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Edge enhanced depth perception with binocular
meta-lens
Xiaoyuan Liu1,2,3, Jingcheng Zhang1, Borui Leng1, Yin Zhou1,
Jialuo Cheng1, Takeshi Yamaguchi4,5,6, Takuo Tanaka4,5,6* and
Mu Ku Chen1,2,3*

The increasing popularity of the metaverse has led to a growing interest and market size in spatial computing from both
academia and industry. Developing portable and accurate imaging and depth sensing systems is crucial for advancing
next-generation virtual  reality  devices.  This work demonstrates an intelligent,  lightweight,  and compact edge-enhanced
depth perception system that utilizes a binocular meta-lens for spatial computing. The miniaturized system comprises a
binocular  meta-lens,  a  532  nm  filter,  and  a  CMOS  sensor.  For  disparity  computation,  we  propose  a  stereo-matching
neural  network with a novel  H-Module.  The H-Module incorporates an attention mechanism into the Siamese network.
The symmetric architecture, with cross-pixel interaction and cross-view interaction, enables a more comprehensive ana-
lysis of contextual information in stereo images. Based on spatial intensity discontinuity, the edge enhancement elimin-
ates ill-posed regions in the image where ambiguous depth predictions may occur due to a lack of texture. With the as-
sistance of deep learning, our edge-enhanced system provides prompt responses in less than 0.15 seconds. This edge-
enhanced depth perception meta-lens imaging system will  significantly  contribute to accurate 3D scene modeling,  ma-
chine vision, autonomous driving, and robotics development.
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 Introduction
Spatial computing1 and the emerging meta-verse repres-
ent a paradigm shift in how humans interact with a ma-
chine. Spatial  computing refers  to  integrating digital  in-
formation  and  virtual  objects  into  the  physical  world,
creating  a  mixed  reality  where  the  boundaries  between
the  digital  and  physical  realms  are  blurred.  Common
augmented  reality  devices  rely  on  spatial  computing  to

perceive the  depth  of  the  real  physical  world  while  em-
bedding virtual objects into real scenes three-dimension-
ally2. One of the key technologies of spatial computing is
its  depth  perception  capability,  which  bridges  the  gap
between  the  physical  and  digital  realms.  This  promises
intuitive  and  natural  interaction  with  virtual  objects.
Therefore,  digital  information  can  be  correctly  placed
and  manipulated  in  the  scene  following  physical  laws.
However,  the  weight  and  volume  of  traditional  depth 
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sensing  systems  result  in  a  lack  of  comfort  in  human-
computer  interaction  wearable  devices,  which  contain
many sensors (mainly cameras and LiDAR). At the same
time, the space occupied by bulky sensors also limits bat-
tery life,  causing the device to need to be recharged fre-
quently. Advancements  in  portable  and  accurate  ima-
ging and depth sensing systems are crucial for next-gen-
eration human-computer interaction wearable devices.

Complementing  spatial  computing,  binocular  meta-
lens3 offers  a  breakthrough  approach  to  depth  sensing
and imaging with the advantages of  being lightweight4,5,
thin,  and  compact.  Meta-lens  create  advanced  optical
functionalities  that  surpass  the  limitations  of  traditional
optics6,7,  such  as  wavefront  shaping8, polarization  con-
trol9−11,  and spectral  manipulation12,13.  Meta-lens  utilizes
nanoantennas  to  manipulate  light14, offering  an  oppor-
tunity for  engineering  optical  properties  such  as  thin-
ness, flatness, broadband capability15, high diffraction ef-
ficiency16,  extreme  depth-of-field17,  and  compatibility
with  complementary  metal-oxide-semiconductor
(CMOS) technology.  By  leveraging  the  unique  proper-
ties of meta-optics, this compact and miniaturized optic-
al  meta-device  allows  for  capturing  three-dimensional
information from  the  surrounding  environment.  Bin-
ocular meta-lens enable precise  and accurate depth per-
ception,  similar  to  human  binocular  vision.  In  recent
years, the  support  of  artificial  intelligence  has  increas-
ingly  promoted  the  development  of  meta-devices  in
terms of inverse design18,19,  prompt data analysis20,21, op-
tical  computation22,23,  and  intelligent  reconfigurable
meta-devices24,25.  These  advancements  pave  the  way  for
compact, lightweight,  and  highly  efficient  optical  sys-
tems  seamlessly  integrated  into  spatial  computing
devices, enhancing their performance and enabling nov-
el applications.

The principle underlying depth acquisition in binocu-
lar imaging  relies  on  presenting  a  stereo-image  pair  ex-
hibiting  discernible  disparities26.  Disparity  denotes  the
horizontal displacement between corresponding pixels in
the left and right images. Traditional binocular disparity
computation  pipeline  often  entails  the  utilization  of
block  matching  algorithms  for  calculating  matching
losses27. The  combination of  deep  learning  and photon-
ics has  been  widely  researched  in  recent  years,  encom-
passing  applications  such as  orbital  angular  momentum
communication28,  optical  neural  networks29, optical  en-
cryption30,  enhancing  holographic  data  storage  (HDS)31,
photonic  inverse  design32 and  hyperspectral  imaging33.

Nonetheless,  convolutional  neural  networks  (CNNs)
have garnered greater preference owing to their inherent
advantages of rapidity, precision, and operational simpli-
city  in  processing.  Despite  significant  advancements  in
accuracy and speed achieved by various binocular stereo
systems,  finding  accurate  corresponding  points  within
inherently ill-posed  regions  for  depth  computation  re-
mains challenging,  such  as  textureless  areas  and  reflect-
ive surfaces34. Ambiguous depth prediction has a serious
impact on subsequent machine decision-making. Edge is
the typical representation of texture. There must be tex-
ture feature points in the edge area for stereo matching.
Numerous studies  have  explored  edge  detection  tech-
niques utilizing  meta-lenses,  each  with  distinct  charac-
teristics.  For instance,  the Green function35,36,  and spiral
phase37 have been employed to enable edge detection us-
ing a single meta-lens. Another approach involves utiliz-
ing meta-lens arrays for three-dimensional (3D) edge de-
tection38.  Polarization  control  has  been  leveraged  for
switchable bright  field  imaging  and  edge  detection  cap-
abilities39,40.  Edge  detection  by  the  Pancharatnam–Berry
phase41 has emerged as a noteworthy technique, demon-
strating potential in quantum applications42.  Edge-based
depth perception  offers  superior  fidelity  in  the  estima-
tion  of  depth.  Within  the  framework  of  depth  edge
views, non-textured regions that lack prominent edges or
transitions are  efficiently  discarded.  This  filtering  pro-
cess  reduces  the  impact  of  unreliable  or  ambiguous
depth  information  originating  from  textureless  regions,
thereby enhancing the overall accuracy and reliability of
depth estimation. By focusing on edges that signify depth
discontinuities,  edge-based  depth  perception  provides  a
more resilient and accurate depiction of depth.

We develop an edge-enhanced depth perception based
on binocular meta-lens for spatial computing. The whole
system is miniaturized, intelligent, lightweight and com-
pact. Its  physical  working  mechanism consists  of  a  bin-
ocular  lens,  a  532  nm  filter,  and  a  CMOS  sensor.  Each
meta-lens,  measuring  2.6  mm  in  diameter,  weighs
2.45×10−5 g and occupies a volume of 3.98×10−6 cm3. The
weight of the Sapphire substrate is 0.115 g with a volume
of 0.0288 cm3.  Thin  and  flat  nature  make  it  simple  in
both physical  system  configuration  and  image  pro-
cessing pipeline.  Without  preprocessing,  the  raw  cap-
tured image  is  processed  directly  by  our  proposed  pyr-
amid stereo-matching  neural  network,  H-Net,  to  obtain
the disparity.  A  novel  symmetric  H-module  with  an  at-
tention  mechanism  allows  the  H-Net  to  dynamically
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allocate resources based on the significance of contextu-
al  features of  each view and the correlation between the
left and right views. With depth-sensing results, an edge
enhancement is  performed to filter  the feature informa-
tion that detects the 3D space gradients.

Figure 1 demonstrates the  edge-enhanced  depth  per-
ception system schematic  with  our  binocular  meta-lens.
There are two letter objects in front of the binocular ste-
reo-vision meta-lens. The application scenario shown in
Fig. 1 has ill-posed regions, such as the letter objects' un-
patterned  backgrounds  and  untextured  surfaces.  But
with the support of a proposed neural network for com-
prehensive  context  analysis  and  a  Canny  edge  detector
for filtering,  an edge-enhanced depth perception view is
realized, perceiving both intensity and depth discontinu-
ities simultaneously.

The  convergence  of  spatial  computing  and  meta-op-
tics  holds  immense  potential  for  transforming our  daily
lives.  From  augmented  and  virtual  reality  experiences
that  blend seamlessly  with our physical  surroundings to
smart  glasses  that  provide  personalized  information
overlays,  edge-enhanced  spatial  computing  powered  by
meta-optics  promises  to  revolutionize  how  we  perceive
and interact  with  the  world  around us.  This  integration
can lead to  breakthroughs  in  robotics,  autonomous  sys-
tems,  underwater  exploration,  and  medical  imaging,
where accurate  depth  perception  is  crucial  for  naviga-
tion, object recognition, and scene reconstruction.

 Methods

 Simulation and fabrication
We utilize  the  commercial  simulation  software  COM-
SOL Multiphysics® to design and analyze the unit cells of
the  meta-lens.  We  set  periodic  boundary  conditions  for
the x and y directions  and  a  perfect  match  layer  (PML)
boundary  condition  for  the z-direction.  The  meta-lens
consists of unit cells of gallium nitride (GaN) cylindrical
nanopillars on a sapphire substrate. The diameter of the
nanopillars varies across the meta-lens. The refractive in-
dex of the sapphire substrate is set to 1.77, while the re-
fractive index of GaN at the working wavelength is 2.42.
Using  this  configuration,  we  calculate  the  cylindrical
nanopillars' simulated  transmission  spectra  and  phase
shift,  as  shown  in  Supplementary information Fig.  S1.
The meta-atom arrangement layout for fabrication is de-
signed according to the focusing phase distribution 

φ (x, y, λ) = −
[
2π
λ

(√
x2 + y2 + f2 − f

)]
, (1)

φ (x, y, λ)
(x, y)

λ = 532 nm f

in  which  is the  phase  compensation  require-
ment  at  the  position  under  the  illumination  of
wavelength ,  is  the  desired  focal  length  of
10.0  mm.  The  target  diameter  of  each  meta-lens  is  2.6
mm.

The proposed binocular meta-lens is fabricated by ad-
opting  the  following  process  (see  details  in  Supporting

 

Fig. 1 | Schematic of the edge-enhanced spatial computing with binocular meta-lens. There are two letter objects in front of the binocular

meta-lens, which are texture-less and have no background. A binocular meta-lens is designed and fabricated to develop the stereo vision sys-

tem for texture-less spatial computing scenarios. An edge-enhanced depth perception is realized with the support of a proposed neural network.
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Information Fig.  S2): A 750-nm-thick GaN is  firstly  de-
posited on a sapphire substrate via metalorganic chemic-
al  vapor  deposition  (MOCVD).  A  200-nm-thick  SiO2

film,  which serves  as  the  hard mask for  pattern transfer
to the GaN layer with a high aspect ratio, is subsequently
deposited using an E-gun evaporator.  A PMMA layer is
spin-coated  on the  SiO2 film,  followed by  pre-baking  at
180 °C for 3 min. A layer of conductive polymer is then
spin-coated on  the  PMMA  to  avoid  charge  accumula-
tion. The PMMA layer is exposed under EBL (ELS-HS50,
ELIONIX INC.)  for  pattern  definition.  After  being  im-
mersed  in  DI  water  to  remove  the  conductive  polymer
layer,  the  patterned  sample  is  developed  with  methyl
isobutyl ketone (MIBK)/ isopropyl alcohol (IPA) for 75 s
and is rinsed in IPA for 20 s. An additional Cr layer with
40 nm thickness is deposited on the patterned sample us-
ing an E-gun evaporator. Followed by the lift-off process
in  Acetone,  the  pattern  is  transferred  into  the  Cr  layer.
Taking  the  Cr  layer  as  the  hard  mask,  the  SiO2 layer  is
etched by  inductively  coupled  plasma reactive  ion  etch-
ing (ICP-RIE) with CF4 gas. Chromium etchant is adop-
ted to remove the remaining Cr. A second ICP-RIE with
a  mixture  of  Ar  and  Cl2 is  applied  for  pattern  transfer
from the  patterned SiO2 film to  the  GaN film.  After  re-
moving  the  residual  SiO2 using  a  buffered  oxide  etch
(BOE)  solution,  the  desired  GaN  nanostructure  on  the
sapphire substrate is finally realized.

Figure 2(a) demonstrates the  optical  image  of  fabric-
ated binocular  meta-lens.  The fabrication process  of  the
well structure was characterized based on scanning elec-
tron  microscope  (SEM)  images.  There  is  no  cracks  or
pores on the fabricated nanopillars, as shown in the top-
view SEM image of Fig. 2(b). From the zoomed-in tilted
view of  the nanopillar  SEM image in Fig. 2(c),  the good
collimation of  the  750-nm  high  nanopillars  can  be  ob-
served with precise etching. The physical dimension ana-
lysis  of  the  binocular  sample  is  divided  into  two  parts:
the  sapphire  substrate  and  two  GaN  meta-lens.  Each

meta-lens, measuring 2.6 mm in diameter with a volume
of  4.25×10−6 cm3,  weighs  2.61×10−5 g,  which  is  lighter
than  one  percent  of  the  weight  of  a  hair.  The  weight  of
the  sapphire  substrate  is  0.115 g  and occupies  a  volume
of 0.0288 cm3. Even though the sapphire substrate brings
much  more  occupation,  the  overall  weight  and  volume
are still tiny and ignorable.

For disparity computation, we propose a pyramid ste-
reo-matching  neural  network  (named  H-Net)  with  a
novel  "H"-shaped  attention  module  (H-Module),  as
shown  in Fig. 3(a).  The  H-Net  follows  an  end-to-end
learning framework from stereo input images to dispar-
ity  map  prediction  without  any  other  pre-  or  post-pro-
cessing.  The global  context aggregation is  vital  to derive
the disparity  information  from  stereo  image  pairs.  Be-
sides the conventional encoder-decoder architecture and
pyramid  pooling,  H-Net  adopts  cross-pixel  interaction
and  cross-view  interaction  to  enable  the  utilization  of
contextual  information  and  the  integration  of  diverse
perspectives  (see  details  in  Supplementary information
Section  4).  Compared  with  the  conventional  block
matching  method43 and  two  advanced  neural
networks34,44, H-Net  demonstrates  significant  perform-
ance  improvements  and  more  comprehensive  analysis.
(see  details  in  Supplementary  information  Section  5)
With the backbone of PSMNet34,  the head of H-Net is a
Siamese  network45,  whose  two  branch  networks  are
weight sharing.  These head Siamese CNNs utilize  resid-
ual  blocks46 to extract  features  and  weight-sharing  spa-
tial  pyramid  pooling  (SPP)  modules34 to aggregate  con-
text information. The output left and right feature maps
from the head backbone (Siamese CNNs) are integrated
by  the  proposed  H-Module.  The  introduction  of  H-
Module  with  attention  mechanism47,48 allows  the  model
to  dynamically  allocate  its  attention  or  resources  based
on  the  relevance  or  significance  of  specific  features  or
contexts.  H-Module  is  a  symmetric  processing  pipeline
composed of four cross-pixel interaction blocks and one
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Fig. 2 | Optical and SEM images of fabricated binocular meta-lens. (a) Optical image of the binocular meta-lens. (b) The zoomed-in top-view

SEM image of the meta-lens. (c) The zoomed-in tilted-view SEM image at the edge of the meta-lens.
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cross-view  interaction  block.  Cross-pixel  interaction  is
the mutual interaction or influence between pixels in an
image  or  visual  representation.  It  involves  considering
the relationships  and  dependencies  between  neighbor-
ing pixels  to  capture  contextual  information  and  im-
prove the understanding or analysis  of  the image.  As il-
lustrated in Fig. 3(b),  the left  and right feature maps are
flattened and projected through separate fully connected
layers into three essential vectors: Query, Key, and Value.
The  similarity  or  correlation  between  Query  and  Key  is
computed using the inner product, yielding weight coef-
ficients  for  each  Key  corresponding  to  its  associated
Value, known as cross-pixel attention. The Value is then
weighted and aggregated based on attention coefficients
to  obtain  enhanced  features.  Corresponding  attention
calculation equation49 is 

Attention (Q,K,V) = softmax
(
QKT
√
dk

)
V , (2)

 

softmax (xi) =
exi∑n

j=1
exj

, (3)

Q K V√
dk

dk

where  is  the  Query  vector,  is  the  Key  vector,  is
the Value vector,  serves as a scale to control the res-
ult  range,  is  the  dimension  of  Query  vector  and  Key

softmaxvector,  and  is  a  normalization function utilized
to transform a vector of numerical values into a vector of
probability  distributions.  This  transformation  ensures
that the probability associated with each value is directly
proportional to its relative proportion within the origin-
al vector.

Cross-view interaction refers  to  the  interaction or  in-
tegration of  information  from  multiple  views  or  per-
spectives.  In  multi-view  analysis,  cross-view  interaction
aims  to  leverage  information  from  different  viewpoints
or modalities to enhance the overall understanding or in-
terpretation  of  the  scene.  Detailed  processing  steps  are
depicted in Fig. 3(c), which is similar to cross-pixel inter-
action.  The  difference  is  that  the  calculation  of  cross-
view attention is  based on the Query and Key from dif-
ferent features.  Specifically,  the Query of  the left  feature
map is  computed with  the  Key of  the  right  feature  map
through  inner  product  and  vice  versa.  This  interaction
involves  feature  matching  and  data  fusion,  allowing  the
alignment and  combination  of  information  from differ-
ent  views.  The  attention  mechanism  enhances  the
model's ability  to  capture  dependencies,  focus  on  relev-
ant  information,  and  leverage  contextual  relationships
within  the  visual  data  (see  the  ablation  study  details  in
Supplementary information Section 5.4 Ablation study).
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view interaction in an H-Module. A 4D cost volume is created from the left and right image features, which is then used in a 3D CNN for depth es-

timation. A disparity regression module is performed before the final disparity map prediction. (b) Detailed pipelines of the cross-pixel interaction.

The left and right feature maps are flattened and processed through separate fully connected layers to generate Query, Key, and Value vectors.

The inner product is utilized to compute the similarity between Query and Key, resulting in weight coefficients for each Key. These coefficients

are used for cross-pixel attention, associating each Key with its corresponding Value. The weighted Values are aggregated to produce enhanced

features. (c) Detailed pipelines of the cross-view interaction. The difference from the cross-pixel interaction is the inner product of Key and Query

vector comes from different stereo views.
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D = {da}Amax
a=0 d̂a

da

The enhanced left and right feature maps from H-Mod-
ule are  concatenated  as  a  4D  cost  volume.  Three  re-
peated  encoder-decoder  architectures  are  utilized  in  the
3D CNN  module  to  further  comprehensively  under-
stand the contextual information. Before the final predic-
tion of the disparity map, a disparity regression50 is per-
formed with a soft attention mechanism. For the dispar-
ity map , each final disparity value  is the
original  depth  value  weighted  by  its  probability.  The
disparity regression is performed as the equation below 

d̂a =
Amax∑
a=0

da · softmax (−ca) , (4)

d̂a ca
da a

da D Amax

a softmax

where  is the final predicted disparity,  is the corres-
ponding cost from cost volume for each disparity ,  is
the  annotation  number  associated  with  each  disparity
value  in disparity map ,  is the maximum value
of  within the range of annotations,  function is
discussed in Eq. (3). We adopt the smooth L1 loss as the
loss  function  for  its  fast  convergence  and  robustness  to
outliers. The  final  loss  is  averaged  over  the  N-pixel  dis-
parity map, as shown in Eq. (5). 

Loss
(
D, D̂

)
=

1
N

N∑
n

smoothL1
(
dn − d̂n

)
, (5)

in which 

smoothL1 (x) =
{

0.5x2, if |x| < 1
|x| − 0.5, otherwise

, (6)

D D̂
N

dn
n d̂n n

β1 = 0.9
β2 = 0.999

where  is the ground truth disparity map,  is the pre-
dicted  disparity  map,  is  the  number  of  pixels  in  the
disparity  map,  is  the  ground  truth  disparity  data  for
pixel , and  is the predicted disparity data for pixel .
H-net  was  trained  on  the  stereo  vision  dataset  KITTI
201251.  We  employed  the  Adam  Optimizer  ( ,

).  The learning rate  was 0.001 for  the first  10
epochs and 0.0001 for the rest. The batch size was 3 on a
Nvidia  GeForce  RTX 3090 GPU.  After  800  epochs
(64,000 iterations) of training, the final model converged
with  a  training  loss  of  approximately  0.3  (see  details  in
Supporting Information Fig. S8).

The  depth  map  is  calculated  based  on  the  predicted
disparity map. The depth calculation formula3 is 

depth =
fb

ps ·
∣∣∣D̂+ Uoffs + Ooffs

∣∣∣ , (7)

in which 

Ooffs =
b
ps

− |x1 − x0| , (8)

f b

ps
Uoffs

Ooffs

x0 = 1232,
x1 = 2789

where  focal  length  is  10  mm,  baseline  is  measured
4.056 mm, the side length of the physical pixel on CMOS
sensor  is 3.45 μm, misalignment of lens and sensor on
the x-axis  is 0, the principal point offset along the x-
axis  is  calculated as  -396.6  pixels  with x coordinate
of  left  image  center  and  the x coordinate  of
the  right  image  center  (see  more  details  in
Supplementary  information Fig.  S3).  The  edge  image  is
derived  from  the  raw  captured  stereo  image  with  a
Canny edge detector52, which approximates  the  first  de-
rivative  of  a  Gaussian  operator.  Through  the  lower
bound cut-off  suppression  and  edge  tracking  by  hyster-
esis,  the  detected  edges  are  constrained  to  be  one  pixel
wide  and  located  at  the  center  discontinuous  area
without false noise edge points. There are no edges in the
non-textured  regions  in  images  with  uniform  intensity
distribution. These  ill-posed  regions  will  cause  ambigu-
ous  depth  prediction  because  of  the  feature-matching
calculation mechanism.  Under  the  guidance of  the  edge
image, these ill-posed regions on the depth map are dis-
carded.  The  edge-enhanced  depth  perception  is  the
depth map filtered by logical conjunction (AND) opera-
tions on edge images. Both the discontinuity of intensity
and depth are preserved with high fidelity and accuracy.

 Results and discussion
The  optical  performance  of  the  fabricated  meta-lens  is
derived under  532  nm  illumination.  The  measured  in-
tensity  profile  of  left  and  right  meta-lenses  along  the
propagation direction is  presented in Fig. 4(a). The cor-
responding  measured  focal  lengths  of  left  and  right
meta-lenses  are  10.048  mm  and  10.046  mm,  which
matches the designed focal  length of  10.0 mm. The dia-
meter of a single meta-lens is 2.6 mm, and the metalens'
numerical  aperture  (NA)  is  about  0.13.  The  measured
full-width at  half-maximum (FWHM) of  the focal  spots
of  both  meta-lens  along X-  and Y-axes  range  from 2.21
to 2.36 μm, with the minimum measurement accuracy of
0.2809 μm per division. Therefore, the averaged FWHM
is  2.26  ±  0.14  μm,  which  is  close  to  the  diffraction-lim-
ited  system  with  an  FWHM  of  2.1  μm  (FWHM  =
0.514λ/NA).  The  modulation  transfer  function  (MTF),
the Fourier transform of the point spread function (PSF),
was also calculated, which further confirms that the fab-
ricated  meta-lens  is  a  diffraction-limited  lens  (see  more
details  in  Supporting  Information Fig.  S4).  The
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measured  focusing  efficiency  is  73.86%  at  the  working
wavelength of  532  nm.  The  focusing  efficiency  is  calcu-
lated by dividing the total  light power of the focal  point
area  at  the  focal  plane  by  the  total  input  light  power  of
the  bare  substrate  surface  (the  selected  area  is  equal  to
the size of the meta-lens). Several experiments were per-
formed  to  characterize  the  2.6  mm  meta-lens  using  a
commercial  measurement  system  (AR-Meta-P,
IDEAOPTICS INC.). The phase profile of the fabricated
meta-lens was measured to check the agreement between
the calculated phase profile and the fabricated phase pro-
file. The detailed experimental setup for meta-lens phase
measurement was demonstrated in our previous work53.
The simulated and experimental phase distribution maps
at the central region of the meta-lens are depicted in Fig.
4(b) and 4(c), respectively, which are in good agreement
with  each  other.  The  small  disparities  can  be  attributed
to the fabrication defects and the spherical aberrations in
the measurement system. More theoretical and the meas-
ured  phase  profile  comparison  results  are  depicted  in
Supporting Information Fig. S5.

Iraw

D̂epth

Eb

DE
D̂epth

Eb

Various  imaging  and  depth  sensing  experiments  are
conducted  to  test  the  performance  of  edge-enhanced
depth perception of our binocular meta-lens. The config-
uration of the binocular meta-lens camera for imaging is
shown in Fig. S7 in the Supporting Information. Figure 5
demonstrates  the  raw  captured  images,  depth  sensing
results,  edge-enhanced  depth  maps,  and  the  integration
results  of  raw  images  and  3D  edges.  The  raw  captured
image  is cropped from the common stereoscopic re-
gion of  the  left  image.  Proposed  H-Net  outputs  corres-
ponding disparity map of the stereo images. Through Eq.
(5), the depth map  is calculated accordingly and il-
lustrated in pseudocolor, as shown in the second column
of Fig. 5.  The  2D  edge  images  that  represent  the  spatial
intensity discontinuity  are  derived  from  the  raw  cap-
tured image (first column) with the Canny operator. The
2D  edge  image  is  converted  into  a  binary  matrix ,  in
which the edge pixel is 1, otherwise it is 0. The edge-en-
hanced  depth  map  is  calculated  by  the  Hadamard
product of the depth map  and the binary edge mat-
rix ,  which  is  similar  to  a  logical  conjunction  (AND)
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operation. The specific calculation equation is
 

DE = D̂epth ⊙ Eb . (9)

DE

Iinteg

The  edge-enhanced  depth  maps  are  displayed  in
the third column of Fig. 5 in pseudocolor. The non-edge
regions with 0 values are set to be black. The integration
images  in the fourth column of Fig. 5 are merged us-
ing the following expression:
 

Iinteg = 1.2DE+ 0.8Iraw . (10)

The integration  images  aim to  demonstrate  the  fidel-

ity of edge-enhanced depth perception in spatial  intens-
ity and depth discontinuity detection.

Figure 5(a) depicts  a  scenario  with  ill-posed  regions.
Two black letter objects, "RIKEN" and "CITYU," printed
on transparent  plastic  papers,  are  positioned at  16.0  cm
and 12.8  cm,  respectively.  The  letter  carrier  is  transpar-
ent plastic paper. The background is a white wall without
any  texture.  The  absence  of  texture  makes  it  difficult  to
establish reliable correspondences between image points
in the  left  and  right  views,  leading  to  unreliable  or  am-
biguous  depth  estimates  (see  the  middle  region  of  the
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depth map. The third column is the edge-enhanced depth map. The second and third columns use the same color bar on the right of the third

column. The fourth column is the integration image of the raw image and edge-enhanced depth map. (a) Two pieces of transparent plastic paper

printed with "RIKEN" and "CITYU" in black letters are placed at 16.0 cm and 12.8 cm, respectively. (b) A piece of sketch paper printed with a

tilted three-dimensional building is located at 17.3 cm as the background. The front ends of the two toy cars are approximately 12.9 cm and 15.7

cm, respectively. (c) The two architectural sketches are at 13.5 cm and 16.5 cm, respectively. (d) The background architecture sketch is posi-
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depth  map  in Fig. 5(a).  Such  unreliable  and  ambiguous
depth  estimates  will  cause  severe  trouble  for  decision-
making  tasks.  In  edge-enhanced  depth  perception,  the
3D edge  data  agree  well  with  the  ground truth  with  the
completed  preservation  of  essential  details  of  the  scene.
Figure 5(b) demonstrates  a  multi-object  traffic  scene
with two toy cars located at about 12.9 cm and 15.7 cm.
An architecture sketch background providing is placed at
17.3  cm. Figure 5(c) shows  two  architecture  sketches
with false 3D feelings positioned at 13.5 cm and 16.5 cm,
respectively.  With  edge-enhanced  depth  perception,  the
planar false 3D objects do not deceive the system. Figure
5(d) displays  a  toy  car  with  a  continuous  depth change,
ranging from 12.5 cm to 15.5 cm. All depth sensing res-
ults are correct, demonstrating the accuracy capability of
our  H-Net.  The edge-enhanced depth results  discard all
uniform regions and amplify the 3D feature details with
high confidence.

 Conclusions
Spatial  computing  has  attracted  growing  attention  from
both academia  and  industry,  driven  by  the  rising  pop-
ularity of  the  metaverse.  A  portable  and  accurate  ima-
ging and depth sensing system is of vital importance for
next-generation  virtual  reality  devices.  In  this  work,  we
demonstrate an edge-enhanced depth perception system
based on binocular meta-lens, which is intelligent, light-
weight, and  compact  for  spatial  computing.  The  mini-
aturized system contains a binocular meta-lens, a 532 nm
filter, and a CMOS sensor. The binocular meta-lens only
weighs about 0.115 g with 0.0288 cm3 volume consump-
tion. The  imaging  system  based  on  our  meta-lens  min-
imizes  the discomfort  caused by the weight  and volume
of wearable devices to users. We propose a stereo-match-
ing neural  network  with  a  novel  H-Module  for  the  dis-
parity computation. The H-Module introduces the atten-
tion mechanism into the Siamese network. The symmet-
ric  architecture  with  cross-pixel  interaction  and  cross-
view interaction enables  a  more comprehensive  analysis
of the contextual information in stereo images. The edge
enhancement based  on  the  spatial  intensity  discontinu-
ity discards the ill-posed regions in the image, where am-
biguous  depth  prediction  will  be  generated  due  to  the
lack  of  texture  information.  With  the  support  of  deep
learning, our  edge-enhanced  provides  a  prompt,  intelli-
gent  response  in  less  than  0.15  seconds.  This  edge-en-
hanced  depth  perception  system  will  facilitate  accurate
3D scene modeling to promote the development of  ma-

chine vision, autonomous driving, and robotics.
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