Citation: | Jiang Meiling, Zhang Mingsi, Li Xiangping, et al. Research progress of super-resolution optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180649. doi: 10.12086/oee.2019.180649 |
[1] | Gu M, Li X P. The road to multi-dimensional bit-by-bit optical data storage[J]. Optics and Photonics News, 2010, 21(7): 28-33. doi: 10.1364/OPN.21.7.000028 |
[2] | Strickler J H, Webb W W. Three-dimensional optical data storage in refractive media by two-photon point excitation[J]. Optics Letters, 1991, 16(22):1780. doi: 10.1364/OL.16.001780 |
[3] | Day D, Gu M, Smallridge A. Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer[J]. Optics Letters, 1999, 24(14): 948-950. doi: 10.1364/OL.24.000948 |
[4] | Kawata Y, Ishitobi H, Kawata S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory[J]. Optics Letters, 1998, 23(10): 756-758. doi: 10.1364/OL.23.000756 |
[5] | Day D, Gu M. Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer[J]. Applied Optics, 1998, 37(26): 6299-6304. doi: 10.1364/AO.37.006299 |
[6] | Li X P, Cao Y Y, Gu M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13): 2510-2512. doi: 10.1364/OL.36.002510 |
[7] | Shalaev V M. Optical negative-index metamaterials[J]. Nature Photonics, 2007(1): 41-48. |
[8] | Chen J B, Wang Y, Jia B H, et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies[J]. Nature Photonics, 2011, 5(4): 239-245. doi: 10.1038/nphoton.2011.17 |
[9] | Chow E, Lin S Y, Johnson S G, et al. Three-dimensional control of light in a two-dimensional photonic crystal slab[J]. Nature, 2000, 407(6807): 983-986. doi: 10.1038/35039583 |
[10] | Almeida V R, Barrios C A, Panepucci R R, et al. All-optical control of light on a silicon chip[J]. Nature, 2004, 431(7012): 1081-1084. doi: 10.1038/nature02921 |
[11] | Noda S, Fujita M, Asano T. Spontaneous-emission control by photonic crystals and nanocavities[J]. Nature Photonics, 2007, 1(8): 449-458. doi: 10.1038/nphoton.2007.141 |
[12] | Li J, Jia B, Zhou G, et al. Spectral redistribution in spontaneous emission from quantum‐dot‐infiltrated 3D woodpile photonic crystals for telecommunications[J]. Advanced Materials, 2010, 19(20): 3276-3280. doi: 10.1002/adma.200602054 |
[13] | Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2015, 3(3): 144-147. doi: 10.1038/nphoton.2009.2 |
[14] | Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2010, 3(10): 793-795. doi: 10.1007/978-3-642-02597-6_20 |
[15] | Gu M, Cao Y Y, Castelletto S, et al. Super-resolving single nitrogen vacancy centers within single nanodiamonds using a localization microscope[J]. Optics Express, 2013, 21(15): 17639-17646. doi: 10.1364/OE.21.017639 |
[16] | Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical litho graphy[J]. Advanced Materials, 2010, 22(32): 3578-3582. doi: 10.1002/adma.201000892 |
[17] | Li L J, Gattass R R, Gershgoren E, et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910-913. doi: 10.1126/science.1168996 |
[18] | Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory[J]. Science, 1989, 245(4920): 843-845. doi: 10.1126/science.245.4920.843 |
[19] | Betzig E, Trautman J K, Wolfe R, et al. Near-field magneto‐optics and high density data storage[J]. Applied Physics Letters, 1992, 61(2): 142-144. doi: 10.1063/1.108198 |
[20] | Terris B D, Mamin H J, Rugar D, et al. Near-field optical data storage using a solid immersion lens[J]. Applied Physics Letters, 1994, 65(4): 388-390. doi: 10.1063/1.112341 |
[21] | Tominaga J, Nakano T, Atoda N. An approach for recording and readout beyond the diffraction limit with an Sb thin film[J]. Applied Physics Letters, 1998, 73(15): 2078-2080. doi: 10.1063/1.122383 |
[22] | Grotjohann T, Testa I, Leutenegger M, et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP[J]. Nature, 2011, 478(7368): 204-208. doi: 10.1038/nature10497 |
[23] | Toriumi A, Kawata S, Gu M. Reflection confocal microscope readout system for three-dimensional photochromic optical data storage[J]. Optics Letters, 1998, 23(24): 1924-1926. doi: 10.1364/OL.23.001924 |
[24] | Hosaka S, Shintani T, Miyamoto M, et al. Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode[J]. Japanese Journal of Applied Physics, 1996, 35(1B): 443-447. doi: 10.1143/JJAP.35.443 |
[25] | Huang D R, Chao Z W, Wu G Z, et al. Near-field recording head with simple tracking design[J]. Japanese Journal of Applied Physics, 1999, 38(3B): 1774-1776. doi: 10.1143/JJAP.38.1774 |
[26] | Fuji H, Tominaga J, Men L Q, et al. A near-field recording and readout technology using a metallic probe in an optical disk[J]. Japanese Journal of Applied Physics, 2000, 39(2B): 980-981. doi: 10.1143/JJAP.39.980 |
[27] | Li X P, Cao Y Y, Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567-570. doi: 10.1364/OPTICA.2.000567 |
[28] | Boyd R W. Nonlinear optics-handbook of laser technology and applications[M]. Philadelphia: Taylor & Francis, 2003: 161. |
[29] | Pudavar H E, Joshi M P, Prasad P N, et al. High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout[J]. Applied Physics Letters, 1999, 74(9): 1338-1340. doi: 10.1063/1.123543 |
[30] | Zhou Y J, Tang H H, Zhuang W H, et al. Three-dimensional optical data storage in a novel photochromic material with two-photon writing and one-photon readout[J]. Optical Engineering, 2005, 44(3): 035202. doi: 10.1117/1.1869992 |
[31] | Cai J W, Huang W H. Three-dimensional information storage of polymer doped with nano-silver[J]. Microwave and Optical Technology Letters, 2015, 57(11): 2662-2665. doi: 10.1002/mop.v57.11 |
[32] | Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi: 10.1364/OL.19.000780 |
[33] | 曹耀宇, 谢飞, 张鹏达, 等.双光束超分辨激光直写纳米加工技术[J].光电工程, 2017, 44(12): 1133-1145. doi: 10.3969/j.issn.1003-501X.2017.12.001 Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 2017, 44(12): 1133-1145. doi: 10.3969/j.issn.1003-501X.2017.12.001 |
[34] | Scott T F, Kowalski B A, Sullivan A C, et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 2009, 324(5929): 913-917. doi: 10.1126/science.1167610 |
[35] | Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. doi: 10.1038/ncomms3061 |
[36] | Wollhofen R, Buchegger B, Eder C, et al. Functional photores- |
[37] | ists for sub-diffraction stimulated emission depletion lithography[J]. Optical Materials Express, 2017, 7(7): 2538-2559. |
[38] | Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 2014, 3(5): e177. doi: 10.1038/lsa.2014.58 |
[39] | 李鑫, 潘石, 邢立伟.超高密度光存储技术的进展[J].电子显微学报, 2007, 26(1): 78-83. doi: 10.3969/j.issn.1000-6281.2007.01.017 Li X, Pan S, Xing L W. Development of ultra-high density optical storage technology[J]. Journal of Chinese Electron Microscopy Society, 2007, 26(1): 78-83. doi: 10.3969/j.issn.1000-6281.2007.01.017 |
[40] | Partovi A, Peale D, Wuttig M, et al. High-power laser light source for near-field optics and its application to high-density optical data storage[J]. Applied Physics Letters, 1999, 75(11): 1515-1517. doi: 10.1063/1.124740 |
[41] | Gorecki C, Khalfallah S, Kawakatsu H, et al. New SNOM sensor using optical feedback in a VCSEL-based compound-cavity[J]. Sensors and Actuators A: Physical, 2001, 87(3): 113-123. doi: 10.1016/S0924-4247(00)00478-7 |
[42] | Sharma P, Zhang Q, Sando D, et al. Nonvolatile ferroelectric domain wall memory[J]. Science Advances, 2017, 3(6): e1700512. doi: 10.1126/sciadv.1700512 |
[43] | Terris B D, Mamin H J, Rugar D. Near‐field optical data storage[J]. Applied Physics Letters, 1996, 68(2): 141-143. doi: 10.1063/1.116127 |
[44] | Shinoda M, Saito K, Kondo T, et al. High-density near-field readout using a diamond solid immersion lens[J]. Japanese Journal of Applied Physics, 2006, 45(2B): 1311-1313. doi: 10.1143/JJAP.45.1311 |
[45] | Fan W, Yan B, Wang Z D, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies[J]. Science Advances, 2016, 2(8): e1600901. doi: 10.1126/sciadv.1600901 |
[46] | Nakai K, Ohmaki M, Takeshita N, et al. Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material InSb[J]. Japanese Journal of Applied Physics, 2010, 49(8S2): 08KE01. doi: 10.1143/JJAP.49.08KE01 |
[47] | Tominaga J, Kim J, Fuji H, et al. Super-resolution near-field structure and signal enhancement by surface plasmons[J]. Japanese Journal of Applied Physics, 2001, 40(3B): 1831-1834. doi: 10.1143/JJAP.40.1831 |
[48] | Fu Y H, Ho F H, Hsu W C, et al. Nonlinear optical properties of the Au-SiO2 nanocomposite superresolution near-field thin film[J]. Japanese Journal of Applied Physics, 2004, 43(7B): 5020-5023. doi: 10.1143/JJAP.43.5020 |
[49] | 赵石磊, 耿永友, 施宏仁. Si掺杂Ag基超分辨薄膜读出性能研究[J].光学学报, 2012, 32(6): 297-302. doi: 10.3788/aos201232.0631004 Zhao S L, Geng Y Y, Shi H R. Study on super-resolution readout performance of Si-Doped Ag film[J]. Acta Optica Sinica, 2012, 32(6): 297-302. doi: 10.3788/aos201232.0631004 |
[50] | Zhang K, Geng Y Y, Wang Y, et al. Progress of super-resolution near-field structure and its application in optical data storage[J]. Frontiers of Optoelectronics, 2014, 7(4): 475-485. doi: 10.1007/s12200-014-0418-2 |
[51] | 秦飞, 李向平, 洪明辉.从超振荡透镜到超临界透镜:超越衍射极限的光场调制[J].光电工程, 2017, 44(8): 757-771. doi: 10.3969/j.issn.1003-501X.2017.08.001 Qin F, Li X P, Hong M H. From super-oscillatory lens to super-critical lens: surpassing the diffraction limit via light field modulation[J]. Opto-Electronic Engineering, 2017, 44(8): 757-771. doi: 10.3969/j.issn.1003-501X.2017.08.001 |
Overview: With the rapid development of Big Data and artificial intelligence, emerging information technologies such as Smartphone, Internet of Things, Biogenetic Data, Atmosphere, and Geographic Information compel dramatically increasing demands on extremely high information storage capacity and speed. At present, data storage and archiving methods mainly rely on conventional magnetization-based information storage method which generally suffers from technique challenges raised by short lifetime and high energy consumption. Optical data storage technology, in comparison, is well known for its advantages of high storage capacity, low energy consumption, and high security. However, the disc capacity of optical data storage technology inevitably gets stuck in the physical fundamental barrier-optical diffraction limit. The diffraction limit of light is substantially introduced by the lack of spatial frequencies higher than that can be supported by certain light wave and optical system. As a consequence, light spot cannot be infinitely squeezed down to a mathematically ideal point, giving rise to limited density and capacity of optical data storage. How to crash through optical diffraction barrier and improve resolution of optical storage system, thereby increasing the data storage capacity of the optical storage system is the key to incorporating optical storage technology with information technology trend such as big data and cloud computing. In this review, we have introduced the principle of contemporary optical storage techniques capable of storing and retrieving data in a manner of being beyond the diffraction-limit and recent progress in ultra-high capacity optical data storage techniques, including far field super-resolution three dimensional (3D) optical storage techniques and near field super-resolution two dimensional (2D) optical storage techniques. The far field super-resolution is the technique can reduce the full width at half maximum (FWHM) of the intensity distribution of the focused spot in the far field. The main techniques of far field super-resolution optical storage are based on nonlinear interaction between light and recording medium, such as two-photon absorption-based process and saturation stimulated emission depletion fluorescence-inspired approaches. The near field super-resolution is the technique that mainly utilize the evanescent wave within the sub-wavelength distance between the light source and the recording medium. The main techniques of near field super-resolution optical storage involve near field scanning probe methods, solid immersion lens approaches, and super-resolution near-field structure methods. Eventually, the here-and-now problems confronted by the super-resolution optical data storage and future development of optical storage technology towards ultra-high capacity optical disc based on optical super-resolution techniques are discussed.
Progress of super resolution optical data storage techniques
(a) Energy diagram for single-photon and two-photon absorption; (b) Schematic drawing of 3-dimensional optical memory using two-photon absorption
(a) Two-photon and single-photon read back of multiple layers information recording written at an even spacing of 6 μm apart; (b) Fluorescence intensity measured using X-Z scan profile of a written spot using confocal microscope, plotted against depth (up) in two-photon read back and (down) in single-photon read back[29]
Schematic diagram of dual-beam super-resolution fabrication
Sub-diffraction resolution writing and reading using rsEGFP and visible light [22]
Parallelized nanoscopy for ultrahigh capacity and ultrafast optical recording[27]
Schematic diagram of SPM
Schematic diagram of SIL and disk structure
Schematic diagram of super-RENS disk structure[21]
Cross section of AgOx super-RENS disk[26]