Zheng M J, Du Y L, Huang S T, et al. Incoherent self-interference digital holographic imaging under structured light illumination[J]. Opto-Electron Eng, 2022, 49(7): 210451. doi: 10.12086/oee.2022.210451
Citation: Zheng M J, Du Y L, Huang S T, et al. Incoherent self-interference digital holographic imaging under structured light illumination[J]. Opto-Electron Eng, 2022, 49(7): 210451. doi: 10.12086/oee.2022.210451

Incoherent self-interference digital holographic imaging under structured light illumination

    Fund Project: Natural Science Foundation of Henan Provience of China (18A140032, 15A140038, and 16A140035)
More Information
  • An incoherent digital holographic imaging system based on the Michelson interferometer with structured light illumination is proposed, which uses a spatial light modulator (SLM) to realize horizontal and vertical cosine grating illumination patterns to improve the lateral resolution of the imaging system. Using MATLAB software to carry out simulation imaging and numerical reconstruction, the high-resolution reconstructed image under the system is obtained. It theoretically proves that this method can effectively improve the resolution of the incoherent digital holography system. And build the corresponding incoherent light self-interference digital holographic imaging system. By imaging the USAF1951 resolution target, further verified the applicability of the super-resolution imaging method based on structured light illumination experimentally.
  • 加载中
  • [1] Stroke G W, Restrick III R C. Holography with spatially noncoherent light[J]. Appl Phys Lett, 1965, 7(9): 229−231. doi: 10.1063/1.1754392

    CrossRef Google Scholar

    [2] Cochran G. New method of making Fresnel transforms with incoherent light[J]. J Opt Soc Am, 1966, 56(11): 1513−1517. doi: 10.1364/JOSA.56.001513

    CrossRef Google Scholar

    [3] Goodman J W, Lawrence R W. Digital image formation from electronically detected holograms[J]. Appl Phys Lett, 1967, 11(3): 77−79. doi: 10.1063/1.1755043

    CrossRef Google Scholar

    [4] Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Appl Opt, 2000, 29(23): 4070−4075.

    Google Scholar

    [5] 王亮, 冯少彤, 聂守平, 等. 基于多次滤波技术的单次曝光三维物体数字全息[J]. 激光技术, 2007, 31(4): 354−357. doi: 10.3969/j.issn.1001-3806.2007.04.032

    CrossRef Google Scholar

    Wang L, Feng S T, Nie S P, et al. Single exposure 3-D object digital holography based on multi-filtering technique[J]. Laser Technol, 2007, 31(4): 354−357. doi: 10.3969/j.issn.1001-3806.2007.04.032

    CrossRef Google Scholar

    [6] Kashter Y, Rosen J. Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture[J]. Opt Exp, 2014, 22(17): 20551−20565.

    Google Scholar

    [7] 张亦卓, 王大勇, 赵洁, 等. 数字全息中实用相位解包裹算法研究[J]. 光学学报, 2009, 29(12): 3323−3327. doi: 10.3788/AOS20092912.3323

    CrossRef Google Scholar

    Zhang Y Z, Wang D Y, Zhao J, et al. Investigation on phase unwrapping algorithms in digital holography[J]. Acta Opt Sin, 2009, 29(12): 3323−3327. doi: 10.3788/AOS20092912.3323

    CrossRef Google Scholar

    [8] Man T L, Wan Y H, Wu F, et al. Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio[J]. Appl Opt, 2017, 56(13): F91−F96. doi: 10.1364/AO.56.000F91

    CrossRef Google Scholar

    [9] Kim S G, Lee B, Kim E S, et al. Resolution analysis of incoherent triangular holography[J]. Appl Opt, 2001, 40(26): 4672−4678. doi: 10.1364/AO.40.004672

    CrossRef Google Scholar

    [10] Kim S C, Lee S E, Kim E S. Optical implementation of real-time Incoherent 3D imaging and display system using modified triangular interferometer[J]. Proc SPIE Int Soc Opt Eng, 2004, 5443: 250−256.

    Google Scholar

    [11] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Opt Lett, 2007, 32(8): 912−914. doi: 10.1364/OL.32.000912

    CrossRef Google Scholar

    [12] 臧瑞环, 汤明玉, 段智勇, 等. 菲涅耳非相干相关全息相移技术[J]. 红外与激光工程, 2019, 48(8): 825001. doi: 10.3788/IRLA201948.0825001

    CrossRef Google Scholar

    Zang R H, Tang M Y, Duan Z Y, et al. Fresnel incoherent correlation holography with phase-shifting technology[J]. Infrared Laser Eng, 2019, 48(8): 825001. doi: 10.3788/IRLA201948.0825001

    CrossRef Google Scholar

    [13] 任宏, 卜远壮, 王茜, 等. 高图像配准精度的非相干数字全息彩色成像[J]. 红外与激光工程, 2020, 49(10): 20200022.

    Google Scholar

    Ren H, Bu Y Z, Wang X, et al. Incoherent digital holographic color imaging with high accuracy image registration[J]. Infrared Laser Eng, 2020, 49(10): 20200022.

    Google Scholar

    [14] Bu Y Z, Wang X, Li Y, et al. Tunable edge enhancement by higher-order spiral Fresnel incoherent correlation holography system[J]. J Phys D Appl Phys, 2021, 54(12): 125103. doi: 10.1088/1361-6463/abd12e

    CrossRef Google Scholar

    [15] Ma F Y, Wang Xi, Bu Y Z, et al. Incoherent digital holographic spectral imaging with high accuracy of image pixel registration[J]. Chin Phys B, 2021, 30(4): 044202. doi: 10.1088/1674-1056/abd2aa

    CrossRef Google Scholar

    [16] Vijayakumar A, Katkus T, Lundgaard S, et al. Fresnel incoherent correlation holography with single camera shot[J]. Opto-Electron Adv, 2020, 3(8): 200004. doi: 10.29026/oea.2020.200004

    CrossRef Google Scholar

    [17] Lee H C, Kim S H, Kim D S. Two step on-axis digital holography using dual-channel mach-zehnder interferometer and matched filter algorithm[J]. J Opt Soc Korea, 2010, 14(4): 363−367. doi: 10.3807/JOSK.2010.14.4.363

    CrossRef Google Scholar

    [18] Naik D N, Pedrini G, Takeda M, et al. Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer[J]. Opt Lett, 2014, 39(7): 1857−1860. doi: 10.1364/OL.39.001857

    CrossRef Google Scholar

    [19] Kim M K. Full color natural light holographic camera[J]. Opt Exp, 2013, 21(8): 9636−9642. doi: 10.1364/OE.21.009636

    CrossRef Google Scholar

    [20] 李德阳, 杜艳丽, 张文斌, 等. 非相干同轴数字全息成像系统研究[J]. 光电子•激光, 2015, 26(6): 1157−1161.

    Google Scholar

    Li D Y, Du Y L, Zhang W B, et al. Study of incoherent on-axis digital holography imaging system[J]. J Optoelectron·Laser, 2015, 26(6): 1157−1161.

    Google Scholar

    [21] 张文斌, 刘亚飞, 李德阳, 等. 基于迈克耳孙干涉仪的非相干数字全息显微成像[J]. 中国激光, 2017, 44(3): 0309001. doi: 10.3788/CJL201744.0309001

    CrossRef Google Scholar

    Zhang W B, Liu Y F, Li D Y, et al. Incoherent digital holographic microscopic imaging based on Michelson interferometer[J]. Chin J Lasers, 2017, 44(3): 0309001. doi: 10.3788/CJL201744.0309001

    CrossRef Google Scholar

    [22] 张敏敏, 田珍耘, 熊元康, 等. 非相干光自干涉数字全息成像技术研究[J]. 红外与激光工程, 2019, 48(12): 1224001. doi: 10.3788/IRLA201948.1224001

    CrossRef Google Scholar

    Zhang M M, Tian Z Y, Xiong Y K, et al. Research on incoherent self-interference digital holography imaging technology[J]. Infrared Laser Eng, 2019, 48(12): 1224001. doi: 10.3788/IRLA201948.1224001

    CrossRef Google Scholar

    [23] Xiong Y K, Zheng M J, Zhang M M, et al. Research on incoherent self-reference digital holography imaging system[J]. Opt Eng, 2021, 60(4): 043102.

    Google Scholar

    [24] Vijayakumar A, Kashter Y, Kelner R, et al. Coded aperture correlation holography–a new type of incoherent digital holograms[J]. Opt Exp, 2016, 24(11): 12430−12441. doi: 10.1364/OE.24.012430

    CrossRef Google Scholar

    [25] Kumar M, Vijayakumar A, Rosen J. Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses[J]. Sci Rep, 2017, 7(1): 11555. doi: 10.1038/s41598-017-11731-x

    CrossRef Google Scholar

    [26] Kumar M, Vijayakumar A, Rosen J, et al. Interferenceless coded aperture correlation holography with synthetic point spread holograms[J]. Appl Opt, 2020, 59(24): 7321−7329. doi: 10.1364/AO.399088

    CrossRef Google Scholar

    [27] 汝洪武, 吴玲玲, 张文喜, 等. 全视场外差白光干涉测量技术[J]. 光电工程, 2020, 47(2): 190617.

    Google Scholar

    Ru H W, Wu L L, Zhang W X, et al. Full-field heterodyne white light interferometry[J]. Opto-Electron Eng, 2020, 47(2): 190617.

    Google Scholar

    [28] 史晓玉, 王大勇, 戎路, 等. 连续太赫兹波数字全息相衬成像[J]. 光电工程, 2020, 47(5): 190543.

    Google Scholar

    Shi X Y, Wang D Y, Rong L, et al. Phase contrast imaging based on continuous-wave terahertz digital holography[J]. Opto-Electron Eng, 2020, 47(5): 190543.

    Google Scholar

    [29] Massig J H. Digital off-axis holography with a synthetic aperture[J]. Opt Lett, 2002, 27(24): 2179−2181. doi: 10.1364/OL.27.002179

    CrossRef Google Scholar

    [30] Alexandrov S A, Hillman T R, Gutzler T, et al. Synthetic aperture Fourier holographic optical microscopy[J]. Phys Rev Lett, 2006, 97(16): 168102. doi: 10.1103/PhysRevLett.97.168102

    CrossRef Google Scholar

    [31] Mico V, Zalevsky Z, García-Martínez P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. J Opt Soc Am A, 2006, 23(12): 3162−3170. doi: 10.1364/JOSAA.23.003162

    CrossRef Google Scholar

    [32] Liu C, Liu Z G, Bo F, et al. Super-resolution digital holographic imaging method[J]. Appl Phys Lett, 2002, 81(17): 3143−3145. doi: 10.1063/1.1517402

    CrossRef Google Scholar

    [33] Paturzo M, Merola F, Grilli S, et al. Super-resolution in digital holography by a two-dimensional dynamic phase grating[J]. Opt Exp, 2008, 16(21): 17107−17118. doi: 10.1364/OE.16.017107

    CrossRef Google Scholar

    [34] Kashter Y, Vijayakumar A, Miyamoto Y, et al. Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination[J]. Opt Lett, 2016, 41(7): 1558−1561. doi: 10.1364/OL.41.001558

    CrossRef Google Scholar

    [35] 宋舒杰, 万玉红, 韩影, 等. 结构光照明的自干涉数字全息层析成像[J]. 中国激光, 2019, 46(5): 0509001. doi: 10.3788/CJL201946.0509001

    CrossRef Google Scholar

    Song S J, Wang Y H, Han Y, et al. Self-interference digital holography with structured light illumination for tomographic imaging[J]. Chin J Lasers, 2019, 46(5): 0509001. doi: 10.3788/CJL201946.0509001

    CrossRef Google Scholar

    [36] 邵永红, 郑晓敏, 汪磊, 等. 虚拟结构光照明双光子荧光显微成像[J]. 深圳大学学报(理工版), 2021, 38(3): 221−226. doi: 10.3724/SP.J.1249.2021.03221

    CrossRef Google Scholar

    Shao Y H, Zheng X M, Wang L, et al. Two-photon virtual structured illumination microscopy[J]. J Shenzhen Univ (Sci Eng), 2021, 38(3): 221−226. doi: 10.3724/SP.J.1249.2021.03221

    CrossRef Google Scholar

    [37] 郝翔, 杨青, 匡翠方, 等. 光学移频超分辨成像技术进展[J]. 光学学报, 2021, 41(1): 0111001. doi: 10.3788/AOS202141.0111001

    CrossRef Google Scholar

    Hao X, Yang Q, Kuang C F, et al. Optical super-resolution imaging based on frequency shift[J]. Acta Opt Sin, 2021, 41(1): 0111001. doi: 10.3788/AOS202141.0111001

    CrossRef Google Scholar

    [38] Jeon P, Kim J, Lee H, et al. Comparative study on resolution enhancements in fluorescence-structured illumination Fresnel incoherent correlation holography[J]. Opt Exp, 2021, 29(6): 9231−9241. doi: 10.1364/OE.417206

    CrossRef Google Scholar

  • As a super-resolution optical imaging technology, structured light illumination technology carries an object’s high-frequency information into the optical system in the form of moiré fringes through structured illumination, breaking the diffraction limit in traditional optical imaging and improving image resolution. An incoherent self-interference digital holography based on the Michelson interferometer can accurately record an object's phase and intensity information. It has the characteristics of fast real-time, non-contact, non-marking, three-dimensional imaging, etc., and has essential research significance in biomedical imaging and materials science. In this paper, an incoherent digital holographic imaging system based on the Michelson interferometer with structured light illumination is proposed, which uses a spatial light modulator (SLM) to realize horizontal and vertical cosine grating illumination patterns to improve the lateral resolution of the imaging system. Perform simulation and verification experiments in uniform and structured light illumination mode to explore the high-resolution imaging results of the resolution target. We obtained in simulation imagings: First, the resolved minimum element of the resolution target is Group 4 element 3 (20.16 lp/mm) in Figure 3(e) under uniform light illumination. Then, the algorithm is used to modulate the resolution target to realize the structured light illumination mode. The resolved minimum resolution element of the resolution target is Group 5 element 2 (35.92 lp/mm) in Figure 4(c). We get in the verification experiments: First, use the algorithm to generate a mask with a value of 1 on the SLM to adjust the illumination mode to the uniform light illumination mode, and the resolved minimum resolution element of the resolution target is the Group elements 4 (45.25 lp/mm) in Figure 5(e). Using another algorithm to load cosine gratings of 20 lp/mm and 40 lp/mm on the SLM to adjust the illumination mode to structured light illumination mode, the resolved minimum element of the resolution target is Group 6 element 1 (64 lp/mm) and Group 6 element 4 (90.51 lp/mm) in Figure 6(a1) and Figure 6(b1). The applicability of the super-resolution imaging method based on the structured light illumination to the incoherent light self-interference digital holographic imaging system based on the Michelson interferometer is verified from the level of simulation imaging and experiments, and the resolution of the imaging system is improved. In the future, it is necessary to comprehensively consider the system performance, optimize the system structure, study more effective numerical algorithms, and realize super-resolution imaging, dynamic imaging, color imaging, etc., to obtain more excellent development space.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint