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Photonics-assisted THz wireless communication
enabled by wide-bandwidth packaged back-
illuminated modified uni-traveling-carrier
photodiode
Yuxin Tian 1†, Boyu Dong 2†, Yaxuan Li2, Bing Xiong1*,
Junwen Zhang2*, Changzheng Sun1, Zhibiao Hao1, Jian Wang1,
Lai Wang1, Yanjun Han1,3, Hongtao Li1, Lin Gan1, Nan Chi2 and Yi Luo1,3

This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode (MUTC-PD) packaged
with  standard  WR-5  rectangular  waveguide  for  high-speed  wireless  communications.  With  optimized  epitaxy  structure
and coplanar waveguide electrodes, the fabricated 4-μm-diameter PD exhibits ultra-flat frequency response and high sat-
uration power. Integrated passive circuits including low-loss bias-tee and E-plane probe are designed to package the PD
into a compact module with waveguide output. The packaged PD module has demonstrated a flat frequency response
with fluctuations within ±2.75 dB over a broadband of 140–220 GHz and a high saturated output power of −7.8 dBm (166
μW) at 140 GHz. For wireless communication applications, the packaged PD is used to implement 1-m free space trans-
mission at carrier frequencies of 150.5 and 210.5 GHz, with transmission rates of 75 and 90 Gbps, respectively.

Keywords: modified  uni-traveling-carrier  photodiode; integrated  bias-tee; E-plane  probe; flat  frequency  response; high
saturation power; WR-5 output; THz wireless communications
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 Introduction
With the rapid development of high bit-rate wireless ser-
vices driven by mobile internet, AI computing, high-def-
inition  videos,  virtual  reality/augmented  reality  (VAR)
applications,  and  so  on,  the  demand  for  wireless  data
rates  has  grown  explosively  in  the  past  decades1,2.  Sup-

porting  such  fast  data  rate  at  tens  of  Gbit/s  pushes  the
carrier frequency to the THz (0.1–10 THz) domain in 6G
to  accommodate  the  bandwidth-hungry  wireless  ser-
vices3−14. Recently, considerable efforts have been invest-
ed in developing photonic techniques targeting ultrafast
data  rate  wireless  communication  at  THz 
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frequencies15−18.
Photodiodes (PDs) serve as  a  key component of  pho-

tonic  transmitter  to  realize  optical-to-electrical  conver-
sion.  In  particular,  uni-traveling-carrier  photodiodes
(UTC-PDs)  have  been  developed  to  simultaneously
achieve both ultrawide bandwidth and high output pow-
er19.  For  instance,  flip-chip-bonded  6-μm-diameter
UTC-PD  has  demonstrated  bandwidth  exceeding  110
GHz as well as radio frequency (RF) power of 7.8 dBm at
110  GHz20.  Flip-chip  bonded  modified  UTC-PDs
(MUTC-PDs)  exhibiting  a  3-dB  bandwidth  up  to  120
GHz or a saturated RF output power of −2.6 dBm at 160
GHz have also been reported21.

Module packaging of high-speed PDs is important for
their  applications  in  millimeter  wave  or  THz  wireless
communications.  Packaging  of  GHz-bandwidth  PDs  is
relatively mature. For example, fully packaged PD mod-
ules  with  coaxial  connectors  for  below 30  GHz applica-
tions  have  been  reported22,23.  However,  at  frequencies
over  100  GHz,  high  transmission losses  as  well  as  para-
sitic  modes  and  resonances  due  to  the  packaging  struc-
ture will seriously degrade the performance of PD mod-
ules.  By  adopting  a  conductor-backed  coplanar  waveg-
uide (CBCPW) to suppress mode-mismatch between the
PD  and  the  RF  connector,  a  packaged  PD  with  1-mm
coaxial  connector  was  reported  to  exhibit  a  bandwidth
over  90  GHz24.  A  bandwidth  of  145  GHz was  estimated
for  a  packaged  PD  equipped  with  0.8-mm  coaxial  con-
nector,  but  the  frequency  response  exhibited  a  signifi-
cant roll-off above 130 GHz25.

For  PD  modules  operating  at  higher  frequencies,
waveguide-integrated PD modules offer a promising so-
lution  for  high-power  THz  output  due  to  the  low-loss
nature of rectangular waveguides and the availability of a
wide range of standard components. For instance, a WR-
6  waveguide  packaged  UTC-PD  module  for  D-band
(110–170  GHz)  operation  was  developed,  with  an  out-
put  power  around  −5  dBm26.  A  WR3-band  (220–320
GHz) PD module containing an MUTC-PD with short-
stub resonant matching circuit was reported to achieve a
maximum output power of 134 μW at 264 GHz27.

Currently, many researchers have employed commer-
cial  UTC-PDs to  construct  photonic-assisted  THz wire-
less  communication  systems,  in  which  THz  signals  can
be  generated  by  beating  two  lasers  with  different  wave-
lengths at  the transmitting end.  A demonstration show-
cased  a  multichannel  THz  wireless  transmission  utiliz-
ing  the  quadrature  phase  shift  keying  (QPSK)  modula-

tion format at a carrier frequency of 200 GHz, achieving
a data rate of up to 75 Gbps28. In another experiment29, a
single-input single-output (SISO) wireless link was estab-
lished  at  237.5  GHz  by  utilizing  a  remote  UTC-PD.
Through  the  combination  of  modulation  formats,  such
as QPSK and quadrature amplitude modulation (QAM),
a maximum data rate of 100 Gbps was attained. Simulta-
neous  photonic-assisted  THz  communication  in  three
bands  (150,  250,  and  325  GHz)  has  also  been  demon-
strated30.  The net  data  rates  reached 59.813,  74.766,  and
93.333 Gbps, respectively.

In  this  work,  we  report  a  WR-5  waveguide  packaged
PD module for THz communications. The module con-
tains a 4-μm-diameter back-illuminated MUTC-PD with
optimized  epitaxy  structure  and  coplaner  waveguide
(CPW)  electrodes  to  ensure  wide  bandwidth  and  high
saturation power. Passive circuits including bias-tee and
E-plane  probe  are  incorporated  into  the  module.  The
packaged PD module has demonstrated a flat  frequency
response with fluctuations within ±2.75 dB in the entire
G-band,  and  the  saturated  output  power  reaches  −7.8
dBm at 140 GHz.

Photonics-assisted  THz  wireless  communication  ex-
periment have been caried out. Thanks to the high satu-
ration  power  and  high  conversion  efficiency  of  the  PD
module,  meter  level  short  distance  wireless  data  trans-
mission has been demonstrated without additional pow-
er amplifiers after the optical-to-electrical conversion. To
ensure  high-performance  signal  transmission  and  avoid
nonlinear  effects  caused  by  the  MUTC-PD  under  high
optical  power,  the  8-  amplitude  phase  shift  keying
(APSK)  modulation  format  is  employed,  and  transmis-
sion rates of 75 and 90 Gbps over 1-m free space at 150.5
and  210.5  GHz  carrier  frequencies,  respectively,  are
demonstrated.

 PD chip design and fabrication
The  epitaxial  structure  of  our  MUTC-PD  is  shown  in
Fig. 1(a),  similar  to  the  one  reported  in  our  previous
work31.  A  gradient-doped  absorption  layer  is  employed
to  alleviate  the  space  charge  effect  for  improved  satura-
tion performance, while a cliff layer with optimized dop-
ing is  adopted to  sustain electron velocity  overshoot  for
enhanced  bandwidth.  Inductive  peaking  can  be  imple-
mented  with  high-impedance  CPW  to  manipulate  the
frequency response, enabling a reduced power roll-off at
the high frequencies of interest. As shown in Fig. 1(b), a
flat output power over 140–220 GHz can be maintained
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when the inductance is designed to 50 pH (5E-11H).
The  3D  schematic  of  the  4-μm-diameter  PD  is  illus-

trated  in Fig. 1(c),  which  adopts  a  triple-mesa  structure
for improved fabrication yield and consistency. The first
mesa  is  etched  by  inductive  coupled  plasma  (ICP)  and
stopped  slightly  below the  p-n  junction  to  load  most  of
the electric field. The second mesa is defined by a combi-
nation of dry-etching and wet-etching process31. Diluted
HCl  is  used  to  stop  precisely  at  the  InGaAs  layer  for
ohmic  contact  formation.  The  bottom  mesa  is  etched
down to the semi-insulating InP substrate to provide in-
sulation.  Ti/Pt/Au  and  Ni/Au  electrodes  are  formed  on
the  p-  and  n-contact  layers  by  magnetron  sputtering.
Scanning electron microscope (SEM) image of the fabri-
cated  device  is  shown  in Fig. 1(d).  Due  to  the  relatively
complex fabrication process, the performance of PDs on
the same wafer may vary somewhat.

The frequency response of the fabricated 4-μm-diame-
ter MUTC-PD at G-band are measured with a two-laser
heterodyne  system.  The  frequency  responses  under  dif-
ferent photocurrents with a fixed reverse bias of 2 V are
plotted in Fig. 1(e).  The PD exhibits  ultra-flat  frequency
responses  over  the  entire  G-band  under  various  pho-
tocurrents, together with a responsivity of 0.07 A/W. The

saturation  characteristics  of  the  PD  is  not  measured,  as
the  PD  performance  might  deteriorate  after  the  high-
photocurrent  saturation  measurement,  which  will  affect
the evaluation of the frequency responses of the PD after
packaging.

 Design of passive circuits
To package the high-speed PD chip into a compact mod-
ule  with  waveguide  output,  it  is  essential  to  realize
smooth transition from the CPW electrodes on the PD to
the  waveguide  port.  In  addition,  a  bias-tee  is  also  re-
quired to provide dc bias to the module. These are imple-
mented  by  passive  circuits  formed  on  127-μm-thick
quartz substrate, which is adopted for reduced dielectric
loss at high frequencies. The configuration of the passive
circuits is illustrated in Fig. 2(a).

A  novel  bias-tee  is  proposed  and  fabricated  based  on
interdigital  structure  coplanar  waveguide,  securing
broadband  and  low  loss  transmission  at  G-band  com-
pared  with  the  commonly  reported  bias-tee
structures32−34.  The bias-tee consists  of  an RF-choke and
a  DC-block.  The  RF-choke  is  formed  by  an  interdigital
inductor35,  which  serves  as  a  quarter  wavelength  trans-
former, resulting in a virtual RF open circuit.  Two open
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circuit stubs in parallel are employed to improve the RF
signal  isolation36.  The  DC-block  is  formed  by  an  inter-
digital  capacitor35 to ensure low loss and smooth transi-
tion  over  wideband,  whereas  traditional  coupled-line
based  DC-block  exhibits  bandpass  performance34.  The
bias-tee  performance  is  test  by  microwave  probes  via  a
back-to-back  configuration,  as  shown  in Fig. 2(b).  The
measured insertion loss  (IL)  is  less  than 4  dB,  while  the
return loss (RL) is about 10 dB. The measurements are in
reasonable agreement with the simulation results.

In  previous  studies,  the  planar  transmission  line  to
rectangular  waveguide  transition  at  D-band  employing
wire  bonding probe37 or  metal  ridge38 suffers  from poor
repeatability  and large loss.  The transition implemented
by  a  stepped-impedance  E-plane  probe  converts  the
quasi-TEM mode of the microstrip to the dominant TE10

mode in the waveguide with low loss. Smooth transition
over  the  G-band  is  realized  through  impedance  match-
ing  by  varying  the  width  of  microstrip  in  three  steps.  A
back-to-back  package  is  fabricated  to  verify  the  perfor-
mance  of  the  E-plane  probe.  As  plotted  in Fig. 2(c),  an

RL  over  10  dB  is  recorded  over  the  G  band,  while  the
measured  IL  is  around  2.25  dB,  corresponding  to  an  IL
of  1.125  dB for  a  single  microstrip-to-waveguide  transi-
tion.  Again,  the  measurement  results  are  in  fair  agree-
ment with the simulations.

 WR-5 module packaging and
characterization
The schematic of the PD module with WR-5 waveguide
output  is  shown  in Fig. 3(a).  The  PD  chip  is  flip-chip
bonded to the passive circuits including bias-tee, E-plane
probe  and  DC  components.  An  electrostatic  discharge
(ESD)  chip  is  included  in  the  DC path,  so  as  to  protect
the  chip  against  static  electric  damage.  A  lensed  fiber  is
used to couple light into the PD, and the converted THz
signal is extracted through a WR-5 waveguide.

During the package,  planar passive circuits,  including
the  bias-tee  and  the  E-plane  probe,  are  first  fixed  onto
the  bottom  block  of  the  module  by  silver-filled  epoxy.
Gold-wire  bonding  is  employed  for  chip-level  intercon-
nections, as shown in Fig. 3(b). The length and height of
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the  bonding  wires  are  kept  at  a  minimum so  as  to  sup-
press parasitic inductance.

Next,  the  PD  chip  is  flip-chip  bonded  to  the  passive
circuits via gold bumps formed at the end of the bias-tee,
as shown in Fig. 3(c). The flip-chip bonding conditions is
optimized  to  ensure  that  no  degradation  in  PD  perfor-
mances  occur  during  bonding.  As  plotted  in Fig. 3(d),
the  I-V characteristics,  including  dark  current  and  con-
tact resistance remain almost unvaried after the flip-chip
bonding.  As  the  final  step,  a  lensed  fiber  is  attached  to
the PD module to ensure best responsivity.

The  fully  packaged  MUTC-PD  with  standard  WR-5
output  is  shown  in Fig. 4(a).  The  frequency  responses
tested under a reverse bias of 2 V are plotted in Fig. 4(b).
The PD module exhibits a flat frequency response with a
fluctuation  within  ±2.75  dB  over  140–220  GHz  under
various  photocurrents.  Compared  with Fig. 1(e),  the
packaged  PD  shows  a  power  drop  by  about  1.09  dB,
which is  consistent with the insertion losses of  the bias-
tee and the probe, indicating that no additional losses are

introduced  during  the  packaging  process.  The  frequen-
cy-dependent  saturation  characteristics  of  the  packaged
PD  is  shown  in Fig. 4(c).  The  saturation  photocurrent
under 140,  150,  and 160 GHz is  8.6,  8.3,  7.7  mA, corre-
sponding  to  a  saturation  power  of  −7.8,  −8.3,  and  −8.9
dBm,  respectively. Figure 5 summarizes  the  saturation
output power versus the operation frequency of UTC-PD
modules  reported  in  the  literature.  The  proposed
MUTC-PD  module  with  rectangular  waveguide  output
shows high saturation power at high frequencies without
employing resonant matching circuits.

 Application to wireless communications

 Experimental setup
The  MUTC-PD  has  great  potential  for  applications  in
photonic-assisted  THz  wireless  communications.  The
flat  response  over  the  G-band  enables  easy  frequency
agility at the transmitting end, making it suitable for di-
verse  application scenarios.  Experiments  are  carried out
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to showcase the ultra-broad bandwidth MUTC-PD mod-
ule in a photonic-assisted THz high-speed wireless com-
munication system.

Figure 6 provides  an  overview  of  the  photonic-assist-
ed THz high-speed wireless  communication system and
the offline digital signal processing (DSP). The first step
in  the  transmission  process  involves  generating  and
mapping the data sequence according to regular 8-APSK.
The  baseband  signal  then  undergoes  up-sampling  and
pulse-shaping using a root-raised cosine filter with a roll-
off factor of 0.1. The resulting baseband signal, depicted
in Fig. 6(a), is then sent to an arbitrary waveform genera-
tor  (AWG)  with  a  sampling  rate  of  64  GSa/s.  Subse-
quently, the signal is modulated onto the light emitted by
an  external  cavity  laser  (ECL)  using  an  IQ  modulator.
ECL-1,  operating  at 193.3985 THz  with  a  linewidth  of
100 kHz, serves as the light source for this system. Final-
ly, the signal light is amplified by an erbium-doped fiber

amplifier (EDFA) and aligned with the polarization state
of  the  local  oscillator  (LO)  light  emitted  by  ECL-2
through a polarization controller.

In the experiment, the frequencies of the light emitted
by ECL-2 are set to 193.549 and 193.609 THz, respective-
ly, to verify the ultra-broadband response of the MUTC-
PD  module  and  its  application  in  frequency  agile  THz
communication systems. The optical spectra recorded af-
ter  the  optical  coupler  (OC)  are  shown  in Fig. 6(b) and
6(c), revealing a frequency difference of 150.5 and 210.5
GHz between  the  two  lasers,  respectively.  Subsequently,
the  light  coming  out  of  the  OC  is  amplified  by  another
EDFA and fed into the MUTC-PD module. The generat-
ed  THz  signal  is  then  launched  by  the  horn  antenna
(HA).  The  high  saturation  power  and  high  conversion
efficiency  of  the  PD  module  enables  meter-level  short
distance  THz  communication  transmission  without  the
need for additional power amplifiers. For effective trans-
mission of THz signals at different frequencies, HAs with
different  center  frequencies  are  employed  at  the  trans-
mitting end.

At  the  receiving  end,  receivers  at  different  frequency
bands are adopted to receive THz signals at 150 and 210
GHz,  respectively.  After  1-m wireless  link  transmission,
the transmitted THz signal is captured by the HA, ampli-
fied by a low noise amplifier (LNA), and then mixed with
the LO signal generated by frequency multiplier. The sig-
nal is down-converted to the intermediate frequency (IF)
after  passing  through  the  mixer.  The  IF  signal  is  then
amplified by an electrical amplifier (EA) and captured by
an  oscilloscope  (OSC)  at  a  sampling  rate  of  80  GSa/s.
Subsequently,  the  captured  signal  is  processed  using  an
offline DSP to recover the original data. The offline DSP
mainly  includes  down-conversion,  matched  filtering,
down-sampling,  and  some  traditional  coherent
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communication DSP, as shown in Fig. 6. As the first step,
the  Gram-Schmidt  orthogonal  projection  (GSOP)  is
adopted to correct the I/Q imbalance,  followed by clock
recovery  based  on  the  fast  square-timing-recovery  algo-
rithm.  The  signal  is  recovered  by  blind  equalization
based  on  the  constant  modulus  algorithm  (CMA).  Fol-
lowing the frequency offset and carrier phase estimation
(FOE  &  CPE),  a  decision-directed  least  mean  square
(DD-LMS) algorithm is employed to further enhance the
system performance. Finally, the signal undergoes APSK
demodulation, and the error vector magnitude (EVM) is
calculated.

 Results and discussion
The modulation format adopted in the experiment is  8-
APSK,  which  offers  improved  frequency  spectral  effi-
ciency  and  achieves  a  higher  data  rate  compared  with
common  low-order  modulation  formats,  such  as  OOK
or QPSK. Furthermore, the 8-APSK modulation scheme
demonstrates superior resistance to nonlinear distortion
compared  to  the  standard  8-QAM  modulation  scheme.
Figure 7 shows the EVM performance of the 8-APSK sig-
nals transmitted over a 1-m wireless distance at different
baud rates at the center carrier frequencies of 150.5 GHz
and  210.5  GHz,  respectively.  In  our  experiment,  bit-er-
ror-free  transmission  of  5-GHz  baud  rate  8-APSK  sig-
nals  are  verified  at  both  150.5  GHz  and  210.5  GHz.  At

150.5  GHz  carrier  frequency,  the  system  can  support
transmission at 25-GHz baud rate below the forward-er-
ror-correction  (FEC)  threshold  of  1E-2,  corresponding
to  a  transmission  rate  of  75  Gb/s.  The  bit-error-rate
(BER)  value  is  9.66E-3  and  the  EVM  value  is  26.92%.
Similarly,  over  30-GHz  baud  rate  transmission  can  be
achieved  at  210.5  GHz,  with  the  EVM  value  of  26.71%
and BER value of 9.06E-3. In the experiment, we also en-
deavored to attain higher data rates by employing a high-
order QAM scheme. Specifically, we conducted the THz
wireless  communication  experiment  utilizing  a  20-GHz
baud rate standard 16-QAM signal at a carrier frequency
of 150.5 GHz. However, the tested BER of 3.7E-2 signifi-
cantly  exceeded  the  acceptable  threshold  of  1E-2.  The
modulation  orders  at  this  bandwidth  are  limited  by  the
over-all  system  signal-to-noise  ratio  as  well  as  the  non-
linearity  impairment.  In Fig. 7,  insets  (i–iv)  depict  the
signal  constellation  points  for  5-GHz baud  rate  and  the
largest  transmission  baud  rate  at  150.5-GHz  and  210.5-
GHz, respectively.

As revealed by Fig. 7, the packaged PD module shows
great  potential  in  ultra-broadband  and  high-speed  THz
communication  in  G-band.  It  is  worth  mentioning  that
thanks  to  the  high  output  power  of  the  PD,  high-speed
transmission  of  90  Gb/s  is  achieved  without  any  power
amplifier after the PD. This helps reduce the complexity
and  costs  of  the  system,  as  well  as  maintaining  a  high
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signal-to-noise  ratio  (SNR).  In  our  future  research,  we
plan to perform thorough testing at different distances to
gain a comprehensive understanding of the performance
attributes of our MUTC-PD, so as to facilitate the practi-
cal application of our system in real-world scenarios.

The baud rate bandwidth demonstrated in the experi-
ment  is  mainly  limited  by  the  frequency  range  of  the
electrical  devices  in  the  system.  By  employing  electrical
devices  with  wider  bandwidth  and  advanced  DSP  algo-
rithm  such  as  deep  learning-based  end-to-end  autoen-
coder  methods39,  it  is  believed  that  the  PD  module  can
support THz signal transmission with even larger band-
width and higher rate.

 Conclusion
We  have  demonstrated  a  compact  MUTC  photodiode
module  with  WR-5  waveguide  output.  The  PD  module
exhibits  a  flat  response  in  the  frequency  range  of
140–220 GHz, and is  successfully employed for photon-
ic-assisted  THz  wireless  communications.  Transmission
rates of 75 and 90 Gbps over 1-m free space are demon-
strated  at  150.5  and  210.5  GHz  carrier  frequencies,  re-
spectively. The over 80 GHz bandwidth of the PD mod-
ule  at  G-band  promises  other  broadband  applications,
such  as  THz  spectroscopy  and  imaging.  Furthermore,
with  the  high  saturated  output  power,  the  PD  module
has  the  potential  to  achieve  high-performance  6G  THz
wireless communication. In our future research endeav-
ors, we aim to delve deeper into the application capabili-
ties  of  the  MUTC-PD,  encompassing  high-speed  wire-
less  bi-directional  communication.  Additionally,  we  en-
vision a framework where both the MZM and PD mod-
ules can be seamlessly integrated on-chip, thereby facili-
tating chip-level wireless data transmission with integrat-
ed  antennas.  This  integrated  approach  holds  significant
promise  for  realizing efficient,  high-speed,  and compact

wireless communication solutions across a wide range of
applications.

Furthermore,  metasurfaces,  renowned  for  their  pre-
cise  control  over  electromagnetic  wave  properties,  offer
the  possibility  of  engineering  specific  responses  to  de-
couple and independently control different wavelengths,
incident  angles,  spin  angular  momentums  (SAMs),  and
orbital  angular  momentums  (OAMs).  This  capability
holds significant promise for high-capacity THz commu-
nications.  Recent  advancements  in  metasurface
research40−43,  including  novel  designs  and  fabrication
techniques,  enhance  their  potential  applications  in  THz
communication systems. By integrating metasurfaces in-
to  THz  devices,  alongside  well-designed  PD  modules,
such  as  antennas  and  modulators,  we  can  achieve  en-
hanced  beamforming,  signal  modulation,  and  process-
ing capabilities. This integration promises to significant-
ly  increase  communication  throughput,  reliability,  and
efficiency  in  THz wireless  networks,  paving  the  way  for
future  high-speed  data  transmission  and  communica-
tion technologies.
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