Lin Xiao, Hao Jianying, Zheng Mingjie, et al. Optical holographic data storage—The time for new development[J]. Opto-Electronic Engineering, 2019, 46(3): 180642. doi: 10.12086/oee.2019.180642
Citation: Lin Xiao, Hao Jianying, Zheng Mingjie, et al. Optical holographic data storage—The time for new development[J]. Opto-Electronic Engineering, 2019, 46(3): 180642. doi: 10.12086/oee.2019.180642

Optical holographic data storage—The time for new development

    Fund Project: Supported by National Natural Science Foundation of China (61475019) and Special Funds of the Central Government Guiding Local Science and Technology Development (2017L3009)
More Information
  • The development of optical holographic data storage technology in the past 50 years is reviewed in this paper. With the continuous development of key devices and materials, optical holographic data storage technology is becoming more and more mature. At present, in the era of Big Data, the demands for data storage density and data transfer rate are greater than ever before. Optical holographic data storage has become a potential candidate for the next generation of data storage technology because of its advantages of superhigh storage capacity, superfast data transfer rate, and superlong storage life. The coaxial holographic storage system will become the cornerstone of further practicality of holographic storage technology because of its compact structure, simple operation and strong compatibility. Meanwhile, new phase modulated holographic data storage system is becoming the research hotspot. The new round of rapid development has arrived.
  • 加载中
  • [1] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777-779. doi: 10.1038/161777a0

    CrossRef Google Scholar

    [2] Gabor D. Microscopy by reconstructed wave-fronts[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1949, 197(1051): 454-487.

    Google Scholar

    [3] Gabor D. Microscopy by reconstructed wave fronts: Ⅱ[J]. Proceedings of the Physical Society: Section B, 1951, 64(6): 449-469. doi: 10.1088/0370-1301/64/6/301

    CrossRef Google Scholar

    [4] Kirkpatrick P, El-Sum H M A. Image formation by reconstructed wave fronts. Ⅰ. Physical principles and methods of refinement[J]. Journal of the Optical Society of America, 1956, 46(10): 825-830. doi: 10.1364/JOSA.46.000825

    CrossRef Google Scholar

    [5] El-Sum H M A. Reconstructed wave-front microscopy[D]. Stanford: Stanford University, 1953.

    Google Scholar

    [6] Baez A V. Resolving power in diffraction microscopy with special reference to X-rays[J]. Nature, 1952, 169(4310): 963-964.

    Google Scholar

    [7] Rogers G L. Gabor diffraction microscopy: the hologram as a generalized zone-plate[J]. Nature, 1950, 166(4214): 237.

    Google Scholar

    [8] Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America, 1962, 52(10): 1123-1130. doi: 10.1364/JOSA.52.001123

    CrossRef Google Scholar

    [9] Leith E N, Upatnieks J. Wavefront reconstruction with diffused illumination and three-dimensional objects[J]. Journal of the Optical Society of America, 1964, 54(11): 1295-1301. doi: 10.1364/JOSA.54.001295

    CrossRef Google Scholar

    [10] Van Heerden P J. Theory of optical information storage in solids[J]. Applied Optics, 1963, 2(4): 393-400. doi: 10.1364/AO.2.000393

    CrossRef Google Scholar

    [11] Leith E N, Kozma A, Upatnieks J, et al. Holographic data storage in three-dimensional media[J]. Applied Optics, 1966, 5(8): 1303-1311. doi: 10.1364/AO.5.001303

    CrossRef Google Scholar

    [12] Ashkin A, Boyd G D, Dziedzic J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1966, 9(1): 72-74. doi: 10.1063/1.1754607

    CrossRef Google Scholar

    [13] Staebler D L, Amodei J J. Coupled-wave analysis of holographic storage in LiNbO3[J]. Journal of Applied Physics, 1972, 43(3): 1042-1049. doi: 10.1063/1.1661215

    CrossRef Google Scholar

    [14] Staebler D L, Burke W J, Phillips W, et al. Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3[J]. Applied Physics Letters, 1975, 26(4): 182-184. doi: 10.1063/1.88108

    CrossRef Google Scholar

    [15] Ishida A, Mikami O, Miyazawa S, et al. Rh-doped LiNbO3 as an improved new material for reversible holographic storage[J]. Applied Physics Letters, 1972, 21(5): 192-193. doi: 10.1063/1.1654339

    CrossRef Google Scholar

    [16] Shah P, Rabson T A, Tittel F K, et al. Volume holographic recording and storage in Fe-doped LiNbO3 using optical pulses[J]. Applied Physics Letters, 1974, 24(3): 130-131. doi: 10.1063/1.1655122

    CrossRef Google Scholar

    [17] Stewart W C, Mezrich R S, Cosentino L S, et al. An experimental read-write holographic memory[J]. RCA Review, 1973, 34: 3-44.

    Google Scholar

    [18] Nishida N, Sakaguchi M, Saito F. Holographic coding plate: a new application of holographic memory[J]. Applied Optics, 1973, 12(7): 1663-1674. doi: 10.1364/AO.12.001663

    CrossRef Google Scholar

    [19] D'Auria L, Huignard J, Spitz E. Holographic read-write memory and capacity enhancement by 3-D storage[J]. IEEE Transactions on Magnetics, 1973, 9(2): 83-94. doi: 10.1109/TMAG.1973.1067578

    CrossRef Google Scholar

    [20] D'Auria L, Huignard J P, Slezak V C, et al. Experimental holographic read-write memory using 3-D storage[J]. Applied Optics, 1974, 13(4): 808-818. doi: 10.1364/AO.13.000808

    CrossRef Google Scholar

    [21] Amodei J J, Staebler D L. Holographic pattern fixing in electro-optic crystals[J]. Applied Physics Letters, 1971, 18(12): 540-542. doi: 10.1063/1.1653530

    CrossRef Google Scholar

    [22] Mikaeliane A L. Holographic bulk memories using lithium niobate crystals for data recording[M]//Barrekette E S, Stroke G W, Nesterikhin Y E, et al. Optical Information Processing. Boston, MA: Springer, 1978: 217-233.

    Google Scholar

    [23] Tsunoda Y, Tatsuno K, Kataoka K, et al. Holographic video disk: an alternative approach to optical video disks[J]. Applied Optics, 1976, 15(6): 1398-1403. doi: 10.1364/AO.15.001398

    CrossRef Google Scholar

    [24] Kubota K, Ono Y, Kondo M, et al. Holographic disk with high data transfer rate: its application to an audio response memory[J]. Applied Optics, 1980, 19(6): 944-951. doi: 10.1364/AO.19.000944

    CrossRef Google Scholar

    [25] Mok F H, Tackitt M C, Stoll H M. Storage of 500 high-resolution holograms in a LiNbO3 crystal[J]. Optics Letters, 1991, 16(8): 605-607. doi: 10.1364/OL.16.000605

    CrossRef Google Scholar

    [26] Mok F H. Angle-multiplexed storage of 5000 holograms in lithium niobate[J]. Optics Letters, 1993, 18(11): 915-917. doi: 10.1364/OL.18.000915

    CrossRef Google Scholar

    [27] Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 1994, 265(5173): 749-752. doi: 10.1126/science.265.5173.749

    CrossRef Google Scholar

    [28] Bernal M P, Coufal H, Grygier R K, et al. A precision tester for studies of holographic optical storage materials and recording physics[J]. Applied Optics, 1996, 35(14): 2360-2374. doi: 10.1364/AO.35.002360

    CrossRef Google Scholar

    [29] Shelby R M, Hoffnagle J A, Burr G W, et al. Pixel-matched holographic data storage with megabit pages[J]. Optics Letters, 1997, 22(19): 1509-1511. doi: 10.1364/OL.22.001509

    CrossRef Google Scholar

    [30] Hong J H, McMichael I C, Chang T Y, et al. Volume holographic memory systems: techniques and architectures[J]. Optical Engineering, 1995, 34(8): 2193-2203. doi: 10.1117/12.213214

    CrossRef Google Scholar

    [31] Curtis K. Digital holographic data storage prototype[C]//Proceedings of 2000 Optical Data Storage. Conference Digest, Whisler, BC, Canada, 2000: 164-166.

    Google Scholar

    [32] Pu A, Psaltis D. Holographic data storage with 100 bits/μm2 density[C]//Proceedings of 1997 Optical Data Storage Topical Meeting ODS Conference Digest, Tucson, AZ, USA, 1997: 48-49.

    Google Scholar

    [33] Dhar L, Curtis K, Tackitt M, et al. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems[J]. Optics Letters, 1998, 23(21): 1710-1722. doi: 10.1364/OL.23.001710

    CrossRef Google Scholar

    [34] Thaxter J B, Kestigian M. Unique properties of SBN and their use in a layered optical memory[J]. Applied Optics, 1974, 13(4): 913-924. doi: 10.1364/AO.13.000913

    CrossRef Google Scholar

    [35] Zhou H J, Morozov V, Neff J. Characterization of dupont photopolymers in infrared light for free-space optical interconnects[J]. Applied Optics, 1995, 34(32): 7457-7459. doi: 10.1364/AO.34.007457

    CrossRef Google Scholar

    [36] Pu A, Psaltis D. High-density recording in photopolymer-based holographic three-dimensional disks[J]. Applied Optics, 1996, 35(14): 2389-2398. doi: 10.1364/AO.35.002389

    CrossRef Google Scholar

    [37] Bieringer T. Photoaddressable polymers[M]//Coufal H J, Psaltis D, Sincerbox G T. Holographic Data Storage. Berlin, Heidelberg: Springer, 2000: 209-228.

    Google Scholar

    [38] Orlov S S, Bjornson E, Phillips W, et al. High transfer rate (1 Gbit/sec) high-capacity holographic disk digital data storage system[C]//Proceedings of 2000 Conference on Lasers and Electro-Optics, San Francisco, CA, USA, 2000: 190-191.

    Google Scholar

    [39] Waldman D A, Li H Y S, Horner M G. Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material[J]. Journal of Imaging Science and Technology, 1997, 41(5): 497-514.

    Google Scholar

    [40] Waldman D A, Butler C J, Raguin D H. CROP holographic storage media for optical data storage greater than 100 bits/μm2[J]. Proceedings of SPIE, 2003, 5216, doi: 10.1117/12.513614.

    CrossRef Google Scholar

    [41] Suzuki N, Tomita Y, Kojima T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films[J]. Applied Physics Letters, 2002, 81(22): 4121-4123. doi: 10.1063/1.1525391

    CrossRef Google Scholar

    [42] Goldenberg L M, Sakhno O V, Smirnova T N, et al. Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation[J]. Chemistry of Materials, 2008, 20(14): 4619-4627. doi: 10.1021/cm8005315

    CrossRef Google Scholar

    [43] Omura K, Tomita Y. Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm[J]. Journal of Applied Physics, 2010, 107(2): 023107. doi: 10.1063/1.3289729

    CrossRef Google Scholar

    [44] Hata E, Mitsube K, Momose K, et al. Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization[J]. Optical Materials Express, 2011, 1(2): 207-222. doi: 10.1364/OME.1.000207

    CrossRef Google Scholar

    [45] Li C M Y, Cao L C, He Q S, et al. Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer[J]. Optics Express, 2014, 22(5): 5017-5028. doi: 10.1364/OE.22.005017

    CrossRef Google Scholar

    [46] Li C M Y, Cao L C, Wang Z, et al. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer[J]. Optics Letters, 2014, 39(24): 6891-6894. doi: 10.1364/OL.39.006891

    CrossRef Google Scholar

    [47] Tomita Y, Urano H, Fukamizu T A, et al. Nanoparticle-polymer composite volume holographic gratings dispersed with ultrahigh-refractive-index hyperbranched polymer as organic nanoparticles[J]. Optics Letters, 2016, 41(6): 1281-1284. doi: 10.1364/OL.41.001281

    CrossRef Google Scholar

    [48] Liu P, Zhao Y, Li Z R, et al. Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer[J]. Optics Express, 2018, 26(6): 6993-7004. doi: 10.1364/OE.26.006993

    CrossRef Google Scholar

    [49] Ortuño M, Gallego S, Márquez A, et al. Biophotopol: a sustainable photopolymer for holographic data storage applications[J]. Materials, 2012, 5(5): 772-783.

    Google Scholar

    [50] Ortuño M, Fernández E, Fuentes R, et al. Improving the performance of PVA/AA photopolymers for holographic recording[J]. Optical Materials, 2013, 35(3): 668-673. doi: 10.1016/j.optmat.2012.11.001

    CrossRef Google Scholar

    [51] Cody D, Gribbin S, Mihaylova E, et al. Low-toxicity photopolymer for reflection holography[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18481-18487.

    Google Scholar

    [52] Fan F L, Liu Y, Hong Y F, et al. Improving the polarization-holography performance of PQ/PMMA photopolymer by doping with THMFA[J]. Optics Express, 2018, 26(14): 17794-17803. doi: 10.1364/OE.26.017794

    CrossRef Google Scholar

    [53] Liu P, Wang L L, Zhao Y, et al. Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions[J]. Optical Materials Express, 2018, 8(6): 1441-1453. doi: 10.1364/OME.8.001441

    CrossRef Google Scholar

    [54] Mok F H, Psaltis D, Burr G W. Spatially and angle-multiplexed holographic random access memory[J]. Proceedings of SPIE, 1993, 1773: 334-345. doi: 10.1117/12.141544

    CrossRef Google Scholar

    [55] Orlov S S, Phillips W, Bjornson E, et al. High data rate (10 Gbit/sec) demonstration in holographic disk digital data storage system[C]//Proceedings of the Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO '02. Technical Diges, Long Beach, CA, USA, 2002: 70-71.

    Google Scholar

    [56] Rakuljic G A, Leyva V, Yariv A. Optical data storage by using orthogonal wavelength-multiplexed volume holograms[J]. Optics Letters, 1992, 17(20): 1471-1473. doi: 10.1364/OL.17.001471

    CrossRef Google Scholar

    [57] Denz C, Pauliat G, Roosen G, et al. Volume hologram multiplexing using a deterministic phase encoding method[J]. Optics Communications, 1991, 85(2-3): 171-176. doi: 10.1016/0030-4018(91)90389-U

    CrossRef Google Scholar

    [58] John R, Joseph J, Singh K. Holographic digital data storage using phase-modulated pixels[J]. Optics and Lasers in Engineering, 2005, 43(2): 183-194. doi: 10.1016/j.optlaseng.2004.06.008

    CrossRef Google Scholar

    [59] Psaltis D, Levene M, Pu A, et al. Holographic storage using shift multiplexing[J]. Optics Letters, 1995, 20(7): 782-784. doi: 10.1364/OL.20.000782

    CrossRef Google Scholar

    [60] Steckman G J, Pu A, Psaltis D. Storage density of shift-multiplexed holographic memory[J]. Applied Optics, 2001, 40(20): 3387-3394. doi: 10.1364/AO.40.003387

    CrossRef Google Scholar

    [61] Pu A, Psaltis D. Holographic 3-D disks using shift multiplexing[C]//Summaries of papers presented at the Conference on Lasers and Electro-Optics, Anaheim, CA, USA, 1996: 165.

    Google Scholar

    [62] Darsky A M, Markov V B. Angular sensitivity of holograms with a reference speckle wave[J]. Proceedings of SPIE, 1991, 1238: 54-62. doi: 10.1117/12.19425

    CrossRef Google Scholar

    [63] Barbastathis G, Levene M, Psaltis D. Shift multiplexing with spherical reference waves[J]. Applied Optics, 1996, 35(14): 2403-2417. doi: 10.1364/AO.35.002403

    CrossRef Google Scholar

    [64] Markov V, Millerd J, Trolinger J, et al. Multilayer volume holographic optical memory[J]. Optics Letters, 1999, 24(4): 265-267. doi: 10.1364/OL.24.000265

    CrossRef Google Scholar

    [65] Orlov S S, Phillips W, Bjornson E, et al. High-transfer-rate high-capacity holographic disk data-storage system[J]. Applied Optics, 2004, 43(25): 4902-4914. doi: 10.1364/AO.43.004902

    CrossRef Google Scholar

    [66] Horimai H, Tan X D. Collinear technology for a holographic versatile disk[J]. Applied Optics, 2006, 45(5): 910-914. doi: 10.1364/AO.45.000910

    CrossRef Google Scholar

    [67] Horimai H, Tan X D, Li J. Collinear holography[J]. Applied Optics, 2005, 44(13): 2575-2579. doi: 10.1364/AO.44.002575

    CrossRef Google Scholar

    [68] Horimai H, Tan X D. Advanced collinear holography[J]. Optical Review, 2005, 12(2): 90-92. doi: 10.1007/s10043-004-0090-7

    CrossRef Google Scholar

    [69] Horimai H, Tan X D. Holographic information storage system: today and future[J]. IEEE Transactions on Magnetics, 2007, 43(2): 943-947. doi: 10.1109/TMAG.2006.888528

    CrossRef Google Scholar

    [70] Shih H F. Integrated optical unit design for the collinear holographic storage system[J]. IEEE Transactions on Magnetics, 2007, 43(2): 948-950. doi: 10.1109/TMAG.2006.888530

    CrossRef Google Scholar

    [71] Wilson W L, Curtis K R, Anderson K E, et al. Realization of high-performance holographic data storage: the InPhase technologies demonstration platform[J]. Proceedings of SPIE, 2003, 5216: 178-191. doi: 10.1117/12.506055

    CrossRef Google Scholar

    [72] Dhar L, Curtis K, Fäcke T. Holographic data storage: coming of age[J]. Nature Photonics, 2008, 2(7): 403-405. doi: 10.1038/nphoton.2008.120

    CrossRef Google Scholar

    [73] Wilson W L. Toward the commercial realization of high performance holographic data storage[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, CA, USA, 2004: 4.

    Google Scholar

    [74] Schnoes M, Ihas B, Dhar L, et al. Photopolymer use for holographic data storage[J]. Proceedings of SPIE, 2003, 4988: 68-76. doi: 10.1117/12.474791

    CrossRef Google Scholar

    [75] Anderson K, Curtis K. Polytopic multiplexing[J]. Optics Letters, 2004, 29(12): 1402-1404. doi: 10.1364/OL.29.001402

    CrossRef Google Scholar

    [76] 陶世荃, 徐敏.采用空间-角度复用的盘式三维全息存储[J].光学学报, 1997, 17(8): 1015-1020. doi: 10.3321/j.issn:0253-2239.1997.08.012

    CrossRef Google Scholar

    Tao S Q, Xu M. Spatioangularly-multiplexed three-dimensional holographic disks[J]. Acta Optica Sinica, 1997, 17(8): 1015-1020. doi: 10.3321/j.issn:0253-2239.1997.08.012

    CrossRef Google Scholar

    [77] 袁泉, 陶世荃, 宋雪华, 等.光折变晶体中的盘式三维全息存储[J].中国激光, 1999, 26(12): 1097-1102. doi: 10.3321/j.issn:0258-7025.1999.12.009

    CrossRef Google Scholar

    Yuan Q, Tao S Q, Song X H, et al. Disk-type 3-D holographic storage in a photorefractive crystal[J]. Chinese Journal of Lasers, 1999, 26(12): 1097-1102. doi: 10.3321/j.issn:0258-7025.1999.12.009

    CrossRef Google Scholar

    [78] 宋雪华, 陶世荃, 江竹青, 等.光折变晶体中全息图的热固定过程研究[J].中国激光, 2001, 28(1): 59-62.

    Google Scholar

    Song X H, Tao S Q, Jiang Z Q, et al. Study on thermal fixing process of holograms in photorefractive crystals[J]. Chinese Journal of Lasers, 2001, 28(1): 59-62.

    Google Scholar

    [79] 万玉红, 袁韡, 刘国庆, 等.光折变晶体全息存储中散射噪声特性的研究[J].中国激光, 2003, 30(6): 529-532. doi: 10.3321/j.issn:0258-7025.2003.06.014

    CrossRef Google Scholar

    Wan Y H, Yuan W, Liu G Q, et al. Study on the characteristics of scattering noise in photorefractive holographic storage[J]. Chinese Journal of Lasers, 2003, 30(6): 529-532. doi: 10.3321/j.issn:0258-7025.2003.06.014

    CrossRef Google Scholar

    [80] 郭亚军, 张建, 刘彩霞, 等. Zn:Fe:LiNbO3晶体全息存储性能研究[J].光子学报, 2004, 33(5): 570-572.

    Google Scholar

    Guo Y J, Zhang J, Liu C X, et al. Holographic storage properties of Zn:Fe:LiNbO3 crystals[J]. Acta Photonica Sinica, 2004, 33(5): 570-572.

    Google Scholar

    [81] 刘友文, 刘立人, 周常河, 等.双掺杂和三掺杂铌酸锂晶体稳定全息存储的实验研究[J].中国激光, 2001, 28(2): 165-168.

    Google Scholar

    Liu Y W, Liu L R, Zhou C H, et al. Experimental study of non-volatile holographic storage of doubly- and triply-doped lithium niobate crystals[J]. Chinese Journal of Lasers, 2001, 28(2): 165-168.

    Google Scholar

    [82] 姚华文, 黄明举, 陈仲裕, 等.光致聚合物材料中引发剂浓度的优化和全息存储性能研究[J].中国激光, 2002, 29(11): 972-974. doi: 10.3321/j.issn:0258-7025.2002.11.004

    CrossRef Google Scholar

    Yao H W, Huang M J, Chen Z Y, et al. Optimization of acrylamide-based photopolymer and its holographic character investigation[J]. Chinese Journal of Lasers, 2002, 29(11): 972-974. doi: 10.3321/j.issn:0258-7025.2002.11.004

    CrossRef Google Scholar

    [83] 黄明举, 姚华文, 陈仲裕, 等.导致光聚物全息存储布喇格偏移因素的研究[J].光子学报, 2002, 31(7): 855-859.

    Google Scholar

    Huang M J, Yao H W, Chen Z Y, et al. The factor of introducing the bragg-mismatch during the photopolymer holographic exposure[J]. Acta Photonica Sinica, 2002, 31(7): 855-859.

    Google Scholar

    [84] 黄明举, 姚华文, 陈仲裕, 等.新型绿光敏感光致聚合物高密度全息存储特性[J].物理学报, 2002, 51(11): 2536-2541.

    Google Scholar

    Huang M J, Yao H W, Chen Z Y, et al. Study on the character of novel green light sensitive high-density digital holographic photopolymer[J]. Acta Physica Sinica, 2002, 51(11): 2536-2541.

    Google Scholar

    [85] 黄明举, 姚华文, 陈仲裕, 等.厚度对光聚物高密度全息存储记录参量的影响[J].光子学报, 2002, 31(2): 246-249.

    Google Scholar

    Huang M J, Yao H W, Chen Z Y, et al. The effect of the thickness of photopolymer on high-density holographic recording parameters[J]. Acta Photonica Sinica, 2002, 31(2): 246-249.

    Google Scholar

    [86] 鲍鹏, 何树荣, 何庆声, 等.像素1: 1匹配的晶体全息存储系统中像素位置偏移的补偿算法[J].光学技术, 2005, 31(2): 297-298, 301. doi: 10.3321/j.issn:1002-1582.2005.02.042

    CrossRef Google Scholar

    Bao P, He S R, He Q S, et al. Compensation method for misregistration in pixel-matched holographic data storage system[J]. Optical Technique, 2005, 31(2): 297-298, 301. doi: 10.3321/j.issn:1002-1582.2005.02.042

    CrossRef Google Scholar

    [87] 曹良才, 何庆声, 尉昊赟, 等. 10 Gb/cm3小型化体全息数据存储及相关识别系统[J].科学通报, 2004, 49(23): 2495-2500. doi: 10.3321/j.issn:0023-074X.2004.23.022

    CrossRef Google Scholar

    Cao L C, He Q S, Wei H Y, et al. Miniaturized volume holographic optical data storage and correlation system with a storage density of 10 Gb/cm3[J]. Chinese Science Bulletin, 2004, 49(23): 2495-2500. doi: 10.3321/j.issn:0023-074X.2004.23.022

    CrossRef Google Scholar

    [88] 黄雄斌, 何庆声, 王建岗, 等.体全息存储中SLM和CCD的性能对页内噪声的影响[J].光学技术, 2002, 28(6): 543-544. doi: 10.3321/j.issn:1002-1582.2002.06.032

    CrossRef Google Scholar

    Huang X B, He Q S, Wang J G, et al. Effect of performance of SLM and CCD on intrapage noise in volume[J]. Optical Technique, 2002, 28(6): 543-544. doi: 10.3321/j.issn:1002-1582.2002.06.032

    CrossRef Google Scholar

    [89] Jin G F, Cao L C, He Q S, et al. Random modulation in high-density holographic data storage and correlation recognition system[J]. Proceedings of SPIE, 2003, 5206: 125-134. doi: 10.1117/12.505137

    CrossRef Google Scholar

    [90] Li J H, Cao L C, Gu H R, et al. Orthogonal-reference- pattern-modulated shift multiplexing for collinear holographic data storage[J]. Optics Letters, 2012, 37(5): 936-938. doi: 10.1364/OL.37.000936

    CrossRef Google Scholar

    [91] Gu H R, Yin S F, Tan Q F, et al. Optimization of the geometrical shape of the aperture in holographic data storage system[J]. Proceedings of SPIE, 2007, 6827: 68271I. doi: 10.1117/12.755757

    CrossRef Google Scholar

    [92] Wei H Y, Luo S J, He Q S, et al. Novel holographic storage system with two data channels[J]. Proceedings of SPIE, 2005, 5908: 59081F. doi: 10.1117/12.617189

    CrossRef Google Scholar

    [93] Yu Y W, Chen C Y, Sun C C. Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array[J]. Optics Letters, 2010, 35(8): 1130-1132. doi: 10.1364/OL.35.001130

    CrossRef Google Scholar

    [94] Yu Y W, Yang C H, Yang T H, et al. Analysis of a lens-array modulated coaxial holographic data storage system with considering recording dynamics of material[J]. Optics Express, 2017, 25(19): 22947-22958. doi: 10.1364/OE.25.022947

    CrossRef Google Scholar

    [95] Sun C C, Yu Y W, Hsieh S C, et al. Point spread function of a collinear holographic storage system[J]. Optics Express, 2007, 15(26): 18111-18118. doi: 10.1364/OE.15.018111

    CrossRef Google Scholar

    [96] Lin X, Huang Y, Shimura T, et al. Fast non-interferometric iterative phase retrieval for holographic data storage[J]. Optics Express, 2017, 25(25): 30905-30915. doi: 10.1364/OE.25.030905

    CrossRef Google Scholar

    [97] Lin X, Huang Y, Li Y, et al. Four-level phase pair encoding and decoding with single interferometric phase retrieval for holographic data storage[J]. Chinese Optics Letters, 2018, 16(3): 032101. doi: 10.3788/COL

    CrossRef Google Scholar

    [98] Tan X D, Horimai H, Arai R, et al. Phase modulated collinear holographic data storage system[C]//International Workshop on Holography and Related Technologies, 2016.

    Google Scholar

    [99] Lin X, Huang Y, Cheng Y B, et al. Inter-page-crosstalk reduction in holographic data storage system through phase modulation in signal region[J]. Japanese Journal of Applied Physics, 2016, 55(9S): 09SA07.

    Google Scholar

    [100] Lin X, Ke J, Wu A A, et al. An effective phase modulation in the collinear holographic storage[J]. Proceedings of SPIE, 2014, 9006: 900607. doi: 10.1117/12.2035171

    CrossRef Google Scholar

    [101] Das B, Joseph J, Singh K. Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system[J]. Applied Optics, 2007, 46(22): 5461-5470. doi: 10.1364/AO.46.005461

    CrossRef Google Scholar

    [102] Das B, Joseph J, Singh K. Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory[J]. Applied Optics, 2009, 48(1): 55-63. doi: 10.1364/AO.48.000055

    CrossRef Google Scholar

    [103] Sun C C, Tsou R H, Chang W C, et al. Random phase-coded multiplexing of hologram volumes using ground glass[J]. Optical and Quantum Electronics, 1996, 28(10): 1551-1561. doi: 10.1007/BF00326225

    CrossRef Google Scholar

    [104] Gao Q, Kostuk R. Improvement to holographic digital data-storage systems with random and pseudorandom phase masks[J]. Applied Optics, 1997, 36(20): 4853-4861. doi: 10.1364/AO.36.004853

    CrossRef Google Scholar

    [105] Sun C C, Su W C, Wang B, et al. Diffraction selectivity of holograms with random phase encoding[J]. Optics Communications, 2000, 175(1-3): 67-74. doi: 10.1016/S0030-4018(99)00769-5

    CrossRef Google Scholar

    [106] Xu X F, Cai L Z, Wang Y R, et al. Blind phase shift extraction and wavefront retrieval by two-frame phase-shifting interferometry with an unknown phase shift[J]. Optics Communications, 2007, 273(1): 54-59. doi: 10.1016/j.optcom.2006.12.033

    CrossRef Google Scholar

    [107] Jeon S H, Gil S K. 2-step phase-shifting digital holographic optical encryption and error analysis[J]. Journal of the Optical Society of Korea, 2011, 15(3): 244-251. doi: 10.3807/JOSK.2011.15.3.244

    CrossRef Google Scholar

    [108] Hariharan P, Oreb B F, Eiju T. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm[J]. Applied Optics, 1987, 26(13): 2504-2506. doi: 10.1364/AO.26.002504

    CrossRef Google Scholar

    [109] Horimai H. Multi-level data write/retrieve by phase-locked collinear holography[C]//Asia Communications and Photonics Conference, Wuhan, 2016: AF1J.2.

    Google Scholar

    [110] Xu K, Huang Y, Lin X, et al. Unequally spaced four levels phase encoding in holographic data storage[J]. Optical Review, 2016, 23(6): 1004-1009. doi: 10.1007/s10043-016-0263-1

    CrossRef Google Scholar

    [111] Fienup J R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint[J]. Journal of the Optical Society of America A, 1987, 4(1): 118-123. doi: 10.1364/JOSAA.4.000118

    CrossRef Google Scholar

    [112] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769. doi: 10.1364/AO.21.002758

    CrossRef Google Scholar

    [113] Fienup J R, Wackerman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 1986, 3(11): 1897-1907. doi: 10.1364/JOSAA.3.001897

    CrossRef Google Scholar

    [114] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262. doi: 10.1016/j.ultramic.2009.05.012

    CrossRef Google Scholar

    [115] Pan X C, Liu C, Lin Q, et al. Ptycholographic iterative engine with self-positioned scanning illumination[J]. Optics Express, 2013, 21(5): 6162-6168. doi: 10.1364/OE.21.006162

    CrossRef Google Scholar

    [116] Gureyev T E, Roberts A, Nugent K A. Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials[J]. Journal of the Optical Society of America A, 1995, 12(9): 1932-1942. doi: 10.1364/JOSAA.12.001932

    CrossRef Google Scholar

    [117] Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Optics Communications, 1997, 133(1-6): 339-346. doi: 10.1016/S0030-4018(96)00454-3

    CrossRef Google Scholar

    [118] Volkov V V, Zhu Y, De Graef M. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 2002, 33(5): 411-416. doi: 10.1016/S0968-4328(02)00017-3

    CrossRef Google Scholar

    [119] Lin X, Fujimura R, Umegaki S, et al. Single-shot phase reconstruction by iterative Fourier transform algorithm in the holographic data storage system[C]//International Symposium on Optical Memory 2016, Kyoto, Japan, 2016.

    Google Scholar

  • Overview: The development of optical holographic data storage technology in the past 50 years is reviewed briefly according to time line in this paper. With the continuous development of key devices and materials, optical holographic data storage technology is becoming more and more mature. At present, in the era of Big Data, the demands for data storage density and data transfer rate are greater than ever before. Optical holographic data storage has become a potential candidate for the next generation of data storage technology because of its advantages of high storage capacity, fast data transfer rate, and long storage life. The theoretical researches of holographic data storage were done mainly in 1970s~1980s including some multiplexing technologies. The developments of key devices such as spatial light modulator and detector and recording material such as lithium niobate crystal and photopolymer pushed holographic data storage technology into practicability quickly in 1990s~2000s. In the aspect of system, there are two kinds of holographic data storage systems on-axis and off-axis. For instance, collinear holographic data storage system (CHDSS) by Optware corporation and 2-axis HDSS by InPhase corporation. 2-axis HDSS can provide sensitive Bragg selectivity to achieve high storage density by using angular multiplexing. CHDSS owns more compact structure, simpler operation and stronger compatibility by combining with servo system and by faster recording shifting multiplexing. In this paper, a comparison between two systems was given. We believe CHDSS may be the cornerstone of further practicality of holographic storage technology. In the aspect of code, conventional HDSS owns low code rate because it uses amplitude modulation which meanwhile gets low signal noise ratio (SNR) due to the overconsumption of dynamic range of recording material. To solve this problem, phase modulation is used in the HDSS to increase code rate and SNR. One challenge of phase modulation is that phase cannot be detected by the camera which can be solved by using interferometric and non-interferometric methods. Several phase retrieval methods are also mentioned in this paper.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint