Citation: | Zheng M J, Du Y L, Huang S T, et al. Incoherent self-interference digital holographic imaging under structured light illumination[J]. Opto-Electron Eng, 2022, 49(7): 210451. doi: 10.12086/oee.2022.210451 |
[1] | Stroke G W, Restrick III R C. Holography with spatially noncoherent light[J]. Appl Phys Lett, 1965, 7(9): 229−231. doi: 10.1063/1.1754392 |
[2] | Cochran G. New method of making Fresnel transforms with incoherent light[J]. J Opt Soc Am, 1966, 56(11): 1513−1517. doi: 10.1364/JOSA.56.001513 |
[3] | Goodman J W, Lawrence R W. Digital image formation from electronically detected holograms[J]. Appl Phys Lett, 1967, 11(3): 77−79. doi: 10.1063/1.1755043 |
[4] | Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Appl Opt, 2000, 29(23): 4070−4075. |
[5] | 王亮, 冯少彤, 聂守平, 等. 基于多次滤波技术的单次曝光三维物体数字全息[J]. 激光技术, 2007, 31(4): 354−357. doi: 10.3969/j.issn.1001-3806.2007.04.032 Wang L, Feng S T, Nie S P, et al. Single exposure 3-D object digital holography based on multi-filtering technique[J]. Laser Technol, 2007, 31(4): 354−357. doi: 10.3969/j.issn.1001-3806.2007.04.032 |
[6] | Kashter Y, Rosen J. Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture[J]. Opt Exp, 2014, 22(17): 20551−20565. |
[7] | 张亦卓, 王大勇, 赵洁, 等. 数字全息中实用相位解包裹算法研究[J]. 光学学报, 2009, 29(12): 3323−3327. doi: 10.3788/AOS20092912.3323 Zhang Y Z, Wang D Y, Zhao J, et al. Investigation on phase unwrapping algorithms in digital holography[J]. Acta Opt Sin, 2009, 29(12): 3323−3327. doi: 10.3788/AOS20092912.3323 |
[8] | Man T L, Wan Y H, Wu F, et al. Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio[J]. Appl Opt, 2017, 56(13): F91−F96. doi: 10.1364/AO.56.000F91 |
[9] | Kim S G, Lee B, Kim E S, et al. Resolution analysis of incoherent triangular holography[J]. Appl Opt, 2001, 40(26): 4672−4678. doi: 10.1364/AO.40.004672 |
[10] | Kim S C, Lee S E, Kim E S. Optical implementation of real-time Incoherent 3D imaging and display system using modified triangular interferometer[J]. Proc SPIE Int Soc Opt Eng, 2004, 5443: 250−256. |
[11] | Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Opt Lett, 2007, 32(8): 912−914. doi: 10.1364/OL.32.000912 |
[12] | 臧瑞环, 汤明玉, 段智勇, 等. 菲涅耳非相干相关全息相移技术[J]. 红外与激光工程, 2019, 48(8): 825001. doi: 10.3788/IRLA201948.0825001 Zang R H, Tang M Y, Duan Z Y, et al. Fresnel incoherent correlation holography with phase-shifting technology[J]. Infrared Laser Eng, 2019, 48(8): 825001. doi: 10.3788/IRLA201948.0825001 |
[13] | 任宏, 卜远壮, 王茜, 等. 高图像配准精度的非相干数字全息彩色成像[J]. 红外与激光工程, 2020, 49(10): 20200022. Ren H, Bu Y Z, Wang X, et al. Incoherent digital holographic color imaging with high accuracy image registration[J]. Infrared Laser Eng, 2020, 49(10): 20200022. |
[14] | Bu Y Z, Wang X, Li Y, et al. Tunable edge enhancement by higher-order spiral Fresnel incoherent correlation holography system[J]. J Phys D Appl Phys, 2021, 54(12): 125103. doi: 10.1088/1361-6463/abd12e |
[15] | Ma F Y, Wang Xi, Bu Y Z, et al. Incoherent digital holographic spectral imaging with high accuracy of image pixel registration[J]. Chin Phys B, 2021, 30(4): 044202. doi: 10.1088/1674-1056/abd2aa |
[16] | Vijayakumar A, Katkus T, Lundgaard S, et al. Fresnel incoherent correlation holography with single camera shot[J]. Opto-Electron Adv, 2020, 3(8): 200004. doi: 10.29026/oea.2020.200004 |
[17] | Lee H C, Kim S H, Kim D S. Two step on-axis digital holography using dual-channel mach-zehnder interferometer and matched filter algorithm[J]. J Opt Soc Korea, 2010, 14(4): 363−367. doi: 10.3807/JOSK.2010.14.4.363 |
[18] | Naik D N, Pedrini G, Takeda M, et al. Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer[J]. Opt Lett, 2014, 39(7): 1857−1860. doi: 10.1364/OL.39.001857 |
[19] | Kim M K. Full color natural light holographic camera[J]. Opt Exp, 2013, 21(8): 9636−9642. doi: 10.1364/OE.21.009636 |
[20] | 李德阳, 杜艳丽, 张文斌, 等. 非相干同轴数字全息成像系统研究[J]. 光电子•激光, 2015, 26(6): 1157−1161. Li D Y, Du Y L, Zhang W B, et al. Study of incoherent on-axis digital holography imaging system[J]. J Optoelectron·Laser, 2015, 26(6): 1157−1161. |
[21] | 张文斌, 刘亚飞, 李德阳, 等. 基于迈克耳孙干涉仪的非相干数字全息显微成像[J]. 中国激光, 2017, 44(3): 0309001. doi: 10.3788/CJL201744.0309001 Zhang W B, Liu Y F, Li D Y, et al. Incoherent digital holographic microscopic imaging based on Michelson interferometer[J]. Chin J Lasers, 2017, 44(3): 0309001. doi: 10.3788/CJL201744.0309001 |
[22] | 张敏敏, 田珍耘, 熊元康, 等. 非相干光自干涉数字全息成像技术研究[J]. 红外与激光工程, 2019, 48(12): 1224001. doi: 10.3788/IRLA201948.1224001 Zhang M M, Tian Z Y, Xiong Y K, et al. Research on incoherent self-interference digital holography imaging technology[J]. Infrared Laser Eng, 2019, 48(12): 1224001. doi: 10.3788/IRLA201948.1224001 |
[23] | Xiong Y K, Zheng M J, Zhang M M, et al. Research on incoherent self-reference digital holography imaging system[J]. Opt Eng, 2021, 60(4): 043102. |
[24] | Vijayakumar A, Kashter Y, Kelner R, et al. Coded aperture correlation holography–a new type of incoherent digital holograms[J]. Opt Exp, 2016, 24(11): 12430−12441. doi: 10.1364/OE.24.012430 |
[25] | Kumar M, Vijayakumar A, Rosen J. Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses[J]. Sci Rep, 2017, 7(1): 11555. doi: 10.1038/s41598-017-11731-x |
[26] | Kumar M, Vijayakumar A, Rosen J, et al. Interferenceless coded aperture correlation holography with synthetic point spread holograms[J]. Appl Opt, 2020, 59(24): 7321−7329. doi: 10.1364/AO.399088 |
[27] | 汝洪武, 吴玲玲, 张文喜, 等. 全视场外差白光干涉测量技术[J]. 光电工程, 2020, 47(2): 190617. Ru H W, Wu L L, Zhang W X, et al. Full-field heterodyne white light interferometry[J]. Opto-Electron Eng, 2020, 47(2): 190617. |
[28] | 史晓玉, 王大勇, 戎路, 等. 连续太赫兹波数字全息相衬成像[J]. 光电工程, 2020, 47(5): 190543. Shi X Y, Wang D Y, Rong L, et al. Phase contrast imaging based on continuous-wave terahertz digital holography[J]. Opto-Electron Eng, 2020, 47(5): 190543. |
[29] | Massig J H. Digital off-axis holography with a synthetic aperture[J]. Opt Lett, 2002, 27(24): 2179−2181. doi: 10.1364/OL.27.002179 |
[30] | Alexandrov S A, Hillman T R, Gutzler T, et al. Synthetic aperture Fourier holographic optical microscopy[J]. Phys Rev Lett, 2006, 97(16): 168102. doi: 10.1103/PhysRevLett.97.168102 |
[31] | Mico V, Zalevsky Z, García-Martínez P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. J Opt Soc Am A, 2006, 23(12): 3162−3170. doi: 10.1364/JOSAA.23.003162 |
[32] | Liu C, Liu Z G, Bo F, et al. Super-resolution digital holographic imaging method[J]. Appl Phys Lett, 2002, 81(17): 3143−3145. doi: 10.1063/1.1517402 |
[33] | Paturzo M, Merola F, Grilli S, et al. Super-resolution in digital holography by a two-dimensional dynamic phase grating[J]. Opt Exp, 2008, 16(21): 17107−17118. doi: 10.1364/OE.16.017107 |
[34] | Kashter Y, Vijayakumar A, Miyamoto Y, et al. Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination[J]. Opt Lett, 2016, 41(7): 1558−1561. doi: 10.1364/OL.41.001558 |
[35] | 宋舒杰, 万玉红, 韩影, 等. 结构光照明的自干涉数字全息层析成像[J]. 中国激光, 2019, 46(5): 0509001. doi: 10.3788/CJL201946.0509001 Song S J, Wang Y H, Han Y, et al. Self-interference digital holography with structured light illumination for tomographic imaging[J]. Chin J Lasers, 2019, 46(5): 0509001. doi: 10.3788/CJL201946.0509001 |
[36] | 邵永红, 郑晓敏, 汪磊, 等. 虚拟结构光照明双光子荧光显微成像[J]. 深圳大学学报(理工版), 2021, 38(3): 221−226. doi: 10.3724/SP.J.1249.2021.03221 Shao Y H, Zheng X M, Wang L, et al. Two-photon virtual structured illumination microscopy[J]. J Shenzhen Univ (Sci Eng), 2021, 38(3): 221−226. doi: 10.3724/SP.J.1249.2021.03221 |
[37] | 郝翔, 杨青, 匡翠方, 等. 光学移频超分辨成像技术进展[J]. 光学学报, 2021, 41(1): 0111001. doi: 10.3788/AOS202141.0111001 Hao X, Yang Q, Kuang C F, et al. Optical super-resolution imaging based on frequency shift[J]. Acta Opt Sin, 2021, 41(1): 0111001. doi: 10.3788/AOS202141.0111001 |
[38] | Jeon P, Kim J, Lee H, et al. Comparative study on resolution enhancements in fluorescence-structured illumination Fresnel incoherent correlation holography[J]. Opt Exp, 2021, 29(6): 9231−9241. doi: 10.1364/OE.417206 |
As a super-resolution optical imaging technology, structured light illumination technology carries an object’s high-frequency information into the optical system in the form of moiré fringes through structured illumination, breaking the diffraction limit in traditional optical imaging and improving image resolution. An incoherent self-interference digital holography based on the Michelson interferometer can accurately record an object's phase and intensity information. It has the characteristics of fast real-time, non-contact, non-marking, three-dimensional imaging, etc., and has essential research significance in biomedical imaging and materials science. In this paper, an incoherent digital holographic imaging system based on the Michelson interferometer with structured light illumination is proposed, which uses a spatial light modulator (SLM) to realize horizontal and vertical cosine grating illumination patterns to improve the lateral resolution of the imaging system. Perform simulation and verification experiments in uniform and structured light illumination mode to explore the high-resolution imaging results of the resolution target. We obtained in simulation imagings: First, the resolved minimum element of the resolution target is Group 4 element 3 (20.16 lp/mm) in Figure 3(e) under uniform light illumination. Then, the algorithm is used to modulate the resolution target to realize the structured light illumination mode. The resolved minimum resolution element of the resolution target is Group 5 element 2 (35.92 lp/mm) in Figure 4(c). We get in the verification experiments: First, use the algorithm to generate a mask with a value of 1 on the SLM to adjust the illumination mode to the uniform light illumination mode, and the resolved minimum resolution element of the resolution target is the Group elements 4 (45.25 lp/mm) in Figure 5(e). Using another algorithm to load cosine gratings of 20 lp/mm and 40 lp/mm on the SLM to adjust the illumination mode to structured light illumination mode, the resolved minimum element of the resolution target is Group 6 element 1 (64 lp/mm) and Group 6 element 4 (90.51 lp/mm) in Figure 6(a1) and Figure 6(b1). The applicability of the super-resolution imaging method based on the structured light illumination to the incoherent light self-interference digital holographic imaging system based on the Michelson interferometer is verified from the level of simulation imaging and experiments, and the resolution of the imaging system is improved. In the future, it is necessary to comprehensively consider the system performance, optimize the system structure, study more effective numerical algorithms, and realize super-resolution imaging, dynamic imaging, color imaging, etc., to obtain more excellent development space.
Incoherent self-interference digital holography system based on Michelson interferometer
Object image. (a) The resolution target; (b) The enlarged image in the box in (a)
Simulated imaging results of the resolution target under uniform light illumination. (a)~(c) Holograms with three phase shifts of the resolution target; (d) The reconstructed image; (e) The magnified image in the blue box in (d); (f) The intensity distribution curve of the blue dashed box in (e)
The simulated imaging results of the resolution target under structured light illumination. Horizontal direction: (a1) Object image modulated by cosine grating; (a2) The reconstructed images; (a3) The intensity distribution curve of the blue dashed box in (a2);Vertical direction: (b1) Object image modulated by cosine grating; (b2) The reconstructed images; (b3) The intensity distribution curve of the blue dashed box in (b2); (c) The reconstructed image in both directions
The imaging results of the resolution target under uniform light illumination. (a)~(c) Three holograms at different times; (d) The reconstructed image; (e) The magnified image in the blue box in (d); (f) The intensity distribution curve of the blue dashed box in (e)
The imaging results of the resolution target under structured light illumination of different frequencies. k0 = 20 lp/mm:(a1) The reconstruction image; (a2) The magnified image in the blue box in (a1); (a3) The intensity distribution curve of the blue dashed box in (a2); k0 =40 lp/mm:(b1) The reconstruction image; (b2) The magnified image in the blue box in (b1); (b3) The intensity distribution curve of the blue dashed box in (b2)