Liang J Y, Chen R D, Yao H F, et al. Research progress of acquisition, pointing and tracking in optical wireless communication system[J]. Opto-Electron Eng, 2022, 49(8): 210439. doi: 10.12086/oee.2022.210439
Citation: Liang J Y, Chen R D, Yao H F, et al. Research progress of acquisition, pointing and tracking in optical wireless communication system[J]. Opto-Electron Eng, 2022, 49(8): 210439. doi: 10.12086/oee.2022.210439

Research progress of acquisition, pointing and tracking in optical wireless communication system

    Fund Project: The Xi’an Science and Technology Planning Project (201805030YD8CG14 (12)), and The Key Industrial Innovation Chain Project of Shaanxi Province (2017ZDCXL-GY-06-01)
More Information
  • Optical wireless communication refers to the technology of transmitting information in free space using light waves as a carrier, which has the advantages of high bandwidth, low cost, and high security. The acquisition, pointing, and tracking (APT) system is the premise of establishing a wireless optical communication system. A simple, reliable, and dynamic APT system can overcome the impact of mechanical platform vibration and external environment changes on the wireless optical communication system. Therefore, it is necessary to conduct in-depth theoretical and experimental research on the APT system, so as to design a capture, aiming, and tracking method suitable for wireless optical communication. This paper analyzes the domestic and foreign research achievements in capturing, aiming, and tracking, and introduces the work done by Xi'an University of Technology in the field of automatic aiming. It mainly includes the progress of initial acquisition system, non-common visual axis control system, beam detection system, etc. At the same time, the field experiments of 1.3 km, 5.2 km, 10.2 km, and 100 km distance links are introduced to verify the effectiveness of the APT system. Finally, the development of APT in wireless optical communication is prospected.
  • 加载中
  • [1] 柯熙政, 邓莉君. 无线光通信[M]. 北京: 科学出版社, 2016.

    Google Scholar

    Ke X Z, Deng L J. Optical Wireless Communication[M]. Beijing: Science Press, 2016.

    Google Scholar

    [2] 闫鲁生, 王峰, 吴畏, 等. 无人机激光通信载荷发展现状与关键技术[J]. 激光与光电子学进展, 2016, 53(8): 080005. doi: 10.3788/LOP53.080005

    CrossRef Google Scholar

    Yan L S, Wang F, Wu W, et al. Current status and key technologies of unmanned aerial vehicle laser communication payloads[J]. Laser Optoelectron Prog, 2016, 53(8): 080005. doi: 10.3788/LOP53.080005

    CrossRef Google Scholar

    [3] 毛一聪, 王惠琴, 张悦, 等. 光空间调制技术的研究进展[J]. 光电工程, 2020, 47(3): 190712. doi: 10.12086/oee.2020.190712

    CrossRef Google Scholar

    Mao Y C, Wang H Q, Zhang Y, et al. Research status and development of optical spatial modulation technology[J]. Opto-Electron Eng, 2020, 47(3): 190712. doi: 10.12086/oee.2020.190712

    CrossRef Google Scholar

    [4] 刘泽金, 舒柏宏, 王永仲, 等. 高能激光束自动对准和稳定系统的结构设计[J]. 光学技术, 1999(1): 19−20. doi: 10.3321/j.issn:1002-1582.1999.01.019

    CrossRef Google Scholar

    Liu Z J, Shu B H, Wang Y Z, et al. Design for automatically aligning and stabilizing high energy laser beam[J]. Opt Technol, 1999(1): 19−20. doi: 10.3321/j.issn:1002-1582.1999.01.019

    CrossRef Google Scholar

    [5] 杨沛松. 无线激光通信APT系统设计与实验研究[D]. 西安: 西安理工大学, 2016.

    Google Scholar

    Yang P S. Research and design of acquisition pointing tracking system for free-space optical communication[D]. Xi'an: Xi'an University of Technology, 2016.

    Google Scholar

    [6] Nakagawa K, Yamamoto A, Toyoda M. Performance test result of LUCE (laser utilizing communications equipment) engineering model[J]. Proc SPIE, 2000, 3932: 68−76. doi: 10.1117/12.384314

    CrossRef Google Scholar

    [7] Chen C C, Lesh J R. Overview of the optical communications demonstrator[J]. Proc SPIE, 1994, 2123: 85−94. doi: 10.1117/12.184687

    CrossRef Google Scholar

    [8] Arimoto Y, Toyoshima M, Toyoda M, et al. Preliminary result on laser communication experiment using (ETS-VI)[J]. Proc SPIE, 1995, 2381: 151−158. doi: 10.1117/12.207423

    CrossRef Google Scholar

    [9] Biswas A, Williams G, Wilson K E, et al. Results of the STRV-2 lasercom terminal evaluation tests[J]. Proc SPIE, 1998, 3266: 2−13. doi: 10.1117/12.308694

    CrossRef Google Scholar

    [10] Tolker-Nielsen T, Oppenhauser G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[J]. Proc SPIE, 2002, 4635: 1−15. doi: 10.1117/12.464105

    CrossRef Google Scholar

    [11] Guelman M, Kogan A, Kazarian A, et al. Acquisition and pointing control for inter-satellite laser communications[J]. IEEE Trans Aerosp Electron Syst, 2004, 40(4): 1239−1248. doi: 10.1109/TAES.2004.1386877

    CrossRef Google Scholar

    [12] Boroson D M, Biswas A, Edwards B L. MLCD: overview of NASA's Mars laser communications demonstration system[J]. Proc SPIE, 2004, 5338: 16−28. doi: 10.1117/12.543014

    CrossRef Google Scholar

    [13] Walther F G, Michael S, Parenti R R, et al. Air-to-ground lasercom system demonstration design overview and results summary[J]. Proc SPIE, 2010, 7814: 78140Y. doi: 10.1117/12.864262

    CrossRef Google Scholar

    [14] Schmidt C, Horwath J. Wide-field-of-regard pointing, acquisition and tracking-system for small laser communication terminals[C]//Proceedings of ICSOS 2012, Ajaccio, 2012.

    Google Scholar

    [15] Moll F, Mitzkus W, Horwath J, et al. Demonstration of high-rate laser communications from fast airborne platform: flight campaign and results[J]. Proc SPIE, 2014, 9248: 92480R. doi: 10.1117/12.2067248

    CrossRef Google Scholar

    [16] Moll F, Horwath J, Shrestha A, et al. Demonstration of high-rate laser communications from a fast airborne platform[J]. IEEE J Sel Areas Commun, 2015, 33(9): 1985−1995. doi: 10.1109/JSAC.2015.2433054

    CrossRef Google Scholar

    [17] Quintana C, Erry G, Gomez A, et al. Design of a holographic tracking module for long-range retroreflector free-space systems[J]. Appl Opt, 2016, 55(25): 7173−7178. doi: 10.1364/AO.55.007173

    CrossRef Google Scholar

    [18] Antonello R, Branz F, Sansone F, et al. High-precision dual-stage pointing mechanism for miniature satellite laser communication terminals[J]. IEEE Trans Ind Electron, 2021, 68(1): 776−785. doi: 10.1109/TIE.2020.2972452

    CrossRef Google Scholar

    [19] 周亚霖, 艾勇, 左韬, 等. 空间光束实时捕获、跟踪实验与分析[J]. 光子学报, 2005, 34(6): 943−947.

    Google Scholar

    Zhou Y L, Ai Y, Zuo T, et al. Experimentation of real-time acquisition and tracking of dree apace laser beam and analysis of the result[J]. Acta Photon Sin, 2005, 34(6): 943−947.

    Google Scholar

    [20] 佟首峰, 姜会林, 刘云清, 等. 自由空间激光通信系统APT粗跟踪伺服带宽优化设计[J]. 光电工程, 2007, 34(9): 16−20. doi: 10.3969/j.issn.1003-501X.2007.09.004

    CrossRef Google Scholar

    Tong S F, Jiang H L, Liu Y Q, et al. Optimum design of bandwidth for the APT coarse tracking assembly in free space laser communication[J]. Opto-Electron Eng, 2007, 34(9): 16−20. doi: 10.3969/j.issn.1003-501X.2007.09.004

    CrossRef Google Scholar

    [21] 潘高峰, 张景旭, 陈娟. 一种共光路自动对准系统[J]. 中国激光, 2008, 35(10): 1500−1504. doi: 10.3321/j.issn:0258-7025.2008.10.013

    CrossRef Google Scholar

    Pan G F, Zhang J X, Chen J. Common path auto-alignment system[J]. Chin J Lasers, 2008, 35(10): 1500−1504. doi: 10.3321/j.issn:0258-7025.2008.10.013

    CrossRef Google Scholar

    [22] 宋延嵩, 常帅, 佟首峰, 等. 航空激光通信系统的特性分析及机载激光通信实验[J]. 中国激光, 2016, 43(12): 1206004. doi: 10.3788/CJL201643.1206004

    CrossRef Google Scholar

    Song Y S, Chang S, Tong S F, et al. Feature analysis of aeronautical laser communication system and airborne laser communication experiment[J]. Chin J Lasers, 2016, 43(12): 1206004. doi: 10.3788/CJL201643.1206004

    CrossRef Google Scholar

    [23] 钱锋, 贾建军, 张亮, 等. 捕获、跟踪、瞄准系统中光斑探测相机的定位精度[J]. 中国激光, 2013, 40(2): 0205007. doi: 10.3788/CJL201340.0205007

    CrossRef Google Scholar

    Qian F, Jia J J, Zhang L, et al. Positioning accuracy of spot-detecting camera in acquisition, tracking, pointing system[J]. Chin J Lasers, 2013, 40(2): 0205007. doi: 10.3788/CJL201340.0205007

    CrossRef Google Scholar

    [24] 孟立新, 赵丁选, 张立中, 等. 机载激光通信稳瞄吊舱设计与跟踪精度测试[J]. 兵工学报, 2015, 36(10): 1916−1923. doi: 10.3969/j.issn.1000-1093.2015.10.013

    CrossRef Google Scholar

    Meng L X, Zhao D X, Zhang L Z, et al. The test of tracking accuracy and design of airborne laser communication stabilized pod[J]. Acta Armamentarii, 2015, 36(10): 1916−1923. doi: 10.3969/j.issn.1000-1093.2015.10.013

    CrossRef Google Scholar

    [25] 张元生, 仇振安, 郭帅, 等. 机载激光通信系统关键技术分析与试验验证[J]. 电光与控制, 2017, 24(10): 80−84. doi: 10.3969/j.issn.1671-637X.2017.10.012

    CrossRef Google Scholar

    Zhang Y S, Qiu Z A, Guo S, et al. Key technology analysis of airborne laser communication system and its verification[J]. Electron Opt Control, 2017, 24(10): 80−84. doi: 10.3969/j.issn.1671-637X.2017.10.012

    CrossRef Google Scholar

    [26] 蔡美华, 孔德聪, 佟鑫刚. 单探测型复合轴系统粗精指向对准的研究与实现[J]. 光电技术应用, 2019, 34(1): 63−66. doi: 10.3969/j.issn.1673-1255.2019.01.014

    CrossRef Google Scholar

    Cai M H, Kong D C, Tong X G. Research and implementation of coarse fine pointing alignment for single composite shaft detection system[J]. Electro-Opt Technol Appl, 2019, 34(1): 63−66. doi: 10.3969/j.issn.1673-1255.2019.01.014

    CrossRef Google Scholar

    [27] 鲁倩, 任斌, 边晶莹. 四象限探测器的信号光捕获与跟踪技术研究[J]. 光电工程, 2020, 47(3): 190559. doi: 10.12086/oee.2020.190559

    CrossRef Google Scholar

    Lu Q, Ren B, Bian J Y. Research on acquisition and tracking technology for the four-quadrant detector[J]. Opto-Electron Eng, 2020, 47(3): 190559. doi: 10.12086/oee.2020.190559

    CrossRef Google Scholar

    [28] 李千. 基于阵列探测器的空间激光通信光斑位置检测技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    Google Scholar

    Li Q. Research on spot position detection technology of space laser communication based on array detector[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020.

    Google Scholar

    [29] 柯熙政, 卢宁, 赵黎. 一种光束自动捕获装置及光束捕获方法: 201010185116.9[P]. 2010-10-06.

    Google Scholar

    Ke X Z, Lu N, Zhao L. Automatic light beam capturing device and light beam capturing method: 201010185116.9[P]. 2010-10-06.

    Google Scholar

    [30] 柯熙政, 席晓莉, 刘长城. 大气激光通信中一种新的光束自动捕获方法[J]. 光通信技术, 2004, 28(10): 39−41. doi: 10.3969/j.issn.1002-5561.2004.10.012

    CrossRef Google Scholar

    Ke X Z, Xi X L, Liu C C. A new auto beam acquiring method for laser communication in atmosphere[J]. Opt Commun Technol, 2004, 28(10): 39−41. doi: 10.3969/j.issn.1002-5561.2004.10.012

    CrossRef Google Scholar

    [31] 胡启迪. 大气激光通信信标光捕获过程中光斑检测技术研究[D]. 西安: 西安理工大学, 2009.

    Google Scholar

    Hu Q D. Research on spot detection technology in process of beacon acquisition of laser communication in atmosphere[D]. Xi’an: Xi’an University of Technology, 2009.

    Google Scholar

    [32] 柯熙政, 雷思琛, 杨沛松. 大气激光通信光束同轴对准检测方法[J]. 中国激光, 2016, 43(6): 0606003. doi: 10.3788/CJL201643.0606003

    CrossRef Google Scholar

    Ke X Z, Lei S C, Yang P S. Beam coaxial alignment detection in atmospheric laser communication[J]. Chin J Lasers, 2016, 43(6): 0606003. doi: 10.3788/CJL201643.0606003

    CrossRef Google Scholar

    [33] 赵奇. 无线激光通信初始捕获系统设计与实现[D]. 西安: 西安理工大学, 2016.

    Google Scholar

    Zhao Q. Design and implementation of initial acquisition system for wireless laser communication[D]. Xi'an: Xi'an University of Technology, 2016.

    Google Scholar

    [34] 徐尉. 无线激光通信ATP系统光斑检测技术研究与实现[D]. 西安: 西安理工大学, 2016.

    Google Scholar

    Xu W. Research and implement of the laser spot detection in ATP system[D]. Xi’an: Xi’an University of Technology, 2016.

    Google Scholar

    [35] 柯熙政, 李世艳. 光斑缺碎情形下光学天线光轴对准实验研究[J]. 光子学报, 2017, 46(4): 0406002. doi: 10.3788/gzxb20174604.0406002

    CrossRef Google Scholar

    Ke X Z, Li S Y. Experimental study on optical axis alignment of the optical antenna under the spot broken[J]. Acta Photon Sin, 2017, 46(4): 0406002. doi: 10.3788/gzxb20174604.0406002

    CrossRef Google Scholar

    [36] 柯熙政, 严希, 杨雅淇, 等. 5.2 km距离无线激光通信跟踪实验[J]. 计算机测量与控制, 2018, 26(11): 233−237. doi: 10.16526/j.cnki.11-4762/tp.2018.11.051

    CrossRef Google Scholar

    Ke X Z, Yan X, Yang Y Q, et al. 5.2 km distance wireless laser communication tracking experimen[J]. Comput Meas Control, 2018, 26(11): 233−237. doi: 10.16526/j.cnki.11-4762/tp.2018.11.051

    CrossRef Google Scholar

    [37] Ke X Z, Jing Y K. Far-field laser spot image detection for use under atmospheric turbulence[J]. Opt Eng, 2020, 59(1): 016103.

    Google Scholar

    [38] Ke X Z, Zhang P. Automatic focusing control in beaconless APT system[J]. J Russ Laser Res, 2020, 41(1): 61−71. doi: 10.1007/s10946-020-09848-y

    CrossRef Google Scholar

    [39] Ke X Z, Liang H L. Airborne laser communication system with automated tracking[J]. Int J Opt, 2021, 2021: 9920368.

    Google Scholar

    [40] 杨尚君, 柯熙政, 吴加丽, 等. 利用二维反射镜实现无线光通信快速对准[J]. 中国激光, 2022, 49(11): 1106001. doi: 10.3788/CJL202249.1106001

    CrossRef Google Scholar

    Yang S J, Ke X Z, Wu J L, et al. Fast alignment of wireless optical communication using two-dimensional mirror[J]. Chin J Lasers, 2022, 49(11): 1106001. doi: 10.3788/CJL202249.1106001

    CrossRef Google Scholar

    [41] 赵雪. 空间激光通信APT初始捕获及误差分析[D]. 长春: 长春理工大学, 2012.

    Google Scholar

    Zhao X. The APT initial capture and error analysis of space laser communication[D]. Changchun: Changchun University of Technology, 2012.

    Google Scholar

    [42] 柯熙政, 张璞. 一种无线光通信的跟瞄控制系统及跟瞄控制方法: 201910339487.9[P]. 2021-07-20.

    Google Scholar

    Ke X Z, Zhang P. Tracking and aiming control system and tracking and aiming control method for wireless optical communication: 201910339487.9[P]. 2021-07-20.

    Google Scholar

    [43] 张璞. 无线激光通信捕获对准与调焦系统设计[D]. 西安: 西安理工大学, 2020.

    Google Scholar

    Zhang P. Design of acquisition pointing and focusing system for wireless laser communication[D]. Xi'an: Xi'an University of Technology, 2020.

    Google Scholar

    [44] 柯熙政, 陈晓展, 吴加丽. 一种无人机中继激光通信系统: 201810919712.1[P]. 2018-08-14.

    Google Scholar

    Ke X Z, Chen X Z, Wu J L. A relay laser communication system for an unmanned aerial vehicle: 201810919712.1[P]. 2018-08-14.

    Google Scholar

    [45] 梁韩立. 机载激光通信自动跟踪控制系统设计与实现[D]. 西安: 西安理工大学, 2021.

    Google Scholar

    Liang H L. Design and realization of airborne laser communication automatic tracking control system[D]. Xi'an: Xi'an University of Technology, 2021.

    Google Scholar

    [46] 柯熙政, 王姣. 一种基于四象限探测器的光斑对准方法: 201611244466.1[P]. 2017-05-31.

    Google Scholar

    Ke X Z, Wang J. Light spot aligning method based on four-quadrant detector: 201611244466.1[P]. 2017-05-31.

    Google Scholar

    [47] 严希. 无线激光通信APT系统中的光斑跟踪系统研究[D]. 西安: 西安理工大学, 2019.

    Google Scholar

    Yan X. Research on spot tracking system in APT system of wireless laser communication[D]. Xi’an: Xi’an University of Technology, 2019.

    Google Scholar

    [48] 景永康. 无线光通信远场光斑图像检测实验研究[D]. 西安: 西安理工大学, 2020. 西安市科技创新引导项目(NO: 201805030YD8CG14(12))、陕西省重点产业创新项目(2017ZDCXL-GY-06-01)

    Google Scholar

    Jing Y K. Experimental study on far-field spot image detection for wireless optical communication[D]. Xi’an: Xi’an University of Technology, 2020.

    Google Scholar

  • Wireless optical communication refers to the technology of transmitting information in free space using light beams as carriers, which has the advantages of high bandwidth, low cost, and high security. Due to factors such as narrow signal beam and long transmission distance, it is difficult to establish and maintain a wireless optical communication link. Therefore, an acquisition, targeting, and tracking system needs to be established to prevent the communication link from being interrupted. In the wireless optical communication system, the optical components on the two platforms carrying the transmitter and the receiver are required to be coaxial in real time, and this process is usually called automatic aiming. In order to maintain the real-time aiming of the transceiver boresight of both transceivers, it is necessary to design a fast and high-precision APT system. A typical wireless optical communication APT system is shown in Figure 1. Liu Changcheng established and analyzed the simulation model in the APT system in atmospheric laser communication, and designed an automatic beam capture system; Hu Qidi designed a beacon light spot detection scheme using CCD; Yang Peisong proposed a coaxial aiming detection method, and designed the aiming control system and tracking system according to the method, and carried out field experiments; Zhao Qi designed an initial capture system and conducted a 1.3 km field experiment; Xu Wei designed a light spot detection system and proposed a corresponding image processing algorithm; Li Shiyan proposed an optical axis aiming scheme, which can effectively improve the detection accuracy and aiming accuracy of the system; Yan Xi designed a spot tracking system and conducted a 5.2 km field tracking experiment. The experimental results show that the tracking accuracy of the system can reach 5.4 μrad; Jing Yongkang designed a light spot image detection method, and conducted a 100 km laser communication experiment on this basis; Zhang Pu embedded a high-precision actuator in the APT system to achieve high-precision aiming and tracking, designed a focusing system and conducted field experiments of 10.2 km and 100 km. Liang Hanli designed an APT system that can be mounted on UAVs and conducted an airborne laser communication experiment through a simulated airborne experimental platform, and its tracking accuracy can reach 2.42 μrad; Ke Xizheng, Yang Shangjun and others proposed a fast aiming method. The method does not need to feed back the control signal from the receiving end to the transmitting end, and can complete the establishment of the uplink and the downlink at the same time. And carried out 1.3 km and 10.3 km field experiments to verify the method. This paper systematically analyzes the development and application of the APT system in wireless optical communication and introduces the research progress and achievements of Xi'an University of Technology in this field. Including the experimental analysis and verification of the performance of the designed initial capture system, compound axis control system and beam detection system Improvements have increased the effectiveness and reliability of the APT system.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(32)

Tables(3)

Article Metrics

Article views(11351) PDF downloads(1496) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint