Citation: | Li XW. Laser-induced stretchable bioelectronic interfaces by frozen exfoliation. Opto-Electron Adv 7, 240074 (2024). doi: 10.29026/oea.2024.240074 |
[1] | Zhong DL, Wu C, Jiang YW et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024). doi: 10.1038/s41586-024-07096-7 |
[2] | Xue TY, Fan BJ, Jiang KJ et al. Self-healing ion-conducting elastomer towards record efficient flexible perovskite solar cells with excellent recoverable mechanical stability. Energy Environ Sci 17, 2621–2630 (2024). doi: 10.1039/d4ee00462k |
[3] | Manjakkal L, Pereira L, Kumi Barimah E et al. Multifunctional flexible and stretchable electrochromic energy storage devices. Prog Mater Sci 142, 101244 (2024). doi: 10.1016/j.pmatsci.2024.101244 |
[4] | Cui SY, Lu YY, Kong DP et al. Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors. Opto-Electron Adv 6, 220172 (2023). doi: 10.29026/oea.2023.220172 |
[5] | Yi JQ, Zou GJ, Huang JP et al. Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature 624, 295–302 (2023). doi: 10.1038/s41586-023-06732-y |
[6] | Won D, Bang J, Choi SH et al. Transparent electronics for wearable electronics application. Chem Rev 123, 9982–10078 (2023). doi: 10.1021/acs.chemrev.3c00139 |
[7] | Liu W, Zhang C, Alessandri R et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat Mater 22, 737–745 (2023). doi: 10.1038/s41563-023-01529-w |
[8] | Kireev D, Sel K, Ibrahim B et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat Nanotechnol 17, 864–870 (2022). doi: 10.1038/s41565-022-01145-w |
[9] | Törmä P, Peotta S, Bernevig BA. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat Rev Phys 4, 528–542 (2022). doi: 10.1038/s42254-022-00466-y |
[10] | Sun MW, Cui SY, Wang ZZ et al. A laser-engraved wearable gait recognition sensor system for exoskeleton robots. Microsyst Nanoeng 10 (2024). doi: 10.1038/s41378-024-00680-x |
[11] | Xu KC, Li QA, Lu YY et al. Laser Direct Writing of Flexible Thermal Flow Sensors. Nano Letters 23, 10317–10325 (2023). doi: 10.1021/acs.nanolett.3c02891 |
[12] | Le TSD, Park S, An JN et al. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv Funct Mater 29, 1902771 (2019). doi: 10.1002/adfm.201902771 |
[13] | Lin J, Peng ZW, Liu YY et al. Laser-induced porous graphene films from commercial polymers. Nat Commun 5, 5714 (2014). doi: 10.1038/ncomms6714 |
[14] | Cai ZM, Kuang CF, Yang HY et al. Hybrid Laser Manufacturing and Applications in Flexible Micro‐Nano Sensors (Invited). Chinese Journal of Lasers 51, 0402403 (2024). doi: 10.3788/CJL231372 |
[15] | Cao LT, Liu Q, Ren J et al. Electro-blown spun silk/graphene nanoionotronic skin for multifunctional fire protection and alarm. Adv Mater 33, 2102500 (2021). doi: 10.1002/adma.202102500 |
[16] | He P, Du T, Zhao KR et al. Lightweight 3D graphene metamaterials with tunable negative thermal expansion. Adv Mater 35, 2208562 (2023). doi: 10.1002/adma.202208562 |
[17] | Ramezani M, Kim JH, Liu X et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat Nanotechnol 19, 504–513 (2024). doi: 10.1038/s41565-023-01576-z. |
[18] | Bonaccini Calia A, Masvidal-Codina E, Smith TM et al. Full-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes. Nat Nanotechnol 17, 301–309 (2022). doi: 10.1038/s41565-021-01041-9 |
[19] | Lin ZX, Kireev D, Liu N et al. Graphene biointerface for cardiac arrhythmia diagnosis and treatment. Adv Mater 35, 2212190 (2023). doi: 10.1002/adma.202212190 |
[20] | Liu Y, Zhou H, Zhou WX et al. Biocompatible, high-performance, wet-adhesive, stretchable all-hydrogel supercapacitor implant based on PANI@rGO/mxenes electrode and hydrogel electrolyte. Adv Energy Mater 11, 2101329 (2021). doi: 10.1002/aenm.202101329 |
[21] | Lu YY, Yang G, Wang SQ et al. Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat Electron 7, 51–65 (2024). doi: 10.1038/s41928-023-01091-y |
[22] | Hu JX, Gou J, Yang M et al. Room-temperature colossal magnetoresistance in terraced single-layer graphene. Adv Mater 32, 2002201 (2020). doi: 10.1002/adma.202002201 |
[23] | Yi P, Fu XP, Liu Y et al. Triboelectric active pressure sensor with ultrabroad linearity range by femtosecond laser shaping based on electrons dynamics control. Nano Energy 113, 108592 (2023). doi: 10.1016/j.nanoen.2023.108592 |
[24] | Liu Y, Li XW, Huang J et al. High-uniformity submicron gratings with tunable periods fabricated through femtosecond laser-assisted molding technology for deformation detection. ACS Appl Mater Interfaces 14, 16911–16919 (2022). doi: 10.1021/acsami.2c01735 |
[25] | Pinilla S, Coelho J, Li K et al. Two-dimensional material inks. Nat Rev Mater 7, 717–735 (2022). doi: 10.1038/s41578-022-00448-7 |
[26] | Zou TT, Zhao B, Xin W et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci Appl 9, 69 (2020). doi: 10.1038/s41377-020-0311-2 |
The schematic of the design scheme of stretchable graphene–hydrogel nanocomposites17