Shen Y, Shao K M, Wu J, et al. Optical gas detection: key technologies and applications review[J]. Opto-Electron Eng, 2020, 47(4): 190280. doi: 10.12086/oee.2020.190280
Citation: Shen Y, Shao K M, Wu J, et al. Optical gas detection: key technologies and applications review[J]. Opto-Electron Eng, 2020, 47(4): 190280. doi: 10.12086/oee.2020.190280

Optical gas detection: key technologies and applications review

    Fund Project: Supported by Leading Project of Science and Technology Department of Fujian Province (2017N0013)
More Information
  • Rapid identification and detection of gases is a major problem that needs to be solved urgently by researches from worldwide. With the development of optical technology, optical gas detection technology has attracted great attention due to its remarkable advantages of high efficiency, multi-component detection ability and high sensitivity. In this paper, the theoretical foundation of optical gas detection technology is first introduced. Then the working principles and applications of various optical detection technologies for typical gases according to active and passive detection are reviewed. Using these gas detection technologies, dozens of gases have been continuously monitored at long distance with high sensitivity. The measurements of gas composition, concentration, temperature and other parameters in a variety of scenarios are realized, which effectively reduces the occurrence of dangerous accidents. By summarizing and analyzing the technical problems that still exist in the current optical gas detection technology, the future development trend is prospected.
  • 加载中
  • [1] 罗淑芹.基于TDLAS的CO2气体检测分析系统[D].哈尔滨: 哈尔滨工业大学, 2013.

    Google Scholar

    Luo S Q. Detection and analysis system for CO2 gas based on TDLAS[D]. Harbin: Harbin Institute of Technology, 2013.http://cdmd.cnki.com.cn/Article/CDMD-10213-1014001047.htm

    Google Scholar

    [2] 刘文清, 崔志成, 董凤忠.环境污染监测的光学和光谱学技术[J].光电子技术与信息, 2002, 15(5): 1-12.

    Google Scholar

    Liu W Q, Cui Z C, Dong F Z. Optical and spectroscopic techniques for environmental pollution monitoring[J]. Optoelectronic Technology & Information, 2002, 15(5): 1-12.

    Google Scholar

    [3] 施文.有毒有害气体检测仪器原理和应用[M].北京:化学工业出版社, 2009.

    Google Scholar

    Shi W. The Principle and Application of Hazardous Gas Detectors[M]. Beijing: Chemical Industry Press, 2009.

    Google Scholar

    [4] 王帅, 冯新泸.多组分气体检测与识别技术进展[J].重庆工学院学报(自然科学版), 2007, 21(3): 78-81, 87. doi: 10.3969/j.issn.1674-8425-B.2007.03.023

    CrossRef Google Scholar

    Wang S, Feng X L. Development of multigas analysis and identifying technology[J]. Journal of ChongQing Institute of Technology (Natural Science Edition), 2007, 21(3): 78-81, 87. doi: 10.3969/j.issn.1674-8425-B.2007.03.023

    CrossRef Google Scholar

    [5] 聂伟, 阚瑞峰, 杨晨光, 等.可调谐二极管激光吸收光谱技术的应用研究进展[J].中国激光, 2018, 45(9): 0911001.

    Google Scholar

    Nie W, Kan R F, Yang C G, et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911001.

    Google Scholar

    [6] Claps R, Englich F V, Leleux D P, et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy[J]. Applied Optics, 2001, 40(24): 4387-4394. doi: 10.1364/AO.40.004387

    CrossRef Google Scholar

    [7] Flanigan D F. Limits of passive remote detection of hazardous vapors by computer simulation[J]. Proceedings of SPIE, 1996, 2763: 117-127. doi: 10.1117/12.243272

    CrossRef Google Scholar

    [8] Hinkley E D. Tunable infra-red lasers and their applications to air pollution measurements[J]. Opto-Electronics, 1972, 4(2): 69-86. doi: 10.1007/BF01421173

    CrossRef Google Scholar

    [9] Schiff H I, Mackay G I, Bechara J. The use of tunable diode laser absorption spectroscopy for atmospheric measurements[J]. Research on Chemical Intermediates, 1994, 20(3-5): 525-556. doi: 10.1163/156856794X00441

    CrossRef Google Scholar

    [10] 刘秀, 王岭雪, 金伟其, 等.危险气体泄漏的光学遥测技术及其进展[J].红外技术, 2009, 31(10): 563-567, 572. doi: 10.3969/j.issn.1001-8891.2009.10.002

    CrossRef Google Scholar

    Liu X, Wang L X, Jin W Q, et al. The development of optical remote measurement for hazardous gas leakage[J]. Infrared Technology, 2009, 31(10): 563-567, 572. doi: 10.3969/j.issn.1001-8891.2009.10.002

    CrossRef Google Scholar

    [11] Reid J, Labrie D. Second-harmonic detection with tunable diode lasers — Comparison of experiment and theory[J]. Applied Physics B, 1981, 26(3): 203-210.

    Google Scholar

    [12] Chen P, Gang C, Tang J P, et al. High-speed mid-infrared frequency modulation spectroscopy based on quantum cascade laser[J]. IEEE Photonics Technology Letters, 2016, 28(16): 1727-1730. doi: 10.1109/LPT.2016.2554359

    CrossRef Google Scholar

    [13] Deguchi Y, Kamimoto T, Wang Z Z, et al. Applications of laser diagnostics to thermal power plants and engines[J]. Applied Thermal Engineering, 2014, 73(2): 1453-1464. doi: 10.1016/j.applthermaleng.2014.05.063

    CrossRef Google Scholar

    [14] Wang J, Yu D H, Ye H J, et al. Applications of optical measurement technology in pollution gas monitoring at thermal power plants[J]. Proceedings of SPIE, 2011, 8197: 819702. doi: 10.1117/12.917948

    CrossRef Google Scholar

    [15] Liu S Y, Tao Z, Jia X D. Towards aerial natural gas leak detection system based on TDLAS[J]. Proceedings of SPIE, 2014, 9299: 92990X.

    Google Scholar

    [16] Deng J, Chen W L, Wang W F, et al. Study on online detection method of methane gas in coal mine based on TDLAS technology[M]//Wang X T. Proceedings of the 11th International Mine Ventilation Congress. Singapore: Springer, 2019.

    Google Scholar

    [17] He C G, Zhang Y J, Chen C, et al. Signal detection circuit design of HCN measurement system based on TDLAS[J]. Proceedings of SPIE, 2016, 10157: 1015710.

    Google Scholar

    [18] Yin W, Wei Y B, Chang J, et al. Tunable diode laser absorption spectroscopy- based detection of propane for explosion early warning by using a vertical cavity surface enhanced laser source and principle component analysis approach[J]. IEEE Sensors Journal, 2017, 17(15): 4975-4982. doi: 10.1109/JSEN.2017.2713769

    CrossRef Google Scholar

    [19] He Q X, Zheng C T, Liu H F, et al. A near-infrared acetylene detection system based on a 1.534 μm tunable diode laser and a miniature gas chamber[J]. Infrared Physics & Technology, 2016, 75: 93-99.

    Google Scholar

    [20] Wang Y, Nikodem M, Zhang E, et al. Shot-noise limited faraday rotation spectroscopy for detection of nitric oxide isotopes in Breath, Urine and Blood[J]. Scientific Reports, 2015, 5: 9096. doi: 10.1038/srep09096

    CrossRef Google Scholar

    [21] Gonzalez-Valencia R, Magana-Rodriguez F, Gerardo-Nieto O, et al. In situ measurement of dissolved methane and carbon dioxide in freshwater ecosystems by off-axis integrated cavity output spectroscopy[J]. Environmental Science & Technology, 2014, 48(19): 11421-11428.

    Google Scholar

    [22] Xia H H, Kan R F, Xu Z Y, et al. Measurements of axisymmetric temperature and H2O concentration distributions on a circular flat flame burner based on tunable diode laser absorption tomography[J]. Proceedings of SPIE, 2016, 10156: 101560S.

    Google Scholar

    [23] Pan R, Jeffries J B, Dreier T, et al. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy[J]. Applied Physics B, 2016, 122(1): 4. doi: 10.1007/s00340-015-6290-y

    CrossRef Google Scholar

    [24] 胡欢陵, 王志恩, 吴永华, 等.紫外差分吸收激光雷达测量平流层臭氧[J].大气科学, 1998, 22(5): 701-708. doi: 10.3878/j.issn.1006-9895.1998.05.04

    CrossRef Google Scholar

    Hu H L, Wang Z E, Wu Y H, et al. UV-DIAL system for measurements of stratospheric ozone[J]. Chinese Journal of Atmospheric Sciences, 1998, 22(5): 701-708. doi: 10.3878/j.issn.1006-9895.1998.05.04

    CrossRef Google Scholar

    [25] 胡顺星, 陈亚峰, 刘秋武, 等.差分吸收激光雷达系统探测背景大气SO2和NO2[J].中国激光, 2018, 45(9): 113-118.

    Google Scholar

    Hu S X, Chen Y F, Liu Q W, et al. Differential absorption lidar system for background atmospheric SO2 and NO2 measurements[J]. Chinese Journal of Lasers, 2018, 45(9): 113-118.

    Google Scholar

    [26] Singh U N, Yu J R, Petros M, et al. Development of a pulsed 2-micron integrated path differential absorption lidar for CO2 measurement[J]. Proceedings of SPIE, 2013, 8872: 887209. doi: 10.1117/12.2028245

    CrossRef Google Scholar

    [27] Singh U N, Refaat T F, Petros M, et al. Evaluation of 2-μm pulsed integrated path differential absorption lidar for carbon dioxide measurement—technology developments, measurements, and path to space[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(6): 2059-2067. doi: 10.1109/JSTARS.2017.2777453

    CrossRef Google Scholar

    [28] Gibert F, Edouart D, Cénac C, et al. 2-μm Ho emitter-based coherent DIAL for CO2 profiling in the atmosphere[J]. Optics Letters, 2015, 40(13): 3093-3096. doi: 10.1364/OL.40.003093

    CrossRef Google Scholar

    [29] Amediek A, Ehret G, Fix A, et al. CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions[J]. Applied Optics, 2017, 56(18): 5182-5197. doi: 10.1364/AO.56.005182

    CrossRef Google Scholar

    [30] Meng L C, Fix A, Wirth M, et al. Upconversion detector for range-resolved DIAL measurement of atmospheric CH4[J]. Optics Express, 2018, 26(4): 3850-3860. doi: 10.1364/OE.26.003850

    CrossRef Google Scholar

    [31] Platt U, Perner D, Pätz H W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption[J]. Journal of Geophysical Research: Oceans, 1979, 84(C10): 6329-6335. doi: 10.1029/JC084iC10p06329

    CrossRef Google Scholar

    [32] 姚建铨, 李润宸, 赵帆, 等.基于DOAS的消防应急救援多气体快速遥感仪[J].光电子·激光, 2018, 29(3): 314-317.

    Google Scholar

    Yao J Q, Li R C, Zhao F, et al. Fast multi-gas remote monitor based on DOAS for fire emergency rescue[J]. Journal of Optoelectronics Laser, 2018, 29(3): 314-317.

    Google Scholar

    [33] Gao Q, Weng W B, Li B, et al. Gas temperature measurement using Differential Optical Absorption Spectroscopy (DOAS)[J]. Applied Spectroscopy, 2018, 72(7): 1014-1020. doi: 10.1177/0003702818760864

    CrossRef Google Scholar

    [34] Meier A C, Schönhardt A, Bösch T, et al. High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT[J]. Atmospheric Measurement Techniques, 2017, 10(5): 1831-1857. doi: 10.5194/amt-10-1831-2017

    CrossRef Google Scholar

    [35] Stutz J, Hurlock S C, Colosimo S F, et al. A novel dual-LED based long-path DOAS instrument for the measurement of aromatic hydrocarbons[J]. Atmospheric Environment, 2016, 147: 121-132. doi: 10.1016/j.atmosenv.2016.09.054

    CrossRef Google Scholar

    [36] 吕默, 王一丁, 陈晨.采用长光程差分吸收光谱技术(LP-DOAS)的中红外痕量一氧化碳检测仪[J].光谱学与光谱分析, 2017, 37(7): 2278-2282.

    Google Scholar

    Lv M, Wang Y D, Chen C. Development of mid-infrared trace-CO detector with Long-Path Differential Optical Absorption Spectroscopy (LP-DOAS)[J]. Spectroscopy and Spectral Analysis, 2017, 37(7): 2278-2282.

    Google Scholar

    [37] Lee J, Kim K H, Kim Y J, et al. Application of a Long-Path Differential Optical Absorption Spectrometer (LP-DOAS) on the measurements of NO2, SO2, O3, and HNO2 in Gwangju, Korea[J]. Journal of Environmental Management, 2008, 86(4): 750-759. doi: 10.1016/j.jenvman.2006.12.044

    CrossRef Google Scholar

    [38] Kanaya Y, Irie H, Takashima H, et al. Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007-2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations[J]. Atmospheric Chemistry and Physics, 2014, 14(15): 7909-7927. doi: 10.5194/acp-14-7909-2014

    CrossRef Google Scholar

    [39] Jin J L, Ma J Z, Lin W L, et al. MAX-DOAS measurements and satellite validation of tropospheric NO2 and SO2 vertical column densities at a rural site of North China[J]. Atmospheric Environment, 2016, 133: 12-25. doi: 10.1016/j.atmosenv.2016.03.031

    CrossRef Google Scholar

    [40] Wang Y, Lampel J, Xie P H, et al. Ground-based MAX-DOAS observations of tropospheric aerosols, NO2, SO2 and HCHO in Wuxi, China, from 2011 to 2014[J]. Atmospheric Chemistry and Physics, 2017, 17(3): 2189-2215. doi: 10.5194/acp-17-2189-2017

    CrossRef Google Scholar

    [41] Varma R M, Ball S M, Brauers T, et al. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers[J]. Atmospheric Measurement Techniques, 2013, 6(11): 3115-3130. doi: 10.5194/amt-6-3115-2013

    CrossRef Google Scholar

    [42] Thalman R M. Development of Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) and application to laboratory and field measurements of trace gases and aerosols[D]. Colorado: University of Colorado, 2013.

    Google Scholar

    [43] 焦洋, 徐亮, 高闽光, 等.污染气体扫描成像红外被动遥测技术研究[J].光谱学与光谱分析, 2012, 32(7): 1754-1757. doi: 10.3964/j.issn.1000-0593(2012)07-1754-04

    CrossRef Google Scholar

    Jiao Y, Xu L, Gao M G, et al. Investigation on remote measurement of air pollution by a method of infrared passive scanning imaging[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1754-1757. doi: 10.3964/j.issn.1000-0593(2012)07-1754-04

    CrossRef Google Scholar

    [44] 焦洋, 徐亮, 高闽光, 等.污染气团扫描式FTIR被动遥测系统[J].激光与红外, 2013, 43(9): 1021-1024. doi: 10.3969/j.issn.1001-5078.2013.09.13

    CrossRef Google Scholar

    Jiao Y, Xu L, Gao M G, et al. Scanning passive FTIR remote sensing system for pollution gas[J]. Laser & Infrared, 2013, 43(9): 1021-1024. doi: 10.3969/j.issn.1001-5078.2013.09.13

    CrossRef Google Scholar

    [45] 焦洋.污染气体FTIR被动扫描成像遥测技术研究[D].合肥: 中国科学院大学, 2013.

    Google Scholar

    Jiao Y. Study on remote sensing of pollutant gases by passive scanning imaging FⅡR spectrometry[D]. Hefei: University of Chinese Academy of Sciences, 2013.http://d.wanfangdata.com.cn/Thesis/Y2430460

    Google Scholar

    [46] 冯明春, 徐亮, 刘文清, 等.基于MODTRAN模型使用被动傅里叶变换红外光谱技术对生物气溶胶的探测研究[J].物理学报, 2016, 65(1): 014210.

    Google Scholar

    Feng M C, Xu L, Liu W Q, et al. Investigation of detecting biological aerosol by passive fourier transform infrared spectroscopy technology based on MODTRAN model[J]. Acta Physica Sinica, 2016, 65(1): 014210.

    Google Scholar

    [47] 夏卿, 左洪福, 李绍成, 等.航空发动机尾气的FTIR被动遥感[J].光谱学与光谱分析, 2009, 29(3): 616-619. doi: 10.3964/j.issn.1000-0593(2009)03-0616-04

    CrossRef Google Scholar

    Xia Q, Zuo H F, Li S C, et al. Remote passive sensing of aeroengine exhausts using FTIR system[J]. Spectroscopy and Spectral Analysis, 2009, 29(3): 616-619. doi: 10.3964/j.issn.1000-0593(2009)03-0616-04

    CrossRef Google Scholar

    [48] Selimovic V, Yokelson R J, Warneke C, et al. Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX[J]. Atmospheric Chemistry and Physics, 2018, 18(4): 2929-2948. doi: 10.5194/acp-18-2929-2018

    CrossRef Google Scholar

    [49] Selimovic V, Yokelson R J, Warneke C, et al. Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX[J]. Atmospheric Chemistry and Physics, 2018, 18(4): 2929-2948.

    Google Scholar

    [50] Schütze C, Sauer U. Challenges associated with the atmospheric monitoring of areal emission sources and the need for optical remote sensing techniques—an open-path Fourier transform infrared (OP-FTIR) spectroscopy experience report[J]. Environmental Earth Sciences, 2016, 75(10): 919. doi: 10.1007/s12665-016-5482-z

    CrossRef Google Scholar

    [51] Davis C O. Applications of hyperspectral imaging in the coastal ocean[J]. Proceedings of SPIE, 2002, 4816: 33-41. doi: 10.1117/12.453791

    CrossRef Google Scholar

    [52] Gurram P, Kwon H. Ensemble learning based on multiple kernel learning for hyperspectral chemical plume detection[J]. Proceedings of SPIE, 2010, 7695: 76951U. doi: 10.1117/12.850101

    CrossRef Google Scholar

    [53] Farley V, Vallières A, Chamberland M, et al. Performance of the FIRST: a long-wave infrared hyperspectral imaging sensor[J]. Proceedings of SPIE, 2006, 6398: 63980T. doi: 10.1117/12.689487

    CrossRef Google Scholar

    [54] Farley V, Vallières A, Villemaire A, et al. Chemical agent detection and identification with a hyperspectral Imaging infrared sensor[J]. Proceedings of SPIE, 2007, 6739: 673918. doi: 10.1117/12.736864

    CrossRef Google Scholar

    [55] Hinnrichs M, Massie M A. New approach to imaging spectroscopy using diffractive optics[J]. Proceedings of SPIE, 1997, 3118: 194-205. doi: 10.1117/12.278933

    CrossRef Google Scholar

    [56] 李家琨, 金伟其, 王霞, 等.气体泄漏红外成像检测技术发展综述[J].红外技术, 2014, 36(7): 513-520.

    Google Scholar

    Li J K, Jin W Q, Wang X, et al. Review of gas leak infrared imaging detection technology[J]. Infrared Technology, 2014, 36(7): 513-520.

    Google Scholar

    [57] Cosofret B R, Chang S, Finson M L, et al. AIRIS standoff multispectral sensor[J]. Proceedings of SPIE, 2009, 7304: 73040Y. doi: 10.1117/12.816647

    CrossRef Google Scholar

    [58] Wurst N P, Meola J, Fiorino S T. Improved atmospheric characterization for hyperspectral exploitation[J]. Proceedings of SPIE, 2017, 10198: 101980B.

    Google Scholar

    [59] Kastek M, Piątkowski T, Trzaskawka P. Infrared imaging fourier transform spectrometer as the stand-off gas detection system[J]. Metrology and Measurement Systems, 2011, 18(4): 607-620. doi: 10.2478/v10178-011-0058-4

    CrossRef Google Scholar

    [60] Omruuzun F, Cetin Y Y. Endmember signature based detection of flammable gases in LWIR hyperspectral images[J]. Proceedings of SPIE, 2015, 9486: 948612.

    Google Scholar

    [61] Sabbah S, Harig R, Rusch P, et al. Remote sensing of gases by hyperspectral imaging: system performance and measurements[J]. Optical Engineering, 2012, 51(11): 111717. doi: 10.1117/1.OE.51.11.111717

    CrossRef Google Scholar

    [62] Zheng W J, Lei Z G, Yu C C, et al. Research on ground-based LWIR hyperspectral imaging remote gas detection[J]. Spectroscopy and Spectral Analysis, 2016, 36(2): 599-606.

    Google Scholar

    [63] Zheng W J, Lei Z G, Yu C C, et al. First results of ground-based LWIR hyperspectral imaging remote gas detection[J]. Proceedings of SPIE, 2014, 9298: 929802.

    Google Scholar

    [64] Butz A, Guerlet S, Hasekamp O, et al. Toward accurate CO2 and CH4 observations from GOSAT[J]. Geophysical Research Letters, 2011, 38(14): L14812.

    Google Scholar

    [65] Oishi Y, Ishida H, Nakajima T Y, et al. Preliminary verification for application of a support vector machine-based cloud detection method to GOSAT-2 CAI-2[J]. Atmospheric Measurement Techniques, 2018, 11(5): 2863-2878. doi: 10.5194/amt-11-2863-2018

    CrossRef Google Scholar

    [66] Frankenberg C, Pollock R, Lee R A M, et al. The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements[J]. Atmospheric Measurement Techniques, 2015, 8(1): 301-313. doi: 10.5194/amt-8-301-2015

    CrossRef Google Scholar

    [67] 毕研盟, 王倩, 杨忠东, 等.星载近红外高光谱CO2遥感进展[J].中国光学, 2015, 8(5): 725-735.

    Google Scholar

    Bi Y M, Wang Q, Yang Z D, et al. Advances on space-based hyper spectral remote sensing for atmospheric CO2 in near infrared band[J]. Chinese Optics, 2015, 8(5): 725-735.

    Google Scholar

    [68] Chien S, Silverman D, Davies A G, et al. Onboard science processing concepts for the HyspIRI mission[J]. IEEE Intelligent Systems, 2009, 24(6): 12-19. doi: 10.1109/MIS.2009.120

    CrossRef Google Scholar

    [69] 孙允珠, 蒋光伟, 李云端, 等.高光谱观测卫星及应用前景[J].上海航天, 2017, 34(3): 1-13.

    Google Scholar

    Sun Y Z, Jiang G W, Li Y D, et al. Hyper-spectral observation satellite and it's application prospects[J]. Aerospace Shanghai, 2017, 34(3): 1-13.

    Google Scholar

  • Overview: With the development of economy, human demands for chemical materials are increasing. Although these chemical materials provide great convenience and improvement to our daily lives, gas leakage accidents in various fields happen frequently. Leakage of the commonly used flammable and explosive gases such as liquefied petroleum gas, methane and vinyl chloride may cause explosions or fires. Gas leakage accidents not only cause huge economic losses, but also can cause casualties. In addition, some non-toxic, odorless and seemingly harmless gases can also cause great harm to the environment. For example, SF6 gas, which is commonly used in power systems, and gases such as CO2 emitted in production will cause the greenhouse effect, resulting global warming. Therefore, developing gas detection technology that can achieve rapid, qualitative and quantitative identification and detection of harmful gases in various scenarios has become an urgent problem for researchers. With the development of spectral imaging technology, the spectroscopy method develops rapidly. Compared with the traditional gas detection method, the spectroscopy method does not require sample preparation, and is fast, non-invasive, highly-efficient and dynamic, thus suitable for rapid and continuous detection in various fields. Accordingly, the spectroscopy method has become a hot spot of research and application in various countries.

    This paper first introduces the theoretical foundation of optical gas detection technology, and then reviews the working principle and application of various optical detection technologies for typical gases according to active and passive detection. Active detection methods include tunable diode laser absorption spectroscopy (TDLAS), differential absorption LiDAR (DIAL), differential optical absorption spectroscopy (DOAS), etc. Passive detection methods include remote sensing Fourier transform infrared spectroscopy (RS-FTIR) and spectral imaging (SI). This paper focuses on the applications of optical gas detection methods mentioned above. In order to facilitate a deeper understanding of the application fields of each technology, we have detailed the types of gases, accuracy, detection limits, volume and cost that can be detected in each technical, and the latest application results of each technology are introduced in detail. Using these gas detection technologies, continuous and real-time monitoring with long distance and high sensitivity for dozens of gases have been achieved, measurements of composition, concentration, temperature and other parameters of gases in a variety of scenarios have been realized, thus effectively reducing the appearances of dangerous accidents. The future development tendency of optical gas detection technologies is prospected after summarizing and analyzing the existing technologies and their problems.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Tables(3)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint