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Photo-driven fin field-effect transistors
Jintao Fu1,2, Chongqian Leng1, Rui Ma1,3, Changbin Nie1,2, Feiying Sun1,
Genglin Li1,2 and Xingzhan Wei1,2,3*

The  integration  between  infrared  detection  and  modern  microelectronics  offers  unique  opportunities  for  compact  and
high-resolution infrared imaging. However, silicon, the cornerstone of modern microelectronics, can only detect light with-
in a limited wavelength range (< 1100 nm) due to its bandgap of 1.12 eV, which restricts its utility in the infrared detec-
tion realm. Herein, a photo-driven fin field-effect transistor is presented, which breaks the spectral response constraint of
conventional  silicon  detectors  while  achieving  sensitive  infrared  detection.  This  device  comprises  a  fin-shaped  silicon
channel  for  charge transport  and a lead sulfide film for infrared light  harvesting.  The lead sulfide film wraps the silicon
channel to form a “three-dimensional” infrared-sensitive gate, enabling the photovoltage generated at the lead sulfide-sil-
icon  junction  to  effectively  modulate  the  channel  conductance.  At  room temperature,  this  device  realizes  a  broadband
photodetection from visible (635 nm) to short-wave infrared regions (2700 nm), surpassing the working range of the regu-
lar indium gallium arsenide and germanium detectors. Furthermore, it exhibits low equivalent noise powers of 3.2×10−12

W·Hz−1/2 and 2.3×10−11 W·Hz−1/2 under 1550 nm and 2700 nm illumination, respectively. These results highlight the signi-
ficant potential of photo-driven fin field-effect transistors in advancing uncooled silicon-based infrared detection.

Keywords: photodetection; silicon-on-insulator; lead sulfide; heterostructure; field-effect transistors
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 Introduction
Infrared detection  plays  a  pivotal  role  in  modern  opto-
electronic  systems  and  offers  diverse  applications1−4 in
fields such as spectroscopy, astronomy, night vision, and
health  monitoring.  Traditional  infrared  photodetectors
based  on  classic  infrared  materials5−7 like mercury  cad-
mium telluride (HgCdTe), indium gallium arsenide (In-
GaAs), and germanium (Ge) can realize excellent photo-
detection capability.  However,  these photodetectors suf-
fer from issues like bulky module size and poor compat-
ibility  with  complementary  metal-oxide-semiconductor
(CMOS) technology8,9, which imposes great challenges in
miniaturization  and  cost-effectiveness.  To  address  these
difficulties, there  is  a  growing  emphasis  on  merging  in-
frared light sensing into state-of-the-art silicon (Si) elec-

tronics1. Unfortunately, the inherent large bandgap of Si
constrains  its  detectable  infrared  light  range,  presenting
significant obstacles to achieving this integration.

The incorporation of Si and infrared materials to cre-
ate  hybrid  structure  photodetectors  stands  out  as  the
most  direct  solution10−12,  which  effectively  extends  the
spectral response  range  of  Si-based  devices  into  the  in-
frared  spectrum.  These  hybrid  structure  photodetectors
mainly  include  photodiodes13−15 and field-effect  photo-
transistors1,16−18.  Photodiodes  generally  suffer  from  low
responsivity  since  they  do  not  produce  gain11. In  con-
trast,  field-effect  phototransistors  can  achieve  high  gain
by exploiting the photovoltage generated at the interface
between  infrared  materials  and  Si  to  modulate  device
electrostatics.  However,  since  the  channel  is  often  in  a 
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normally-on state, these devices tend to have a high dark
current,  thus  degrading  sensitivity.  In  addition,  both
photodiodes  and  field-effect  phototransistors  rely  on
planar junctions between Si and infrared materials. This
planar junction constrains photogenerated charge trans-
port  and photovoltage modulation within a  two-dimen-
sional plane. As a result, the carrier transport capacity is
compromised  due  to  the  restricted  junction  area,  and
modulation efficiency suffers because the photovoltage is
hard to  control  over  the  entire  channel.  These  limita-
tions impede  the  performance  of  Si-based  infrared  de-
tectors. Consequently,  advancements  in  device  architec-
ture  are  required  to  unleash  Si-based  infrared  detection
with high sensitivity and broadband photoresponse.

In this  work,  a  photo-driven fin  field-effect  transistor
(photo-FinFET)  is  proposed to  enable  sensitive  infrared
detection.  It  features  a  fin-shaped Si  strip  serving as  the
charge transport channel, while a lead sulfide (PbS) film
envelops the  Si  strip  to  function  as  an  infrared  photo-
sensitive  gate.  This  device  structure  takes  inspiration
from the classical microelectronic device design, the Fin-
FET19,  which  extends  gate  control  from  a  two-dimen-
sional  plane  to  a  three-dimensional  space.  The  photo-
FinFET  offers  two  advantages:  i)  it  leverages  the  PbS-Si
heterojunction to  better  deplete  the  channel,  maintain-
ing  it  in  a  normally-off  state  and  thereby  reducing  the
dark current. ii) The photovoltage generated at the PbS-
Si interface  can efficiently  modulate  the channel,  result-
ing in a substantial infrared photoresponse. Experiment-
al  results  demonstrate  that  the  photo-FinFET  boasts  a
broadband  photoresponse  range  from  visible  light  (635
nm)  to  short-wave  infrared  (SWIR)  light  (2700 nm).
Notably,  under 1550 nm  illumination,  the  photo-Fin-
FET achieves a high responsivity of 45.2 A/W, a fast re-
sponse speed of 150 μs, and a low equivalent noise power
(NEP)  of  3.2  ×  10−12 W·Hz−1/2. These  outcomes  under-
score the potential of the photo-FinFET to merge visible
and infrared  photodetection  on  one  chip  while  remain-
ing compatible with the CMOS process.

 Results and discussion

 Device structure and working mechanism
The structural  diagram of the photo-FinFET based on a
PbS/Si-on-Insulator (SOI) hybrid structure is depicted in
Fig. 1(a). In this configuration, the patterned Si strip po-
sitioned  above  the  SiO2 layer  functions  as  the  charge
transport channel, while the bottom Si layer beneath the

SiO2 layer  serves  as  the  back  gate.  A  thin  PbS  film  is
grown  onto  the  surface  of  the  Si  channel,  enveloping  it
and forming an infrared-photosensitive gate. Figure 1(b)
illustrates  the  simulated  energy  band  of  the  photo-Fin-
FET, in which p-type doped PbS film (Supplementary in-
formation Section 1) forms a rectifying junction with the
n-type doped  Si  channel.  This  rectifying  junction  in-
duces  energy  band  bending  in  the  Si  channel  near  the
PbS-Si  interface,  thereby  depleting  free  carriers  in  this
region.

When  exposed  to  infrared  illumination  with  photon
energy  smaller  than  the  Si  bandgap  but  larger  than  the
PbS  bandgap,  photogenerated  carriers  are  exclusively
created  within  the  PbS  layer  (Fig. 1(c)).  Subsequently,
these light-excited electrons and holes separate and move
in opposite directions, driven by the built-in field of the
PbS-Si  junction.  Electrons migrate towards the Si,  while
holes move away into the PbS. The influx of photogener-
ated electrons into Si increases the concentration of free
carriers in  the  Si  channel.  Moreover,  the  spatial  separa-
tion  of  photogenerated  electrons  and  holes  forms  a
photovoltage,  akin  to  the  effect  of  producing  an  open-
circuit voltage in a photodiode or solar cell20, which com-
presses the depletion region and expands the conductive
area in the Si channel. As a result, the electron density in
the  Si  channel  increases  and  its  distribution  is  closer  to
the PbS-Si  interface  under  infrared  illumination  com-
pared  to  the  dark  state  (Fig. 1(d–f)).  In  addition,  the
photovoltage  also  reduces  the  potential  barrier  in  the  Si
channel, allowing  electrons  to  move  through  the  chan-
nel more efficiently (Fig. 1(g)).

The above process is equivalent to using infrared light
to apply  a  gate  voltage  to  turn on the  transistor.  There-
fore,  the photocurrent (Iph) of the photo-FinFET can be
approximately  expressed  as Iph∝Vph×gm,  where Vph is
the photovoltage,  and gm is  the transconductance of  the
photo-FinFET, which is defined as gm = dIds/dVph (Ids is
the  drain-source  current).  Notably,  this  “gate  voltage
modulation” induced by infrared light occurs at the PbS-
Si junction surrounding the Si channel, which makes the
optical gate modulation act on the Si channel in a three-
dimensional  manner,  resulting  in  an  obvious  infrared
photocurrent.

 Photoelectric response characteristics
To confirm the  operation mechanism of  the  photo-Fin-
FET, its transfer characteristic curves were measured. As
shown  in Fig. 2(a) and 2(b),  the  transfer  characteristic
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curve in  the  dark  state  exhibits  typical  n-type  conduc-
tion  behavior.  Specifically,  when  a  positive  back  gate
voltage  (Vbg)  is  applied,  electrons  accumulate  in  the
channel,  causing  a  rapid  increase  in  the Ids and trans-
itioning the photo-FinFET into the “working region”. In
contrast, applying a negative Vbg leads to electron deple-
tion in the channel,  resulting in a  low Ids and switching
the photo-FinFET  into  the  “depletion  region ”.  Particu-
larly,  when Vbg is  0 V,  the Si  channel  is  depleted due to
the presence of the PbS-Si junction. Therefore, Ids at this

point  is  quite  low  (about  7  nA).  Considering  that  the
channel of  the  photo-FinFET  is  normally  off  and  re-
quires a gate voltage to activate it, the photo-FinFET can
be  regarded  as  an  enhancement-type  transistor.  This
property  ensures  that  the  device  maintains  low  energy
consumption during standby21. When Vbg increases from
0 V to a positive value, the slight decrease in Ids is related
to the holes transferred from PbS to Si, which requires an
additional positive Vbg to offset (Supplementary inform-
ation Section 2).
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Fig. 1 | Device structure and working mechanism of the photo-FinFET. (a) A schematic illustration of the PbS-Si photo-FinFET. Infrared light
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In the presence of illumination, the photo-FinFET ex-
periences  an  increase  in  the  free  carriers,  leading  to  a
corresponding rise in the Ids. This increase in Ids is reflec-
ted  in  the  upward  shift  of  the  transfer  characteristic
curve,  as  depicted  in Fig. 2(a).  As  the  power  density  of
the  incident  light  intensifies,  the  transfer  characteristic
curve demonstrates  a  decreasing requirement for Vbg to
initiate  a  substantial  increase  in Ids.  This  phenomenon
can  be  attributed  to  the  ability  of  light  to  compress  the
depletion region in the Si channel. Consequently, a relat-
ively low Vbg becomes sufficient to transition the photo-
FinFET from the depletion region to the working region.

Figure 2(c) displays  the  output  characteristic  curve  of
the  photo-FinFET  operating  in  the  working  region.  In
the dark state, as the drain-source voltage (Vds) increases,
Ids tends  to  stabilize  due  to  the  occurrence  of  channel
pinch-off —a  fundamental  characteristic  of  field-effect
transistors22.  However,  upon  illumination,  a  substantial
number  of  photogenerated  carriers  are  produced  in  the

channel,  making it  more challenging to achieve channel
pinch-off. Consequently, the phenomenon of Ids stabiliz-
ing with increasing Vds is less pronounced. By extracting
the  photocurrent,  the  responsivity  as  a  function  of  light
power  density  can  be  calculated,  as  illustrated  in Fig.
2(d). Here, a high responsivity of 1961 A/W is observed.
Details  of  the  highest  responsivity  under  different Vbg

can  be  found  in  Supplementary  information  Section  3.
The responsivity of the photo-FinFET in the working re-
gion significantly surpasses its responsivity in the deple-
tion  region.  This  is  primarily  due  to  the  closure  of  the
channel  with Vbg,  which  substantially  reduces  the
transconductance22,  thus  weakening  the  photodetection
capability of the photo-FinFET.

 Infrared photoresponse
By configuring  the  photo-FinFET  into  the  working  re-
gion through Vbg adjustment, its infrared detection cap-
ability  was  evaluated.  The  photocurrent  mapping  result
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of  the  photo-FinFET  under  infrared  illumination  (Sup-
plementary Information Section 4) reveals that the pho-
tocurrent  mainly  generates  within  the  overlapping  area
of the PbS-Si junction. This observation underscores the
importance of  the  PbS-Si  junction  in  infrared  photore-
sponse. Figure 3(a) and 3(b) depict the I-T curves of the
photo-FinFET  under 1550 nm  and 2700 nm illumina-
tion,  respectively.  It  is  evident  that  as Vbg increases,  the
photocurrent also rises,  aligning with the analysis of the
operation  mechanism  of  the  photo-FinFET.  Under  a
fixed Vbg,  the I-T curves of  the  photo-FinFET  in  re-
sponse to infrared illumination with varying power dens-
ities are shown in Supplementary Information Section 5.
By extracting  the  photocurrent  and  calculating  the  re-
sponsivity,  the  responsivity  as  a  function  of  light  power
density  can  be  obtained,  as  presented  in Fig. 3(c) and
3(d). The highest responsivity for the photo-FinFET un-
der 1550 nm and 2700 nm illumination is 45.2 A/W and
5 A/W, respectively. These values surpass those of tradi-
tional  Si-based  infrared  detectors  relying  on  cryogenic
cooling  equipment23−25.  Importantly,  the  photo-FinFET

excels  at  room-temperature  operation,  which  is  highly
desired to  enable  the  reduction  of  volume,  power  con-
sumption, and cost for infrared detection systems.

 Transient response and performance comparison
Next,  the  transient  response  of  the  photo-FinFET  is
characterized. Figure 4(a) displays  the  output  signal  of
the  photo-FinFET  in  response  to 1550 nm  illumination
with a modulation frequency of 20 Hz. By amplifying the
rising  edge  (Fig. 4(b))  and  the  falling  edge  (Fig. 4(c))
within the output signal, it is evident that the rising and
falling times are 150 μs and 490 μs, respectively. The in-
frared  response  speed  of  the  photo-FinFET  closely
matches its response speed in the visible spectrum (Sup-
plementary  information  Section  6).  Hence,  under  both
635 nm and 1550 nm illumination,  the  3  dB bandwidth
of  the  photo-FinFET  can  reach 1200 Hz  (Fig. 4(d)).
Moreover, by  further  increasing  the  modulation  fre-
quency  of  the  infrared  light,  even  up  to 3000 Hz,  the
photo-FinFET  still  outputs  a  stable  periodic  signal
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(Supplementary information  Section  7).  This  rapid  re-
sponse speed  meets  well  with  the  fundamental  require-
ments  of  imaging  equipment26 and  holds  great  promise
for  a  wide range of  applications.  Note  that  the  response
speed of the photo-FinFET varies with Vbg (Fig. 4(e) and
Supplementary  information  Section  7).  An  increase  in
Vbg results in a shorter falling time. This occurs because
a higher gate voltage can induce a large number of addi-
tional carriers and facilitate the recombination of photo-
generated carriers27. In contrast, the rising time is insens-
itive  to Vbg.  This  is  because  the  rising  time is  related  to
the infrared photoresponse process, which is affected by
the separation  of  photogenerated  carriers  under  the  ac-
tion of the built-in field in the PbS-Si junction. However,
Vbg primarily serves  to  increase  the  electron  concentra-
tion  in  the  Si  channel  close  to  the  SiO2 side  and  has  a
negligible  impact  on  the  state  of  the  PbS-Si  junction
(Supplementary information Section 8).

Furthermore,  the  noise  currents  of  the  photo-FinFET
under  various Vbg were measured,  and  the  correspond-
ing  results  are  presented  in Fig. 4(f).  In  the  low-fre-
quency  range,  the  dominant  noise  source  is  1/f noise28.
As  the  frequency increases,  the  observed bump in  noise
current can be  attributed to  random telegraph noise  in-
troduced  by  the  external  bias  voltage29.  In  the  high-fre-
quency  range,  noise  current  decreases  with  increasing
frequency, consistent with the behavior observed in pre-
vious Si-based phototransistors1.  By extracting the noise
currents  at  1  kHz  and  10  kHz  (Fig. 4(g)), it  can  be  ob-
served that as Vbg increases,  the noise current also rises.
The reason for the increase in noise is that a higher gate
voltage  induces  a  greater  number of  free  charges  within
the Si channel, thereby increasing the probability of ran-
dom carrier  fluctuations.  Nevertheless,  the  noise  cur-
rents of the photo-FinFET remain low. This outcome be-
nefits  from  the  high-quality  interface  between  the  Si
channel and the SiO2 layer, as well as the depletion effect
of the PbS-Si junction, both of which enable efficient car-
rier  transport  within  the  Si  channel  rather  than  being
scattered by surface states. Based on the measured noise
current, the NEP of the photo-FinFET under 1550 nm il-
lumination can be calculated to be 3.2×10−12 W·Hz−1/2 (at
Vbg = 30 V, 1 kHz). Similarly, the NEP of the photo-Fin-
FET in  response  to  2700  nm  illumination  can  be  ob-
tained as 2.3×10−11 W·Hz−1/2.

To assess the performance of the photo-FinFET, it has

been compared with previously reported Si-based photo-
detectors.  These  Si-based  photodetectors1,13,14,27,30−43 em-
ploy  various  specialized  techniques  to  achieve  infrared
photodetection  (Supplementary  Information  Section  9).
As depicted in Fig. 4(h), the photo-FinFET not only ex-
hibits a responsivity on par with these devices in the vis-
ible and  near-infrared  spectral  range  but  also  demon-
strates impressive  capabilities  in  SWIR  detection.  Fur-
thermore,  owing  to  the  low  noise  characteristics,  the
NEP of the photo-FinFET even surpasses that of the ma-
jority of these devices (Fig. 4(i)).

 Conclusions
In conclusion,  a  photo-FinFET that  is  capable  of  sensit-
ive SWIR detection has been designed and fabricated. At
room temperature,  the  photo-FinFET demonstrates  low
NEPs  of  3.2×10−12 W·Hz−1/2 and  2.3×10−11 W·Hz−1/2 un-
der 1550 nm  and 2700 nm  illumination,  respectively.
Moreover, the photo-FinFET offers the advantage of gate
voltage-tunable  photodetection  performance,  including
responsivity,  response  speed,  and  NEP,  thus  enhancing
flexibility when selecting suitable application conditions.
The intriguing architecture of  the photo-FinFET creates
a  three-dimensional  infrared-activated  gate,  efficiently
leveraging  the  photovoltage  to  drive  the  field-effect
transistors.

 Method

 PbS thin film synthesis
The PbS  film  was  synthesized  by  the  chemical  bath  de-
position  (CBD)  method.  Lead  acetate  (Pb(CH3COO)2)
(3.225  g),  sodium  hydroxide  (NaOH)  (1.14  g),  thiourea
(NH2CSNH2)  (0.57  g),  and  tri-sodium  citrate
(C6H5Na3O7) (2.205  g)  were  dissolved  in  25  mL  deion-
ized water, respectively. The solution is mixed in the or-
der  of  lead acetate  solution,  sodium hydroxide solution,
thiourea  solution,  and  trisodium  citrate  solution.  The
fixture  with  samples  was  placed  in  the  mixed  solution.
Subsequently,  the  beaker  was  put  in  a  chemical  water
bath pot  to grow the PbS film at  40 °C water  bath for  1
hour.  After  the  reaction  was  completed,  the  beaker  was
placed  in  the  water  of  the  ultrasonic  cleaning  machine
for  5  seconds  to  remove  the  clusters  deposited  on  the
surface of PbS films. The samples were then cleaned with
deionized water and dried with N2. The characterization
results  about  the  thickness  and  morphology  of  the  PbS
film can be seen in Supplemental information Section 10.
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 Device fabrication
A SOI substrate was used to fabricate the photo-FinFET.
First,  the  Si  channels  were  defined  by  lithography  and
patterned by dry etching. Using the Si channel as a refer-
ence,  aligning  lithography  was  exploited  to  define  the
drain and source electrodes. Subsequently, Cr (5 nm)/Au
(50 nm)  was  deposited  by  magnetron  sputtering,  fol-
lowed by a lift-off process. The entire backside of the SOI
substrate was sputtered with Au (50 nm) as the back gate
electrode.  The  PbS  pattern  was  defined  by  a  second
aligning  lithography,  using  the  electrode  as  a  reference.
Next, the PbS film was grown on the SOI substrate by the
CBD  method.  Finally,  the  excess  PbS  was  removed
through a lift-off process in acetone to obtain photo-Fin-
FETs.  The  PbS  film  does  not  make  direct  contact  with
the source and drain electrodes, ensuring electrical isola-
tion from each other. The corresponding schematic dia-
gram  of  the  fabrication  process  and  parameters  of  the
SOI substrate  can  be  found  in  Supplementary  informa-
tion Section 11.

 Device simulation
The  energy  band,  electron  density  profile,  conduction
band energy, and electrostatic potential in the photo-Fin-
FET  were  simulated  by  technology  computer-aided
design  software.  The  physical  models  used  during  the
simulation include Fermi-Dirac statistics, Poisson distri-
bution,  continuity  formulation,  drift-diffusion equation,
doping-related  recombination,  and  optical  excitation.
The doping concentrations of PbS, top Si layer, and bot-
tom  Si  layer  were  assumed  to  be  3×1013 cm−3,  5×1015

cm−3, and 5×1015 cm−3, respectively. The contact between
the electrode and the material was set as Ohmic contact.

 Photoelectric response measurement
The  electrical  characteristics  of  the  photo-FinFET  were
measured by a  Keithley 4200-scs semiconductor  analyz-
er. The light sources used in the experiment included 635
nm, 1550 nm, and 2700 nm lasers,  and their  power was
calibrated with a commercial optical power meter (Thor-
labs S405C). The photocurrent mapping was obtained by
scanning over the photo-FinFET using a scanning Galvo
System (Thorlabs GVS212) with a focused 1550 nm laser
beam (Spot  diameter  is  ~2  μm).  To  evaluate  the  re-
sponse speed, an oscilloscope (Tektronix DPO 5204) was
used  to  collect  the  output  signal  of  the  photo-FinFET.
The periodic switching of the light source was realized by
connecting  the  laser  with  a  signal  generator  (RIGOL

DG1022U).  The  noise  spectrum analyzer  used  for  noise
current measurement was provided by Shenzhen Liang-
wei Co., Ltd. The maximum voltage that the noise spec-
trum analyzer can apply is 30 V.
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