Zhang Xuedian, Yuan Manman, Chang Min, et al. Characteristics in square air hole structure photonic crystal fiber[J]. Opto-Electronic Engineering, 2018, 45(5): 170633. doi: 10.12086/oee.2018.170633
Citation: Zhang Xuedian, Yuan Manman, Chang Min, et al. Characteristics in square air hole structure photonic crystal fiber[J]. Opto-Electronic Engineering, 2018, 45(5): 170633. doi: 10.12086/oee.2018.170633

Characteristics in square air hole structure photonic crystal fiber

    Fund Project: Supported by the National Key Scientific Instrument and Equipment Development Projects of China (2014YQ09070903)
More Information
  • In order to obtain photonic crystal fiber with high birefringence and flattened dispersion, we propose a new photonic crystal fiber structure with an elliptical air hole as the core surrounded by square air holes. In this paper, the effects of different fiber core ellipticity and different filled material on birefringence, dispersion and nonlinearity of photonic crystal fiber are discussed. The results show that at the wavelength of 1.55 μm, when the core ellipticity of the filled material is the same, the maximum birefringence value is 0.37 and the maximum value of nonlinear system is 277.76 W-1·km-1. When the fiber is filled with different materials, the maximum birefringence value is 0.34 and maximum nonlinear value is 307 W-1·km-1. In addition, in the wavelength range of 1.26 μm~1.8 μm, the nearly zerodispersion flattened characteristics are achieved. The range of variations is no more than ±12.5 ps/(nm·km), and the bandwidth is 0.6 μm.
  • 加载中
  • [1] Saitoh K, Sato Y, Koshiba M. Coupling characteristics of dual-core photonic crystal fiber couplers[J]. Optics Express, 2003, 11(24): 3188–3195. doi: 10.1364/OE.11.003188

    CrossRef Google Scholar

    [2] 隋宁菠, 杭利军, 刘杰, 等.光纤光栅用柚子型光子晶体光纤的设计与制备[J].光电工程, 2011, 38(12): 110–114. doi: 10.3969/j.issn.1003-501X.2011.12.021

    CrossRef Google Scholar

    Sui N B, Hang L J, Liu J, et al. The design and fabrication of the grapefruit PCF for the fiber gratings[J]. Opto-Electronic Engineering, 2011, 38(12): 110–114. doi: 10.3969/j.issn.1003-501X.2011.12.021

    CrossRef Google Scholar

    [3] Ferrando A, Silvestre E, Andrés P, et al. Designing the properties of dispersion-flattened photonic crystal fibers[J]. Optics Express, 2001, 9(13): 687–697. doi: 10.1364/OE.9.000687

    CrossRef Google Scholar

    [4] Yang T Y, Wang E L, Jiang H M, et al. High birefringence photonic crystal fiber with high nonlinearity and low confinement loss[J]. Optics Express, 2015, 23(7): 8329–8337. doi: 10.1364/OE.23.008329

    CrossRef Google Scholar

    [5] Tsuchida Y, Saitoh K, Koshiba M. Design of single-moded holey fibers with large-mode-area and low bending losses: The significance of the ring-core region[J]. Optics Express, 2007, 15(4): 1794–1803. doi: 10.1364/OE.15.001794

    CrossRef Google Scholar

    [6] Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961–963. doi: 10.1364/OL.22.000961

    CrossRef Google Scholar

    [7] Kim S E, Kim B H, Lee C G, et al. Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion[J]. Optics Express, 2012, 20(2): 1385–1391. doi: 10.1364/OE.20.001385

    CrossRef Google Scholar

    [8] Steel M J, Osgood Jr R M. Elliptical-hole photonic crystal fibers[J]. Optics Letters, 2001, 26(4): 229–231. doi: 10.1364/OL.26.000229

    CrossRef Google Scholar

    [9] Ortigosa-Blanch A, Knight J C, Wadsworth W J, et al. Highly birefringent photonic crystal fibers[J]. Optics Letters, 2000, 25(18): 1325–1327. doi: 10.1364/OL.25.001325

    CrossRef Google Scholar

    [10] Limpert J, Schmidt O, Rothhardt J, et al. Extended single-mode photonic crystal fiber lasers[J]. Optics Express, 2006, 14(7): 2715–2720. doi: 10.1364/OE.14.002715

    CrossRef Google Scholar

    [11] Tan X J, Zhu X S. Optical fiber sensor based on Bloch surface wave in photonic crystals[J]. Optics Express, 2016, 24(14): 16016–16026. doi: 10.1364/OE.24.016016

    CrossRef Google Scholar

    [12] 芦鑫, 毕卫红, 麻硕, 等.保偏光子晶体光纤模间干涉的研究[J].光电工程, 2011, 38(9): 60–64.

    Google Scholar

    Lu X, Bi W H, Ma S, et al. Modular interference of polarization maintaining photonic crystal fiber[J]. Opto-Electronic Engineering, 2011, 38(9): 60–64.

    Google Scholar

    [13] Zhang Y J, Kainerstorfer J, Knight J C, et al. Experimental measurement of supercontinuum coherence in highly nonlinear soft-glass photonic crystal fibers[J]. Optics Express, 2017, 25(16): 18842–18852. doi: 10.1364/OE.25.018842

    CrossRef Google Scholar

    [14] 曹晔, 李荣敏, 童峥嵘.一种新型高双折射光子晶体光纤特性研究[J].物理学报, 2013, 62(8): 084215.

    Google Scholar

    Cao Y, Li R M, Tong Z R. Investigation of a new kind of high birefringence photonic crystal fiber[J]. Acta Physica Sinica, 2013, 62(8): 084215.

    Google Scholar

    [15] Ferrando A, Silvestre E, Miret J J, et al. Nearly zero ultraflattened dispersion in photonic crystal fibers[J]. Optics Letters, 2000, 25(11): 790–792. doi: 10.1364/OL.25.000790

    CrossRef Google Scholar

    [16] Steel M J, Osgood Jr R M. Polarization and dispersive properties of elliptical-hole photonic crystal fibers[J]. Journal of Lightwave Technology, 2001, 19(4): 495–503. doi: 10.1109/50.920847

    CrossRef Google Scholar

    [17] 吴宵宵, 范万德, 廖文英, 等.石墨烯包层结构光子晶体光纤的高双折射特性[J].光子学报, 2016, 45(1): 0106002.

    Google Scholar

    Wu X X, Fan W D, Liao W Y, et al. High birefringence in graphene structure photonic crystal fiber[J]. Acta Photonica Sinica, 2016, 45(1): 0106002.

    Google Scholar

    [18] Reeves W H, Knight J C, Russell P S J, et al. Demonstration of ultra-flattened dispersion in photonic crystal fibers[J]. Optics Express, 2002, 10(14): 609–613. doi: 10.1364/OE.10.000609

    CrossRef Google Scholar

    [19] Saitoh K, Florous N, Koshiba M. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses[J]. Optics Express, 2005, 13(21): 8365–8371. doi: 10.1364/OPEX.13.008365

    CrossRef Google Scholar

    [20] Dabas B, Sinha R K. Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber[J]. Optics Communications, 2010, 283(7): 1331–1337. doi: 10.1016/j.optcom.2009.11.091

    CrossRef Google Scholar

    [21] 陈瑰, 蒋作文, 彭景刚, 等.空气包层大模场面积掺镱光子晶体光纤研究[J].物理学报, 2012, 61(14): 144206. doi: 10.7498/aps.61.144206

    CrossRef Google Scholar

    Chen G, Jiang Z W, Peng J G, et al. Study of air-clad large-mode-area ytterbium doped photonic crystal fiber[J]. Acta Physica Sinica, 2012, 61(14): 144206. doi: 10.7498/aps.61.144206

    CrossRef Google Scholar

    [22] Kumar V V R K, George A K, Knight J C, et al. Tellurite photonic crystal fiber[J]. Optics Express, 2003, 11(20): 2641–2645. doi: 10.1364/OE.11.002641

    CrossRef Google Scholar

    [23] 刘永兴, 张培晴, 许银生, 等. Ge20Sb15Se65硫系玻璃光子晶体光纤的中红外色散特性[J].光子学报, 2012, 41(5): 516–521.

    Google Scholar

    Liu Y X, Zhang P Q, Xu Y S, et al. Dispersion properties of Ge20Sb15Se65 chalcogenide glass photonic crystal fiber for mid-ir region[J]. Acta Photonica Sinica, 2012, 41(5): 516–521.

    Google Scholar

    [24] 陈月娥, 侯蓝田. Yb3+掺杂双包层光子晶体光纤制备研究[J].光电工程, 2009, 36(2): 62–66.

    Google Scholar

    Chen Y E, Hou L T. Preparation of Yb3+doped double-clad photonic crystal fiber[J]. Opto-Electronic Engineering, 2009, 36(2): 62–66.

    Google Scholar

    [25] Inci H D, Ozsoy S. Birefringence, dispersion and loss properties for PCFs with rectangular air-holes[J]. Infrared Physics & Technology, 2014, 67: 354–358.

    Google Scholar

    [26] Yajima T, Yamamoto J, Ishii F, et al. Low-loss photonic crystal fiber fabricated by a slurry casting method[J]. Optics Express, 2013, 21(25): 30500–30506. doi: 10.1364/OE.21.030500

    CrossRef Google Scholar

    [27] Yang S G, Zhang Y J, Peng X Z, et al. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field[J]. Optics Express, 2006, 14(7): 3015–3023. doi: 10.1364/OE.14.003015

    CrossRef Google Scholar

    [28] Ohkubo T, Tsuchida E, Kenzo D, et al. Insights from ab initio molecular dynamics simulations for a multicomponent oxide glass[J]. Journal of the American Ceramic Society, 2018, 101(3): 1122–1134. doi: 10.1111/jace.2018.101.issue-3

    CrossRef Google Scholar

    [29] Lines M E. Oxide glasses for fast photonic switching: A comparative study[J]. Journal of Applied Physics, 1991, 69(10): 6876–6884. doi: 10.1063/1.347677

    CrossRef Google Scholar

    [30] Mito T, Fujino S, Takebe H, et al. Refractive index and material dispersions of multi-component oxide glasses[J]. Journal of Non-Crystalline Solids, 1997, 210(2–3): 155–162. doi: 10.1016/S0022-3093(96)00609-6

    CrossRef Google Scholar

    [31] Karasawa N. Dispersion properties of liquid crystal core photonic crystal fibers calculated by a multipole method modified for anisotropic inclusions[J]. Optics Communications, 2015, 338: 123–127. doi: 10.1016/j.optcom.2014.10.046

    CrossRef Google Scholar

    [32] Coen S, Chau A H L, Leonhardt R, et al. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[J]. Optics Letters, 2001, 26(17): 1356–1358. doi: 10.1364/OL.26.001356

    CrossRef Google Scholar

    [33] Shi F F, Wu Y, Li M C, et al. Highly birefringent two-mode photonic crystal fibers with near-zero flattened dispersion[J]. IEEE Photonics Journal, 2011, 3(6): 1181–1188. doi: 10.1109/JPHOT.2011.2176480

    CrossRef Google Scholar

  • Overview: Photonic crystal fibers (PCFs) have attracted a considerable amount of attention recently because of their unique properties that can not be realized in conventional optical fibers. Owning to their flexible design for the cross section, PCFs can realize particular properties such as high birefringence, high nonlinearity, ultra-flatten dispersion, large effective mode area, endlessly single mode, and etc. In this paper, in order to achieve high birefringence and flattened chromatic dispersion at the same time, a smaller sized elliptical air hole in the core is introduced as a defected core in square air holes. The present design has the asymmetry in both fiber core and the cladding region by one kind of air holes (elliptical). The role of an elliptical defected core in the proposed fiber is not only to control the chromatic dispersion to be flattened, but also to increase the value of birefringence up to the order of 10-1. Among them, the structure of the square air hole is not easy to be deformed and thus has a more stable characteristic. Hexagonal structure of square air holes is the best way to obtain high birefringence and flattened chromatic dispersion. In the designed structure, one elliptical air hole is arranged in the core region and four elliptical air holes are ordered in the upper and lower sides. In our simulation, the plane wave expansion method and full-vector finite element method (FEM) with the perfectly matched layer (PML) boundary condition are applied, which have been the most common and accurate methods to investigate the eigen-mode problems of guided modes in PCFs. The effects of different core ellipticity and core filling materials on the birefringence, dispersion and nonlinearity of the photonic crystal fiber are discussed. The results show that the birefringence and maximum nonlinear coefficient are up to the value of 0.37 and 277.76 W-1·km-1 at 1.55 μm when the ellipticity of the core is different and the filling material is the same. The birefringence and maximum nonlinear coefficient are up to the value of 0.34 and 307 W-1·km-1 at 1.55 μm in the condition where the ellipticity of the core is the same and the filling material is different. Besides, the dispersion has a dispersionless flat characteristic. The range of change is not more than ±12.5 ps/(nm·km), and the bandwidth is 0.6 μm in the range of wavelengths from 1.26 μm to 1.8 μm.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint