BPM (1–1.33 Hz)
filtered  out,  showing  a  clear  pulse  signal  that  is  suitable
for further discussion. 

Optimization of the smart photonic
wristband
As mentioned above,  the  SSD method is  one of  the  dif-
ferential  methods,  and  the  sensitivity  of  the  smart  pho-
tonic wristband processed by the differential  methods is
provided  by  the  amount  and contrast  of  speckles  in  the
captured images48. Moreover, the amount of speckle for-
mation due to mode interference depends on the propa-

gation conditions of the optical fiber; thus, the sensitivi-
ty  can  be  enhanced  by  appropriately  adjusting  the  core
diameter  of  the  multimode  optical  fiber.  To  determine
the performance of the sensors with different core diam-
eters, POFs with core diameters of 250/500/750/1000 µm
were  selected  and  evaluated.  The  experimental  condi-
tions  were  the  same  as  previously,  and  each  video  was
recorded along six 30 s segments, totaling 3 minutes, cor-
responding to the different types of POFs. In the speckle
patterns,  as  shown  in Fig. 5(a),  the  number  of  speckles
was proportional to the core diameter of the POF, which
was the same as the theoretical result49.

±

The pulse signals detectable by the four types of POFs
were  discussed,  and  the  corresponding  smart  photonic
wristbands are  anticipated to undergo further  optimiza-
tion  studies.  Reference  signals  were  still  obtained  from
the standard ECG device. The reference ECG signal with
the  detected  T-waves  and  the  acquired  pulse  signal  col-
lected from the POF with a core diameter of 500 µm are
illustrated in Fig. 5(b). The T-wave peak was easily locat-
ed in the ECG signal, which corresponded to the percus-
sion wave peaks of  the pulse signal.  The time difference
between  the  two  peaks  corresponded  to  the  time  delay,
and the  mean values  and the  standard deviations  of  de-
lays  are  depicted  in Fig. 5(c).  The  results  indicated  that
the time delay error measured by POFs of different sizes
had a slight difference, with an average of 231.5 42.5 ms
and a standard deviation of 21.0 ms.

A comparison of the pulse power spectrum measured
by  different  POFs  indicates  that  a  greater  speckle  num-
ber in the image correlates to a higher peak value of the
dominant  frequency  of  the  signal  power  spectrum  (see
Fig. 5(d)).  When the area captured by the image is  con-
stant,  the  smaller  the  speckle,  the  more  susceptible  the
optical power intensity is to external changes. For the se-
lected core diameters (250–1000 µm), the corresponding
POF sensors were capable of receiving a sufficient num-
ber of  speckles  and were sensitive enough for  pulse  rate
monitoring  in  the  frequency  domain.  However,  the

 

Table 2 | Summary of test pulse rate results for different algorithms.
 

Algorithms NIPC ZNCC FM GLDM MI SSD Reference

Pulse rate (BPM)

No. 1 71.19±3.5 70.56±1.2 / 70.29±4.2 81.74±4.4 70.59±1.8 74.22±2.5

No. 2 63.22±2.0 62.87±1.8 / 64.19±3.7 69.95±3.9 62.08±1.1 65.17±1.9

No. 3 78.92±2.5 78.37±1.9 / 77.12±3.0 / 78.07±0.9 80.69±2.3

No. 4 57.61±1.7 57.02±2.0 / 56.89±3.3 63.13±2.8 56.32±1.3 58.61±1.7

No. 5 95.05±5.2 95.44±4.9 / 92.54±8.1 / 96.50±5.7 98.76±7.2

Computation time (s) 113.16±1.2 111.63±1.3 125.77±8.0 87.42±2.7 5056.71±79.3 92.10±0.5 /
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situation  appears  different  for  pulse  wave  signals  in  the
time domain. The signal-to-noise ratio (SNR) of the im-
age is interpreted as the ratio of the effective pulse signal
to the power spectrum of the noise and varies for the dif-
ferent  core  diameters.  The  average  value  of  the  power
spectrum  in  the  stationary  state  is  defined  as  the  image
noise. When the core diameter of the POF exceeds a cer-
tain value, the pulse wave signal has some burr noise and
the sensing effect deteriorates. As shown in Fig. 5(c), the
experimental results indicate that the POF with a 750 µm
core diameter has the best SNR.

Specifically,  four  different  core  diameters  of  POF  ex-
hibited  similar  response  times  (231.5±42.5  ms).  In  the
frequency  domain,  the  750  µm  core  diameter  POF
demonstrated a distinctly clear and significant pulse rate,
with an intensity slightly lower than that of the 1000 µm
core diameter POF, which also possessed the highest sig-
nal-to-noise ratio (SNR) at 34.19 dB. In the time domain,

the 750 µm core diameter POF not only captured the di-
crotic  wave  but  also  achieved  a  noise  reduction.  Hence,
the 750 µm core diameter POF was selected for optimiza-
tion.  The  pulse  wave  obtained  after  the  optimization  of
the  POF  core  diameter  is  shown  in Fig. 6(a),  where t0

represents  a  complete  pulse  wave.  Each  cycle  of  the
waveform  is  associated  with  a  pulse,  and  the  peaks  and
valleys  represent  the  diastole  and  systole  of  the  radial
artery,  respectively.  Some  specific  information  in  the
pulse wave can be obtained, as illustrated in Fig. 6(a-II).
A complete pulse wave contains information, such as in-
tensity,  trend,  shape,  width,  and  rhythm  variation.  The
display of this detailed information is capable of helping
the follow-up medical  diagnosis,  such as  the strength of
the pulse and the monitoring of pulse wave abnormalities.

Subsequently,  the  bending and indentation tests  were
implemented  to  evaluate  the  mechanical  and  optical
properties  of  the  POF.  The  POF  was  installed  on  a
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homemade  broad  with  various  bending  angles,  as  illus-
trated  in  the  inset  of Fig. 6(b).  Subsequently,  measured
the  speckle  pattern's  power  spectral  intensity  under  dif-
ferent  bending  radii.  The  POF was  bent  from a  straight
state to a preset bending angle and then returned to the
straight state. The power spectral intensity of the speckle
pattern  was  measured  on  average  after  50  cycles.  As
shown in Fig. 6(b),  the power spectral  intensity  through
the  POF  decreases  as  the  bending  angle  increases.  No-
tably, when the bending angle increased from 0 to 45 de-
grees  (forming  a  loop),  the  optical  power  intensity  de-
creased  from  2.65×106 (pt)  to  1.58×106 (pt),  and  about
60%  of  the  light  could  pass  through  the  POF.  Further-
more, to assess the mechanical performance under bend-
ing  conditions,  pressure  tests  were  performed  on  the
POF with a force gauge (HANDPI, HP-500), as depicted
in  the  inset  of Fig. 6(c).  Specifically,  pressures  ranging
from 0 to 135 N were applied in 15 N increments on one

side  of  the  POF,  with  each  pressure  value  measured  20
times.  When  the  applied  pressure  exceeded  150  N,  re-
peated applications resulted in POF damage. The result-
ing  pressure-speckle  pattern  power  spectral  intensity
curve, as shown in Fig. 6(c), indicates the POF exhibited
a  decreasing  light  power  curve  under  applied  pressure,
with a  linear  working range of  0–45 N.  A high linearity
(R²  = 0.989) was demonstrated within this  range,  which
helps  to  avoid  distortion in  pulse  wave  signal  detection.
The experimental results indicated that the optical pow-
er intensity decreases from 2.69×106 (pt) to 1.74×106 (pt)
as  the  pressure  increases  from 0 to  30 N.  Under a  pres-
sure of  30 N,  the POF could still  transmit  about 65% of
the  light,  demonstrating  its  strong  resistance  to  lateral
pressure.  These  results  indicate  the  POF  not  only  has
high  stability  and  excellent  durability  but  also  ensures
that the light signal sensitively varies with shape changes
during bending or pressure variations.
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So  far,  an  optimal  method  suitable  for  long-term  de-
tection is proposed, where the sensing part of the POF is
configured  as  three  loops  in  the  smart  photonic  wrist-
band. The speckle pattern information was collected us-
ing  the  SSD algorithm,  while  the  750  µm core  diameter
POF was selected for the experiment. The distribution of
the  specklegram  signal  power  over  the  frequency  do-
main  was  extracted  using  the  power  spectral  density
(PSD) method to determine the pulse rate. Four healthy
subjects  were  subsequently  selected  for  testing,  and  the
results of the performance analysis are shown in Table 3.

Averaging the performance results in Table 3 results in
a monitoring error of 3.7%, a processing time consump-
tion of 93.67 s, a signal-to-noise ratio of 34.96 dB, and a
measurement delay of 269.9 ms. 

Multiposition pulse monitoring
The Cunkou diagnostic method is one of the most com-
mon methods of pulse collection in the clinical diagnosis
of  traditional  Chinese  medicine  (TCM).  Practitioners
can determine the physiological and pathological state of
the body by feeling the pulse beating at the Cunkou. The
Cunkou normally includes three special positions, name-
ly, Cun (distal), Guan (middle), and Chi (proximal). The
medial  part  of  the  radial  styloid  process  is  marked  as
Guan,  the anterior  part  of  Guan (wrist  side)  is  Chi,  and
the  posterior  part  of  Guan  (elbow  side)  is  Cun,  the
schematics of these three positions are shown in Fig. 7(a-I).

Thus,  based  on  the  TCM,  the  smart  photonic  wrist-
band  was  placed  at  three  different  Cunkou  locations
(Cun, Guan, and Chi) for further analysis. The pulse was
continuously monitored by adjusting the position of the
smart  photonic  wristband,  as  shown  in Fig. 7(a-I),  and
changing  the  position  at  30-s  intervals,  repeating  each
position  five  times.  The  pulse  wave  signals  correspond-
ing to the three sensing locations are recorded, as depict-
ed  in Fig. 7(a-II).  The  pulse  rates  are  collected  continu-
ously  at  these  three  locations  and  show  essentially  the
same value of 73 beats per minute. The experimental re-
sults  indicate  that  the  characteristic  peaks  of  the  pulse
waveforms  at  different  Cunkou  positions  can  be  identi-

fied;  the  pulse  amplitude  at  the  Guan  position  is  the
largest, the pulse amplitude at the other two positions is
similar,  and  the  Cun  position  is  slightly  larger.  Six
healthy college students (three males and three females)
were  selected  to  repeat  the  test,  and  the  results  indicate
our  wristband  obtained  a  pulse  across  various  Cunkou
locations  with  good  repeatability  performance.  Signifi-
cantly,  in  the  TCM  diagnosis,  changes  in  the  pulse  col-
lected  at  different  positions  of  Cunkou  can  also  deter-
mine  the  effect  of  pathogeny  on  the  internal  organs50.
The  radial  artery's  three  positions  correspond  to  the
meridians and internal organs, as shown in Table 4.

However,  despite  its  frequent  use  in  clinical  practice,
pulse  diagnosis  has  been  criticized  and  questioned  by
Western  physicians  due  to  its  lack  of  mathematical  and
physical  characteristics.  Our  wristband  sensor  offers
TCM  practitioners  visualized  information  about  pulse
signals at the Cun, Guan, and Chi positions, enabling the
interpretation  of  wrist  pulse  physical  parameters  from
both  qualitative  and  quantitative  perspectives51,  such  as
the oscillation frequency,  intensity,  length,  and width of
the pulse. Consequently, in the future, it  will  be of great
significance to develop this kind of wristband for multi-
location monitoring of health conditions and diseases.

Experimentally,  the effect  of  different user movement
states on sensing is evaluated. The smart photonic wrist-
band  was  attached  to  the  wrist  artery  of  a  22-year-old
healthy  female  volunteer  to  collect  pulse  signals.  The
pulse signal was first recorded while the volunteer was at
rest.  The volunteer was then asked to perform an open-
close jump exercise at a rate of 50 times per minute (see
Fig. 7(b-I)). Immediately after the exercise, the pulse sig-
nal  is  detected  by  the  smart  photonic  wristband. Figure
7(b-II) shows the changes in the wrist pulse wave signal
at  rest,  after  2  min  of  exercise,  and  after  4  min  of  exer-
cise,  where  the  pulse  rates  were  58,  75,  and  102  per
minute, respectively.

In  summary,  sustained  high-intensity  exercise  results
in an increase in pulse rate and a larger pulse amplitude.
Additionally,  the  smart  photonic  wristband  can  capture
subtle variations in the pulse waveform before and after

 

Table 3 | Optimized smart photonic wristband response with different subjects.
 

Subjects Our sensor (BPM) Reference (BPM) Error Time-consuming (s) SNR (dB) Delay (ms)

1 ±62.0 2.3 ±64.8 1.0 4.52% ±93.23 0.76 ±34.92 2.89 ±251.5 5.2

2 ±79.5 2.2 ±82.1 3.6 3.17% ±92.19 3.05 ±37.05 4.16 ±259.2 8.0

3 ±66.6 3.5 ±70.2 4.1 5.13% ±93.20 1.92 ±32.21 7.52 ±302.0 10.6

4 ±75.8 1.6 ±77.3 3.3 1.94% ±96.06 1.19 ±35.63 3.05 ±267.2 4.8
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exercise. One complete pulse wave cycle for different ex-
ercise states is  extracted,  as depicted in Fig. 7(b-III).  Af-
ter  4  minutes  of  exercise,  the  percussion wave  peak sig-
nificantly increases, and the dicrotic wave becomes irreg-
ular with a tendency to be blurry.  These results  indicate
that sustained high-intensity exercise over a short period
leads  to  significant  changes  in  the  pulsed signal,  consis-
tent with phenomena observed in previous clinical studies. 

Hand gesture recognition with AI
Gestures  may  provide  a  significant  amount  of  data,  so
precise recognition of these movements is crucial for en-
hancing  the  effectiveness  and  functionality  of  human-
computer  interaction  technology.  Various  gestures  in-
duce  distinct  muscle  actions,  likely  giving  rise  to  differ-
ent  signal  responses  by  the  smart  photonic  wristband,

which in turn affects  the waveform changes of  the wrist
pulse wave. Hence, an experiment was devised to investi-
gate the ability of the smart photonic wristband to detect
changes  in  gestures.  Participants  were  recorded  holding
five  different  gestures  for  three  minutes.  Using  the  fea-
ture extraction algorithms mentioned in the supplement,
pulse  wave  signals  were  obtained  that  corresponded  to
each of the different gestures. To classify the gestures, we
utilized  machine  learning  algorithms,  which  can  effec-
tively  achieve  regression  and  classification.  To  enhance
model classification accuracy, three feature extraction al-
gorithms, the NIPC method, the ZNCC method, and the
differential image processing method, are selected to cre-
ate  a  three-dimensional  eigenvalue  time  series  data  sig-
nal, and 160 sample groups are acquired frame by frame.
Following  the  random arrangement  of  the  samples,  120
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Table 4 | The correspondence of the Cun, Guan and Chi with the organs of the body.
 

Position Cun Guan Chi

Left arterial wrist Heart Liver & Gallbladder Kidney

Right arterial wrist Lung & Chest Stomach Kidney
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groups of samples were implemented for training, and 40
groups for testing.

Subsequently, a three-layer, one-dimensional convolu-
tional  neural  network  to  extract  deep  features  from sig-
nals  to  clearly  characterize  the  classification  results  of
different gestures was designed. Then, the data is unfold-
ed and fed to the fully connected layer for classification.
The  specific  network  model  is  depicted  in Fig. 8(a).  Af-
ter multiple iterations, a classification model is obtained.
Finally,  20  datasets  were  used  to  evaluate  the  predictive
ability of the model and the results are represented using
a  confusion  matrix.  As  illustrated  in Fig. 8(b),  with  the
assistance of the convolutional neural network, different
gestures  have  been  distinguished,  achieving  a  classifica-
tion  accuracy  of  95%.  These  results  indicate  that  smart
photonic  wristbands  are  promising  for  applications  to
assist in healthcare strategy development and future hu-
man-computer  interactions  by  recognizing  changes  in
gestures. 

Visualisation of the smartphone interface
The  internet  of  things  (IoT)  is  an  emerging  technology
that has shown great promise in recent years. The health-
care sector has high expectations for IoT technology due
to  the  synergy  between  the  market  demand  for  health
monitoring  and  the  development  of  IoT  technology.
Over  the  past  decade,  the  healthcare  internet  of  things
(H-IoT)  has  demonstrated  its  potential  application  in
connecting various medical devices, sensors, and health-
care  professionals  to  deliver  high-quality  medical  ser-
vices.  A  wearable  health  monitoring  system  combined
with  the  H-IoT will  be  a  promising  alternative  to  tradi-
tional  healthcare  systems.  Hence,  one  cloud-based  sys-
tem was implemented for data processing. The comput-

er  connected  to  the  CMOS  camera  acquires  the  user's
pulse signal,  and the data is  interconnected using Wi-Fi
to  the  cloud.  Ultimately,  the  data  is  processed  in  the
cloud to obtain the user's physiological information and
then transmitted to a smartphone.

When  clicking  the  "START  PULSE  MONITORING"
button  in Fig. 9,  each  frame  of  the  speckle  plot  can  be
sent  to  the  IoT  system  via  the  Bluetooth  device.  After
collecting the data, the measurement results can be visi-
ble  in  the  smartphone  application.  Transferring  cloud
data  in  this  way  has  the  problem  of  uploading  data  too
slowly, which still requires a solution in the future. As il-
lustrated  in Fig. 9,  the  pulse  rate  (64  BPM),  possible
movement state (at rest), and health assessment (in com-
parison to other users) obtained from the smart photon-
ic wristband are displayed on the mobile application, al-
lowing the user to see their  current health state quickly.
Ultimately, users can easily share their health parameter
data  with  their  doctors  instantly  within  our  application
and seek health counseling and medical assistance when
needed.  Elderly  patients,  patients  with  arrhythmias,  and
patients  with coronary heart  disease  (CHD) will  be  able
to  keep  their  health  under  control  over  time  with  the
help  of  the  cloud  system  developed.  By  visualizing  the
smartphone  interface,  we  are  truly  enabling  wearable
healthcare  by  integrating  fiber  optic  sensors  into  body
area networks. 

Conclusions
To conclude, we propose a speckle pattern analysis based
POF sensor integrated with a  wristband for  pulse  signal
monitoring  as  a  smart  photonic  wristband.  The  smart
photonic wristband present here has advantages such as
simple  operation,  low-cost,  and  good  performance  for
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real-time  pulse  monitoring.  Several  commonly  used  al-
gorithms  for  processing  specklegrams  were  evaluated
and compared to optimize the smart photonic wristband.
The  sum  of  squared  differences  (SSD)  method  showed
the  best  performance,  controlling  the  measurement  er-
ror  to  approximately  4.9%.  Subsequently,  based  on  the
SSD method, the POF with different core diameters was
used  for  experimental  investigation;  the  smart  photonic
wristband  with  POF  (750  µm  core  diameter)  had  the
highest signal-to-noise ratio and better sensitivity, corre-
sponding to an SNR of 34.96 dB and a measurement de-
lay  of  369.9  ms  between  the  smart  photonic  wristband
measurement and the reference ECG signal, respectively,
while the measurement error was reduced to 3.7%. Final-
ly, the optimal processing algorithm and the smart pho-
tonic wristband were combined to obtain a set of meth-
ods suitable for long-term detection. The smart photon-
ic wristband could monitor subtle changes in pulse wave
characteristics,  subsequently  achieving  wrist  pulse  mea-
surements before and after exercise, as well as multiposi-
tion pulse detection.  Future work will  continue to focus
on the Cunkou diagnostic method, refining the quantita-
tive  comparative  analysis  of  pulse  waves  among various

patients  and  healthy  people.  In  addition,  the  AI  algo-
rithm  has  achieved  the  recognition  of  different  gestures
with 95% accuracy,  which plays a vital  role in screening
potential  patients  with  related  diseases.  Eventually,  a
cloud system was  developed to  monitor  the  user's  pulse
and exercise information and the data is  interconnected
using  Wi-Fi  to  the  cloud.  Specifically,  smart  photonic
wristbands have a wide range of potential applications in
healthcare  environments.  We  expect  to  deploy  these  in
specific  medical  settings  that  demand resistance to elec-
tromagnetic  interference,  such  as  magnetic  resonance
imaging  (MRI)  systems,  CT  systems,  and  diagnostic  ul-
trasound  systems.  The  proposed  sensor  helps  monitor
pulse  abnormalities  caused  by  cardiovascular  diseases,
facilitates the integration of traditional Chinese pulse di-
agnosis  with  western  medicine  and  these  devices  have
the  potential  to  be  highly  useful  in  the  field  of  smart
wearable physiological signal detection.

References 

 Chen SW,  Qi  JM,  Fan  SC et  al. Flexible  wearable  sensors  for
cardiovascular  health  monitoring. Adv  Healthc  Mater 10,
2100116 (2021).

1.

 Vogel B, Acevedo M, Appelman Y et al. The Lancet women and2.

 

Walk

Amplitude (a.u)

Pulse waveform

Pulse rate

Movement state

Health assessment

Pulse waveform

Historical waveform

Healthier than 80 per cent of users

64 BPM

Pulse Monitoring Result

20W

10W

0

−10W

−20W
0 5 10 15 20 25 Time (s)

At Rest

START PULSE MONITORING

CONSUL TANT

StrenuosityRun

Fig. 9 | A snapshot of the smartphone application for monitored data visualization.

Kuang RF et al. Opto-Electron Sci  3, 240009 (2024) https://doi.org/10.29026/oes.2024.240009

240009-14

 

https://doi.org/10.1002/adhm.202100116
https://doi.org/10.29026/oes.2024.240009


cardiovascular disease commission: reducing the global burden
by 2030. Lancet 397, 2385–2438 (2021).
 Gilgen-Ammann  R,  Schweizer  T,  Wyss  T. RR  interval  signal
quality  of  a  heart  rate  monitor  and  an  ECG  Holter  at  rest  and
during exercise. Eur J Appl Physiol 119, 1525–1532 (2019).

3.

 Zheng Q, Tang QZ, Wang ZL et  al. Self-powered cardiovascu-
lar  electronic  devices  and  systems. Nat  Rev  Cardiol 18, 7–21
(2021).

4.

 Tan PC, Xi Y, Chao SY et al. An artificial intelligence-enhanced
blood pressure monitor wristband based on piezoelectric nano-
generator. Biosensors 12, 234 (2022).

5.

 Chen SW, Wu N, Lin SZ et al. Hierarchical elastomer tuned self-
powered  pressure  sensor  for  wearable  multifunctional  cardio-
vascular electronics. Nano Energy 70, 104460 (2020).

6.

 Meng KY, Xiao X, Wei WX et al. Wearable pressure sensors for
pulse wave monitoring. Adv Mater 34, 2109357 (2022).

7.

 Chu Y, Zhong JW, Liu HL et al. Human pulse diagnosis for med-
ical  assessments  using  a  wearable  piezoelectret  sensing  sys-
tem. Adv Funct Mater 28, 1803413 (2018).

8.

 Sun YZ, Zhang ZQ, Zhou Y et al. Wearable strain sensor based
on  double-layer  graphene  fabrics  for  real-time,  continuous  ac-
quirement  of  human  pulse  signal  in  daily  activities. Adv  Mater
Technol 6, 2001071 (2021).

9.

 Ouyang H, Tian JJ, Sun GL et al. Self-powered pulse sensor for
antidiastole  of  cardiovascular  disease. Adv  Mater 29, 1703456
(2017).

10.

 Wang  SP,  Wang  XY,  Wang  S  et  al. Optical-nanofiber-enabled
gesture-recognition  wristband  for  human-machine  interaction
with  the  assistance  of  machine  learning. Adv  Intell  Syst 5,
2200412 (2023).

11.

 Chen GR, Au C, Chen J. Textile triboelectric nanogenerators for
wearable  pulse  wave  monitoring. Trends  Biotechnol 39,
1078–1092 (2021).

12.

 Roy  K,  Ghosh  SK,  Sultana  A  et  al. A  self-powered  wearable
pressure sensor and pyroelectric breathing sensor based on GO
interfaced  PVDF  nanofibers. ACS  Appl  Nano  Mater 2,
2013–2025 (2019).

13.

 Yan C, Deng WL, Jin L et al. Epidermis-inspired ultrathin 3D cel-
lular sensor array for self-powered biomedical  monitoring. ACS
Appl Mater Interfaces 10, 41070–41075 (2018).

14.

 Zhu HH, Liu A, Luque HL et al. Perovskite and conjugated poly-
mer  wrapped semiconducting  carbon nanotube hybrid  films  for
high-performance  transistors  and  phototransistors. ACS  Nano
13, 3971–3981 (2019).

15.

 Ma C, Xu D, Huang YC et al. Robust flexible pressure sensors
made  from  conductive  micropyramids  for  manipulation  tasks.
ACS Nano 14, 12866–12876 (2020).

16.

 Wang S, Chen GR, Niu SY et al. Magnetic-assisted transparent
and  flexible  percolative  composite  for  highly  sensitive  piezore-
sistive  sensor  via  hot  embossing  technology. ACS  Appl  Mater
Interfaces 11, 48331–48340 (2019).

17.

 Yang TT, Jiang X, Zhong YJ et al. A wearable and highly sensi-
tive graphene strain sensor for precise home-based pulse wave
monitoring. ACS Sens 2, 967–974 (2017).

18.

 Xiong YX,  Shen YK,  Tian  L  et  al. A  flexible,  ultra-highly  sensi-
tive and stable capacitive pressure sensor with convex microar-
rays for motion and health monitoring. Nano Energy 70, 104436
(2020).

19.

 Guan  FY,  Xie  Y,  Wu  HX  et  al. Silver  nanowire-bacterial  cellu-
lose composite fiber-based sensor for highly sensitive detection

20.

of pressure and proximity. ACS Nano 14, 15428–15439 (2020).
 Lin QP, Huang J, Yang JL et al. Highly sensitive flexible iontron-
ic  pressure  sensor  for  fingertip  pulse  monitoring. Adv  Healthc
Mater 9, 2001023 (2020).

21.

 Min R, Liu ZY, Pereira L et  al. Optical  fiber  sensing for  marine
environment  and marine structural  health  monitoring:  a  review.
Opt Laser Technol 140, 107082 (2021).

22.

 Wang X, Zhou HY, Chen MH et al. Highly sensitive strain sen-
sor based on microfiber coupler for wearable photonics health-
care. Adv Intell Syst 5, 2200344 (2023).

23.

 Jia DG, Chao J, Li S et al. A fiber bragg grating sensor for radi-
al  artery  pulse  waveform  measurement. IEEE  Trans  Biomed
Eng 65, 839–846 (2018).

24.

 Pant  S,  Umesh S,  Asokan S. A  novel  approach to  acquire  the
arterial pulse by finger plethysmography using fiber bragg grat-
ing sensor. IEEE Sens J 20, 5921–5928 (2020).

25.

 Li HQ, An ZX, Zhang S et al. Fully photonic integrated wearable
optical interrogator. ACS Photonics 8, 3607–3618 (2021).

26.

 Li  LY,  Li  YP,  Yang  LY  et  al. Continuous  and  accurate  blood
pressure monitoring based on wearable optical  fiber wristband.
IEEE Sens J 21, 3049–3057 (2021).

27.

 Smith  DL,  Nguyen  LV,  Ottaway  DJ  et  al. Machine  learning  for
sensing with a multimode exposed core fiber specklegram sen-
sor. Opt Express 30, 10443–10455 (2022).

28.

 Murray  MJ,  Davis  A,  Kirkendall  C  et  al. Speckle-based  strain
sensing  in  multimode  fiber. Opt  Express 27, 28494–28506
(2019).

29.

 Gu LL, Gao H, Hu HF. Demonstration of a learning-empowered
fiber specklegram sensor based on focused ion beam milling for
refractive index sensing. Nanomaterials 13, 768 (2023).

30.

 Chen  W,  Feng  F,  Chen  DH  et  al. Precision  non-contact  dis-
placement sensor based on the near-field characteristics of fiber
specklegrams. Sens Actuators A Phys 296, 1–6 (2019).

31.

 Qureshi MM, Liu Y, Mac KD et al. Quantitative blood flow esti-
mation in  vivo by  optical  speckle  image  velocimetry. Optica 8,
1092–1101 (2021).

32.

 Bennett A, Beiderman Y, Agdarov S et al. Monitoring of vital bio-
signs by analysis of speckle patterns in a fabric-integrated multi-
mode  optical  fiber  sensor. Opt  Express 28, 20830–20844
(2020).

33.

 Min R, Hu XH, Pereira L et al. Polymer optical fiber for monitor-
ing  human  physiological  and  body  function:  a  comprehensive
review  on  mechanisms,  materials,  and  applications. Opt  Laser
Technol 147, 107626 (2022).

34.

 Shi  Y,  Tangdiongga E,  Koonen AMJ et  al. Plastic-optical-fiber-
based  in-home  optical  networks. IEEE  Commun  Mag 52,
186–193 (2014).

35.

 Talataisong W, Gorecki J, van Putten LD et al. Hollow-core an-
tiresonant  terahertz  fiber-based  TOPAS  extruded  from  a  3D
printer  using  a  metal  3D  printed  nozzle. Photonics  Res 9,
1513–1521 (2021).

36.

 Woyessa G, Fasano A, Markos C et al. Zeonex microstructured
polymer optical fiber: fabrication friendly fibers for high tempera-
ture and humidity  insensitive Bragg grating sensing. Opt Mater
Express 7, 286–295 (2017).

37.

 Theodosiou A, Min R, Leal-Junior AG et al. Long period grating
in a multimode cyclic transparent optical polymer fiber inscribed
using a femtosecond laser. Opt Lett 44, 5346–5349 (2019).

38.

 Liu  L,  Zheng  J,  Deng  SJ  et  al. Parallel  polished  plastic  optical
fiber-based  SPR  sensor  for  simultaneous  measurement  of  RI

39.

Kuang RF et al. Opto-Electron Sci  3, 240009 (2024) https://doi.org/10.29026/oes.2024.240009

240009-15

 

https://doi.org/10.1016/S0140-6736(21)00684-X
https://doi.org/10.1007/s00421-019-04142-5
https://doi.org/10.1038/s41569-020-0426-4
https://doi.org/10.3390/bios12040234
https://doi.org/10.1016/j.nanoen.2020.104460
https://doi.org/10.1002/adma.202109357
https://doi.org/10.1002/adfm.201803413
https://doi.org/10.1002/admt.202001071
https://doi.org/10.1002/admt.202001071
https://doi.org/10.1002/adma.201703456
https://doi.org/10.1002/aisy.202200412
https://doi.org/10.1016/j.tibtech.2020.12.011
https://doi.org/10.1021/acsami.8b14514
https://doi.org/10.1021/acsami.8b14514
https://doi.org/10.1021/acsnano.8b07567
https://doi.org/10.1021/acsnano.0c03659
https://doi.org/10.1021/acsami.9b16215
https://doi.org/10.1021/acsami.9b16215
https://doi.org/10.1021/acssensors.7b00230
https://doi.org/10.1016/j.nanoen.2019.104436
https://doi.org/10.1021/acsnano.0c06063
https://doi.org/10.1002/adhm.202001023
https://doi.org/10.1002/adhm.202001023
https://doi.org/10.1016/j.optlastec.2021.107082
https://doi.org/10.1002/aisy.202200344
https://doi.org/10.1109/TBME.2017.2722008
https://doi.org/10.1109/TBME.2017.2722008
https://doi.org/10.1109/JSEN.2020.2973342
https://doi.org/10.1021/acsphotonics.1c01236
https://doi.org/10.1109/JSEN.2020.3027919
https://doi.org/10.1364/OE.443932
https://doi.org/10.1364/OE.27.028494
https://doi.org/10.3390/nano13040768
https://doi.org/10.1016/j.sna.2019.06.010
https://doi.org/10.1364/OPTICA.422871
https://doi.org/10.1364/OE.384423
https://doi.org/10.1016/j.optlastec.2021.107626
https://doi.org/10.1016/j.optlastec.2021.107626
https://doi.org/10.1364/PRJ.420672
https://doi.org/10.1364/OME.7.000286
https://doi.org/10.1364/OME.7.000286
https://doi.org/10.1364/OL.44.005346
https://doi.org/10.29026/oes.2024.240009


and  temperature. IEEE  Trans  Instrum  Meas 70, 9508308
(2021).
 Leal-Junior AG, Frizera A, Marques C et al. Optical fiber speck-
legram sensors  for  mechanical  measurements:  a  review. IEEE
Sens J 20, 569–576 (2020).

40.

 Avellar  L,  Delgado  G,  Marques  C  et  al. Polymer  optical  fiber-
based  smart  garment  for  impact  identification  and  balance  as-
sessment. IEEE Sens J 21, 20078–20085 (2021).

41.

 Cooley JW, Lewis PAW, Welch PD. The fast Fourier transform
and its applications. IEEE Trans Ed 12, 27–34 (1969).

42.

 Jokinen H, Ollila J, Aumala O. On windowing effects in estimat-
ing  averaged periodograms of  noisy  signals. Measurement 28,
197–207 (2000).

43.

 Di  Stefano  L,  Mattoccia  S,  Tombari  F. ZNCC-based  template
matching  using  bounded  partial  correlation. Pattern  Recognit
Lett 26, 2129–2134 (2005).

44.

 Kumar  CK,  Manaswini  M,  Maruthy  KN  et  al. Association  of
Heart  rate  variability  measured  by  RR  interval  from  ECG  and
pulse  to  pulse  interval  from  photoplethysmography. Clin  Epi-
demiol Global Health 10, 100698 (2021).

45.

 Quer  G,  Gouda  P,  Galarnyk  M  et  al. Inter- and  intraindividual
variability  in  daily  resting  heart  rate  and  its  associations  with
age, sex, sleep, BMI, and time of year: retrospective, longitudi-
nal  cohort  study  of  92,  457  adults. PLoS  One 15, e0227709
(2020).

46.

 Neha,  Sardana  HK,  Kanwade  R,  Tewary  S. Arrhythmia  detec-
tion  and  classification  using  ECG  and  PPG  techniques:  a  re-
view. Phys Eng Sci Med 44, 1027–1048 (2021).

47.

 Rodríguez-Cuevas  A,  Peña  ER,  Rodríguez-Cobo  L  et  al. Low-
cost  fiber  specklegram  sensor  for  noncontact  continuous  pa-
tient monitoring. J Biomed Opt 22, 037001 (2017).

48.

 Hill  KO,  Tremblay  Y,  Kawasaki  BS. Modal  noise  in  multimode
fiber links: theory and experiment. Opt Lett 5, 270–272 (1980).

49.

 Wang  J,  Zhu  YR,  Wu  ZY  et  al. Wearable  multichannel  pulse
condition  monitoring  system based on  flexible  pressure  sensor

50.

arrays. Microsyst Nanoeng 8, 16 (2022).
 Tyan CC, Liang WM, Shy HY et al. How to standardize 3 finger
positions of examiner for palpating radial pulses at wrist in tradi-
tional  Chinese  medicine. Acupunct  Electrother  Res 32, 87–96
(2007).

51.

Acknowledgements
We are grateful for financial supports from National Key R&D Program of
China  (2022YFE0140400),  National  Natural  Science  Foundation  of  China
(62003046,  62111530238),  Guangdong  Basic  and  Applied  Basic  Research
Foundation (2021A1515011997), The Supplemental Funds for Major Scien-
tific  Research  Projects  of  Beijing  Normal  University,  Zhuhai
(ZHPT2023007),  Special  project  in  key  field  of  Guangdong  Provincial  De-
partment of Education (2021ZDZX1050) and The Innovation Team Project
of  Guangdong  Provincial  Department  of  Education  (2021KCXTD014).
Fundação  para  a  Ciência  e  a  Tecnologia  (FCT)  through  the  2021.00667.
CEECIND  (iAqua  project)  and  PTDC/EEI-EEE/0415/2021  (DigiAqua
project);  The  project  i3N,  UIDB/50025/2020  n&  UIDP/50025/2020,  fi-
nanced by national funds through the FCT/MEC.

Author contributions
RF Kuang, R Min conceived the project idea and designed the experiments.
RF Kuang, Z Wang, L Ma, H Wang, and QM Chen carried out the experi-
ments and collected the data. K. R., and H Wang contributed to sensor fab-
rication  and  cardiorespiratory  monitoring  experiment.  Z  Wang,  L  Ma,  A
Leal Junior,  and  C  Marques  contributed  to  behaviour  monitoring  experi-
ment. RF Kuang, R Min, A Leal Junior, S Kumar, X Li and C Marques anal-
ysed  all  the  data  and  cowrote  the  paper.  All  authors  discussed  the  results
and commented on the manuscript.

Competing interests
The authors declare no competing financial interests.

Supplementary information
Supplementary information for this paper is available at
https://doi.org/10.29026/oes.2024.240009

Scan for Article PDF

Kuang RF et al. Opto-Electron Sci  3, 240009 (2024) https://doi.org/10.29026/oes.2024.240009

240009-16

 

https://doi.org/10.1109/JSEN.2019.2944906
https://doi.org/10.1109/JSEN.2019.2944906
https://doi.org/10.1109/JSEN.2021.3098475
https://doi.org/10.1109/TE.1969.4320436
https://doi.org/10.1016/S0263-2241(00)00013-0
https://doi.org/10.1016/j.patrec.2005.03.022
https://doi.org/10.1016/j.patrec.2005.03.022
https://doi.org/10.1016/j.cegh.2021.100698
https://doi.org/10.1016/j.cegh.2021.100698
https://doi.org/10.1016/j.cegh.2021.100698
https://doi.org/10.1371/journal.pone.0227709
https://doi.org/10.1007/s13246-021-01072-5
https://doi.org/10.1117/1.JBO.22.3.037001
https://doi.org/10.1364/OL.5.000270
https://doi.org/10.1038/s41378-022-00349-3
https://doi.org/10.29026/oes.2024.240009
https://doi.org/10.29026/oes.2024.240009

	Introduction
	Experimental procedure
	Speckle pattern and system design
	Specklegram processing
	Data analysis

	Results and discussion
	Wrist pulse signal monitoring
	Optimization of the speckle processing methods

	Optimization of the smart photonic wristband
	Multiposition pulse monitoring
	Hand gesture recognition with AI
	Visualisation of the smartphone interface

	Conclusions
	References

