Luo ZY, Ding YQ, Peng FL et al. Ultracompact and high-efficiency liquid-crystal-on-silicon light engines for augmented reality glasses. Opto-Electron Adv 7, 240039 (2024). doi: 10.29026/oea.2024.240039
Citation: Luo ZY, Ding YQ, Peng FL et al. Ultracompact and high-efficiency liquid-crystal-on-silicon light engines for augmented reality glasses. Opto-Electron Adv 7, 240039 (2024). doi: 10.29026/oea.2024.240039

Article Open Access

Ultracompact and high-efficiency liquid-crystal-on-silicon light engines for augmented reality glasses

More Information
  • In lightweight augmented reality (AR) glasses, the light engines must be very compact while keeping a high optical efficiency to enable longtime comfortable wearing and high ambient contrast ratio. “Liquid-crystal-on-silicon (LCoS) or micro-LED, who wins?” is recently a heated debate question. Conventional LCoS system is facing tremendous challenges due to its bulky illumination systems; it often incorporates a bulky polarizing beam splitter (PBS) cube. To minimize the formfactor of an LCoS system, here we demonstrate an ultracompact illumination system consisting of an in-coupling prism, and a light guide plate with multiple parallelepiped extraction prisms. The overall module volume including the illumination optics and an LCoS panel (4.4-μm pixel pitch and 1024x1024 resolution elements), but excluding the projection optics, is merely 0.25 cc (cm3). Yet, our system exhibits an excellent illuminance uniformity and an impressive optical efficiency (36%–41% for a polarized input light). Such an ultracompact and high-efficiency LCoS illumination system is expected to revolutionize the next-generation AR glasses.
  • 加载中
  • [1] Guttentag DA. Virtual reality: applications and implications for tourism. Tourism Manage 31, 637–651 (2010). doi: 10.1016/j.tourman.2009.07.003

    CrossRef Google Scholar

    [2] Rendon AA, Lohman EB, Thorpe D et al. The effect of virtual reality gaming on dynamic balance in older adults. Age Ageing 41, 549–552 (2012). doi: 10.1093/ageing/afs053

    CrossRef Google Scholar

    [3] Choi S, Jung K, Noh SD. Virtual reality applications in manufacturing industries: past research, present findings, and future directions. Concurr Eng 23, 40–63 (2015). doi: 10.1177/1063293X14568814

    CrossRef Google Scholar

    [4] Li X, Yi W, Chi HL et al. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom Constr 86, 150–162 (2018). doi: 10.1016/j.autcon.2017.11.003

    CrossRef Google Scholar

    [5] Zhang WP, Wang Z. Theory and practice of VR/AR in K-12 science education—a systematic review. Sustainability 13, 12646 (2021). doi: 10.3390/su132212646

    CrossRef Google Scholar

    [6] Xiong JH, Hsiang EL, He ZQ et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10, 216 (2021). doi: 10.1038/s41377-021-00658-8

    CrossRef Google Scholar

    [7] Yin K, Hsiang EL, Zou JY et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light Sci Appl 11, 161 (2022). doi: 10.1038/s41377-022-00851-3

    CrossRef Google Scholar

    [8] Ding YQ, Yang Q, Li YNQ et al. Waveguide-based augmented reality displays: perspectives and challenges. eLight 3, 24 (2023). doi: 10.1186/s43593-023-00057-z

    CrossRef Google Scholar

    [9] Qian YZ, Yang ZY, Huang YH et al. Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays. Opto-Electron Sci 1, 220021 (2022). doi: 10.29026/oes.2022.220021

    CrossRef Google Scholar

    [10] Li Y, Huang XJ, Liu SX et al. Metasurfaces for near-eye display applications. Opto-Electron Sci 2, 230025 (2023). doi: 10.29026/oes.2023.230025

    CrossRef Google Scholar

    [11] Ding YQ, Luo ZY, Borjigin G et al. Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator. Opto-Electron Adv 7, 230178 (2024). doi: 10.29026/oea.2024.230178

    CrossRef Google Scholar

    [12] Lu TW, Lin Y, Zhang TQ et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications. Opto-Electron Adv 7, 230210 (2024). doi: 10.29026/oea.2024.230210

    CrossRef Google Scholar

    [13] Chen P, Li QM. 55-4: Invited Paper: monolithic microLED display for AR applications. SID Symp Dig Tech Pap 54, 1874–1877 (2023). doi: 10.1002/sdtp.16683

    CrossRef Google Scholar

    [14] Kress BC, Cummings WJ. Optical architecture of HoloLens mixed reality headset. Proc SPIE 10335, 103350K (2017).

    Google Scholar

    [15] Frommer A. Lumus: Maximus: large FoV near to eye display for consumer AR glasses. Proc SPIE 11764, 1176403 (2021).

    Google Scholar

    [16] Curtis KR. Unveiling magic Leap 2’s advanced AR platform and revolutionary optics. Proc SPIE 11932, 119320P (2022).

    Google Scholar

    [17] Margerum JD, Nimoy J, Wong SY. Reversible ultraviolet imaging with liquid crystals. Appl Phys Lett 17, 51–53 (1970). doi: 10.1063/1.1653306

    CrossRef Google Scholar

    [18] Beard TD, Bleha WP, Wong SY. ac Liquid-Crystal light valve. Appl Phys Lett 22, 90–92 (1973). doi: 10.1063/1.1654574

    CrossRef Google Scholar

    [19] Melcher RL. LCoS-Microdisplay technology and applications-LCoS is emerging as the most attractive technology choice for a wide variety of portable-and projection-display applications. Inf Disp 16, 20–23 (2000).

    Google Scholar

    [20] Wu ST, Yang DK. Reflective Liquid Crystal Displays (John Wiley & Sons, New York, 2001).

    Google Scholar

    [21] Huang YG, Liao EL, Chen R et al. Liquid-crystal-on-silicon for augmented reality displays. Appl Sci 8, 2366 (2018). doi: 10.3390/app8122366

    CrossRef Google Scholar

    [22] Li YW, Chen KY, Chen WH et al. 13-1: Invited Paper: front-lit LCOS for AR displays. SID Symp Dig Tech Pap 54, 154–157 (2023). doi: 10.1002/sdtp.16512

    CrossRef Google Scholar

    [23] Tang E. The smallest LCoS engine: introducing the AG-30L2. Proc SPIE 12450, 124500O (2023).

    Google Scholar

    [24] Luo ZY, Cheng YW, Wu ST. Polarization-preserving light guide plate for a linearly polarized backlight. J Disp Technol 10, 208–214 (2014). doi: 10.1109/JDT.2013.2294645

    CrossRef Google Scholar

    [25] Fan-Chiang KH, Chen SH, Wu ST. High-definition vertically aligned liquid crystal microdisplays using a circularly polarized light. Appl Phys Lett 87, 031110 (2005). doi: 10.1063/1.1999837

    CrossRef Google Scholar

    [26] Wu ST, Wu CS. Mixed-mode twisted nematic liquid crystal cells for reflective displays. Appl Phys Lett 68, 1455–1457 (1996). doi: 10.1063/1.116252

    CrossRef Google Scholar

    [27] Chiang KHF, Chen SH, Wu ST. Diffraction effect on high-resolution liquid-crystal-on-silicon devices. Jpn J Appl Phys 44, 3068–3072 (2005). doi: 10.1143/JJAP.44.3068

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(1058) PDF downloads(541) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint