Chen S C, Du L H, Zhu L G. THz wave computational ghost imaging: principles and outlooks[J]. Opto-Electron Eng, 2020, 47(5): 200024. doi: 10.12086/oee.2020.200024
Citation: Chen S C, Du L H, Zhu L G. THz wave computational ghost imaging: principles and outlooks[J]. Opto-Electron Eng, 2020, 47(5): 200024. doi: 10.12086/oee.2020.200024

THz wave computational ghost imaging: principles and outlooks

    Fund Project: Supported by National Key Basic Research Program of China (2015CB755405), National Natural Science Foundation of China (U1730246, 11704358, 61427814), and Foundation of President of China Academy of Engineering Physics (201501033)
More Information
  • Based on a research hotspot in field of terahertz (THz) wave imaging—THz wave ghost imaging, we first reviewed the development history of ghost imaging: from quantum to classical and then to computational. Second, the mathematical principles of the computational ghost imaging were described in details. Then, we reviewed the development history of computational ghost imaging within THz regime, and its applications including sub-diffraction imaging, photoconductivity mapping of graphene, and hyperspectral THz imaging. At last, we looked towards the prospects of THz wave ghost imaging: as an imaging scheme, ghost imaging avoids the problem that economic and efficient focal-plane-array detectors within THz regime are lacking, whose present frame rates, however, are too slow to meet the requirement for fast imaging. With the improvement of devices' performance and the optimization of imaging algorithms, we believe that the frame rate of THz wave computational ghost imaging can be significantly enhanced in the future.
  • 加载中
  • [1] Erkmen B I, Shapiro J H. Ghost imaging: from quantum to classical to computational[J]. Advances in Optics and Photonics, 2010, 2(4): 405-450. doi: 10.1364/AOP.2.000405

    CrossRef Google Scholar

    [2] Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light[J]. Nature, 1956, 177(4497): 27-29. doi: 10.1038/177027a0

    CrossRef Google Scholar

    [3] Brown R H, Twiss R Q. A test of a new type of stellar interferometer on sirius[J]. Nature, 1956, 178(4541): 1046-1048. doi: 10.1038/1781046a0

    CrossRef Google Scholar

    [4] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429-R3432. doi: 10.1103/PhysRevA.52.R3429

    CrossRef Google Scholar

    [5] Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 2001, 87(12): 123602. doi: 10.1103/PhysRevLett.87.123602

    CrossRef Google Scholar

    [6] Bennink R S, Bentley S J, Boyd R W. "Two-Photon" coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601. doi: 10.1103/PhysRevLett.89.113601

    CrossRef Google Scholar

    [7] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802. doi: 10.1103/PhysRevA.78.061802

    CrossRef Google Scholar

    [8] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91. doi: 10.1109/MSP.2007.914730

    CrossRef Google Scholar

    [9] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083

    CrossRef Google Scholar

    [10] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. doi: 10.1109/TIT.2006.885507

    CrossRef Google Scholar

    [11] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582

    CrossRef Google Scholar

    [12] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13): 131110. doi: 10.1063/1.3238296

    CrossRef Google Scholar

    [13] Bennink R S, Bentley S J, Boyd R W, et al. Quantum and classical coincidence imaging[J]. Physical Review Letters, 2004, 92(3): 033601. doi: 10.1103/PhysRevLett.92.033601

    CrossRef Google Scholar

    [14] Zhang P L, Gong W L, Shen X, et al. Improving resolution by the second-order correlation of light fields[J]. Optics Letters, 2009, 34(8): 1222-1224. doi: 10.1364/OL.34.001222

    CrossRef Google Scholar

    [15] Harwit M, Sloane N J A. Hadamard Transform Optics[M]. New York: Academic Press, 1979.

    Google Scholar

    [16] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3

    CrossRef Google Scholar

    [17] Meng K, Chen T N, Chen T, et al. Terahertz pulsed spectroscopy of paraffin-embedded brain glioma[J]. Journal of Biomedical Optics, 2014, 19(7): 077001. doi: 10.1117/1.JBO.19.7.077001

    CrossRef Google Scholar

    [18] Zou Y, Li J, Cui Y Y, et al. Terahertz spectroscopic diagnosis of myelin deficit brain in mice and rhesus monkey with chemometric techniques[J]. Scientific Reports, 2017, 7(1): 5176. doi: 10.1038/s41598-017-05554-z

    CrossRef Google Scholar

    [19] Zou Y, Liu Q, Yang X, et al. Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy[J]. Biomedical Optics Express, 2018, 9(1): 14-24. doi: 10.1364/BOE.9.000014

    CrossRef Google Scholar

    [20] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716-1718. doi: 10.1364/OL.20.001716

    CrossRef Google Scholar

    [21] Tang P R, Li J, Du L H, et al. Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure[J]. Optics Express, 2018, 26(23): 30655-30666. doi: 10.1364/OE.26.030655

    CrossRef Google Scholar

    [22] Van Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor[J]. Optics Letters, 1989, 14(20): 1128-1130. doi: 10.1364/OL.14.001128

    CrossRef Google Scholar

    [23] Nakajima S, Hoshina H, Yamashita M, et al. Terahertz imaging diagnostics of cancer tissues with a chemometrics technique[J]. Applied Physics Letters, 2007, 90(4): 041102. doi: 10.1063/1.2433035

    CrossRef Google Scholar

    [24] Koenig S, Lopez-Diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 2013, 7(12): 977-981. doi: 10.1038/nphoton.2013.275

    CrossRef Google Scholar

    [25] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 2016, 10(6): 371-379. doi: 10.1038/nphoton.2016.65

    CrossRef Google Scholar

    [26] Tang H, Zhu L G, Zhao L, et al. Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching[J]. ACS Nano, 2012, 6(9): 7814-7819. doi: 10.1021/nn301891s

    CrossRef Google Scholar

    [27] Xiao Y, Zhai Z H, Shi Q W, et al. Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy[J]. Applied Physics Letters, 2015, 107(3): 031906. doi: 10.1063/1.4927383

    CrossRef Google Scholar

    [28] Zhai Z H, Zhu H F, Shi Q, et al. Enhanced photoresponses of an optically driven VO2-based terahertz wave modulator near percolation threshold[J]. Applied Physics Letters, 2018, 113(23): 231104. doi: 10.1063/1.5050681

    CrossRef Google Scholar

    [29] Zhai Z H, Chen S C, Du L H, et al. Giant impact of self-photothermal on light-induced ultrafast insulator-to-metal transition in VO2 nanofilms at terahertz frequency[J]. Optics Express, 2018, 26(21): 28051-28066. doi: 10.1364/OE.26.028051

    CrossRef Google Scholar

    [30] Karpowicz N, Zhong H, Zhang C L, et al. Compact continuous-wave subterahertz system for inspection applications[J]. Applied Physics Letters, 2005, 86(5): 054105. doi: 10.1063/1.1856701

    CrossRef Google Scholar

    [31] Charron D M, Ajito K, Kim J Y, et al. Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging[J]. Analytical Chemistry, 2013, 85(4): 1980-1984. doi: 10.1021/ac302852n

    CrossRef Google Scholar

    [32] Yang X, Zhao X, Yang K, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810-824. doi: 10.1016/j.tibtech.2016.04.008

    CrossRef Google Scholar

    [33] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105. doi: 10.1063/1.2989126

    CrossRef Google Scholar

    [34] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 2013, 21(10): 12507-12518. doi: 10.1364/OE.21.012507

    CrossRef Google Scholar

    [35] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8): 605-609. doi: 10.1038/nphoton.2014.139

    CrossRef Google Scholar

    [36] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402

    CrossRef Google Scholar

    [37] Stantchev R I, Sun B Q, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6): e1600190. doi: 10.1126/sciadv.1600190

    CrossRef Google Scholar

    [38] Stantchev R I, Phillips D B, Hobson P, et al. Compressed sensing with near-field THz radiation[J]. Optica, 2017, 4(8): 989-992. doi: 10.1364/OPTICA.4.000989

    CrossRef Google Scholar

    [39] Aβmann M, Bayer M. Compressive adaptive computational ghost imaging[J]. Scientific Reports, 2013, 3: 1545. doi: 10.1038/srep01545

    CrossRef Google Scholar

    [40] Green M A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients[J]. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305-1310. doi: 10.1016/j.solmat.2008.06.009

    CrossRef Google Scholar

    [41] Chen S C, Du L H, Meng K, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 2019, 44(1): 21-24. doi: 10.1364/OL.44.000021

    CrossRef Google Scholar

    [42] Liu K, Lee S, Yang S, et al. Recent progresses on physics and applications of vanadium dioxide[J]. Materials Today, 2018, 21(8): 875-896. doi: 10.1016/j.mattod.2018.03.029

    CrossRef Google Scholar

    [43] Cavalleri A, Tóth C, Siders C W, et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition[J]. Physical Review Letters, 2001, 87(23): 237401. doi: 10.1103/PhysRevLett.87.237401

    CrossRef Google Scholar

    [44] Zhao J P, E Y W, Williams K, et al. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding[J]. Light: Science & Applications, 2019, 8(1): 55.

    Google Scholar

    [45] Hornett S M, Stantchev R I, Vardaki M Z, et al. Subwavelength terahertz imaging of graphene photoconductivity[J]. Nano Letters, 2016, 16(11): 7019-7024. doi: 10.1021/acs.nanolett.6b03168

    CrossRef Google Scholar

    [46] Olivieri L, Totero Gongora J S, Pasquazi A, et al. Time-resolved nonlinear ghost imaging[J]. ACS Photonics, 2018, 5(8): 3379-3388. doi: 10.1021/acsphotonics.8b00653

    CrossRef Google Scholar

    [47] Olivieri L, Gongora J S T, Peters L, et al. Hyperspectral terahertz microscopy via nonlinear ghost imaging[J]. Optica, 2020, 7(2): 186-191. doi: 10.1364/OPTICA.381035

    CrossRef Google Scholar

  • Overview: Distinguishing from the widely used focal-plane-array imaging (e.g., the charge coupled device, CCD), another novel imaging scheme, computational ghost imaging (which is also called single-pixel imaging or correlated imaging) acquires object's image by computing the correlations between the varied illuminating field and the imaging target with a no-spatial-resolution detector (single-pixel detector). Comparing with the well-developed silicon-based focal-plane-array cameras, computational ghost imaging is simpler, smaller, and, most significantly, can operate efficiently across a much broader spectral range. Moreover, this imaging methodology can be combined with some novel acquisition technologies, such as compressed sensing and adaptive imaging, making it suitable for many specific imaging applications. On the other hand, terahertz (THz) waves, covering the frequencies ranging from 0.1 THz to 10 THz, have many unique properties, such as the spectral fingerprint, high transmittance in most polar materials, high absorption by water, non-ionizing photon energy (1 THz, 4 meV). There are a lot of applications within THz waves, covering the fields of medical and biology sciences, non-destructive detection, security check, high-speed wireless communication and so on. Imaging with THz waves is also significant in many situations. However, since the focal-plane-array detector available within THz waves is expensive or complicated to fabricate, the main method for THz wave imaging was usually based on raster scanning. The computational ghost imaging within THz waves was firstly demonstrated in 2008, which paves a new route for THz wave imaging and inspires many applications including sub-diffraction-limit THz wave imaging and spatially resolved photoconductivity of graphene. In this article, we firstly review the historical developing process of ghost imaging, namely from the quantum ghost imaging to classical ghost imaging and then to computational ghost imaging. Secondly, the computational ghost imaging is described mathematically in details, including the linear mapping during the imaging process, algorithm for recovering the ghost image and a discussion about the performance of various measurement matrices in noisy imaging environment. And then, we introduce several computational ghost imaging applications within THz waves, including the first demonstration of THz wave computational ghost imaging, the invention of the dynamic spatial THz wave modulator, the sub-diffraction-limit THz wave computational ghost imaging and the photoconductivity mapping of graphene in THz region. At last, we outlook the prospects of the THz wave computational ghost imaging. We hope this review article can help the readers better understand the principles, applications, and prospects of the THz wave computational ghost imaging.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint