Ma M, Jin L, Qin H, et al. Design of terahertz focusing lens based on high-resistivity silicon metasurface[J]. Opto-Electron Eng, 2022, 49(7): 220032. doi: 10.12086/oee.2022.220032
Citation: Ma M, Jin L, Qin H, et al. Design of terahertz focusing lens based on high-resistivity silicon metasurface[J]. Opto-Electron Eng, 2022, 49(7): 220032. doi: 10.12086/oee.2022.220032

Design of terahertz focusing lens based on high-resistivity silicon metasurface

    Fund Project: National Natural Science Foundation of China (NSFC) (61975227)
More Information
  • In this paper, a focusing lens for terahertz detection is designed using a metasurface composed of sub-wavelength silicon cylinders. By tuning the diameter of the silicon cylinder, the transmission phase of the THz wave is controlled from 0 to 2π. At 1 THz, the terahertz electric field energy density focused by the single-sided metasurface lens designed can be increased to 32 times that of the incident wave. After adding the anti-reflection, a double-sided metasurface lens is proposed, which is feasible in processing, increasing the electric field energy density to 44 times that of the original. Compared with the traditional hyper-hemispheric terahertz silicon lenses, our metasurface lens has the advantages of thin thickness and small volume, which is conducive to the miniaturization of the terahertz detector component and provides the possibility to realize the integration with the terahertz detector.
  • 加载中
  • [1] Kim H S, Baik S Y, Lee J W, et al. Nondestructive tomographic imaging of rust with rapid THz time-domain spectroscopy[J]. Appl Sci (Basel), 2021, 11(22): 10594. doi: 10.3390/app112210594

    CrossRef Google Scholar

    [2] Zhang M, Xie X R, Zhang D, et al. Nondestructive identification of wood species by terahertz spectrum[J]. Microw Opt Technol Lett, 2022. doi: 10.1002/mop.33195

    CrossRef Google Scholar

    [3] Hernandez-Cardoso G G, Amador-Medina L F, Gutierrez-Torres G, et al. Terahertz imaging demonstrates its diagnostic potential and reveals a relationship between cutaneous dehydration and neuropathy for diabetic foot syndrome patients[J]. Sci Rep, 2022, 12(1): 3110. doi: 10.1038/s41598-022-06996-w

    CrossRef Google Scholar

    [4] 孙建东. 室温高灵敏度场效应自混频太赫兹波检测器[D]. 苏州: 中国科学院大学, 2012.

    Google Scholar

    Sun J D. High-responsivity room-temperature self-mixing terahertz detectors based on high-electron-mobility field-effect transistor[D]. Suzhou: Suzhou Institute of Nano-tech and Nano-Bionics, Chinese Academy of Sciences, 2012.

    Google Scholar

    [5] Sun J D, Feng W, Ding Q F, et al. Smaller antenna-gate gap for higher sensitivity of GaN/AlGaN HEMT terahertz detectors[J]. Appl Phys Lett, 2020, 116(16): 161109. doi: 10.1063/1.5142436

    CrossRef Google Scholar

    [6] 李想. 场效应晶体管太赫兹混频探测器的场耦合机制和结构研究[D]. 合肥: 中国科学技术大学, 2018.

    Google Scholar

    Li X. Research on field coupling mechanism and structure of field-effect terahertz self-mixing detectors[D]. Hefei: University of Science and Technology of China, 2018.

    Google Scholar

    [7] 田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程, 2017, 44(1): 69−76. doi: 10.3969/j.issn.1003-501X.2017.01.006

    CrossRef Google Scholar

    Tian X Y, Yin L X, Li D C. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electron Eng, 2017, 44(1): 69−76. doi: 10.3969/j.issn.1003-501X.2017.01.006

    CrossRef Google Scholar

    [8] Bukhari S S, Vardaxoglou J, Whittow W. A metasurfaces review: definitions and applications[J]. Appl Sci, 2019, 9(13): 2727. doi: 10.3390/app9132727

    CrossRef Google Scholar

    [9] Cao T, Lian M, Chen XY, et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials[J]. Opto-Electron Sci, 2022, 1(1): 210010.

    Google Scholar

    [10] Yu F L, Yu F L, Yu F L, et al. Orthogonal manipulations of phase and phase dispersion in realization of azimuthal angle-resolved focusings[J]. Opt Express, 2021, 29(26): 43757−43765. doi: 10.1364/OE.446962

    CrossRef Google Scholar

    [11] Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [12] 张洪滔, 程用志, 黄木林. 基于石墨烯的宽带太赫兹可调超表面线偏振转换器[J]. 光电工程, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519

    CrossRef Google Scholar

    Zhang H T, Cheng Y Z, Huang M L. Broadband terahertz tunable metasurface linear polarization converter based on graphene[J]. Opto-Electron Eng, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519

    CrossRef Google Scholar

    [13] Shen C, Xu R L, Sun J L, et al. Metasurface-based holographic display with all-dielectric meta-axilens[J]. IEEE Photon J, 2021, 13(5): 4600105.

    Google Scholar

    [14] 周毅, 梁高峰, 温中泉, 等. 光学超分辨平面超构透镜研究进展[J]. 光电工程, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

    CrossRef Google Scholar

    Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

    CrossRef Google Scholar

    [15] 申益佳, 谢鑫, 蒲明博, 等. 基于传输相位和几何相位协同调控的消色差超透镜[J]. 光电工程, 2020, 47(10): 200237. doi: 10.12086/oee.2020.200237

    CrossRef Google Scholar

    Shen Y J, Xie X, Pu M B, et al. Achromatic metalens based on coordinative modulation of propagation phase and geometric phase[J]. Opto-Electron Eng, 2020, 47(10): 200237. doi: 10.12086/oee.2020.200237

    CrossRef Google Scholar

    [16] Chen H T, Chang C C, Huang L. Bi-Layer metasurfaces for dual and broadband terahertz antireflection[C]//2017 42nd International Conference on Infrared, Millimeter and Terahertz Waves(IRMMW-THz). Cancun, Mexico: IEEE, 2017: 1.

    Google Scholar

    [17] Zhou Y X, Xu X L, Hu F R, et al. Graphene as broadband terahertz antireflection coating[J]. Appl Phys Lett, 2014, 104(5): 051106. doi: 10.1063/1.4863838

    CrossRef Google Scholar

    [18] Kröll J, Darmo J, Unterrainer K. Metallic wave-impedance matching layers for broadband terahertz optical systems[J]. Opt Express, 2007, 15(11): 6552−6560. doi: 10.1364/OE.15.006552

    CrossRef Google Scholar

    [19] Zi J C, Xu Q, Wang Q, et al. Antireflection-assisted all-dielectric terahertz metamaterial polarization Converter[J]. Appl Phy Lett, 2018, 113(10): 101104. doi: 10.1063/1.5042784

    CrossRef Google Scholar

    [20] Li X N, Shen Z X, Tan Q G, et al. High efficient metadevices for terahertz beam shaping[J]. Front Phys, 2021, 9: 659747. doi: 10.3389/fphy.2021.659747

    CrossRef Google Scholar

    [21] 孙云飞, 孙建东, 秦华, 等. 基于硅透镜集成的高灵敏度室温太赫兹探测器[J]. 微纳电子技术, 2017, 54(11): 729−733.

    Google Scholar

    Sun Y F, Sun J D, Qin H, et al. High sensitivity room temperature terahertz detector based on silicon lens integration[J]. Micronanoelectron Technol, 2017, 54(11): 729−733.

    Google Scholar

    [22] Yariv A, Pochi A. 光子学-现代通信光电子学[M]. 陈鹤鸣, 施伟华, 汪静丽, 等译. 6版. 北京: 电子工业出版社, 2009.

    Google Scholar

    Yariv A, Yeh P. Optical Electronics in Modern Communications[M]. 6th ed. Beijing: Publishing House of Electronics Industry, 2009.

    Google Scholar

    [23] 田艳, 王洋, 赵国忠. 太赫兹频段硅的光学特性研究[J]. 现代科学仪器, 2006(2): 51−54. doi: 10.3969/j.issn.1003-8892.2006.02.015

    CrossRef Google Scholar

    Tian Y, Wang Y, Zhao G Z. Study on the optical properties of silicon in THz frequency band[J]. Mod Sci Instrum, 2006(2): 51−54. doi: 10.3969/j.issn.1003-8892.2006.02.015

    CrossRef Google Scholar

    [24] 张洪欣, 沈茂远, 韩宇南. 电磁场与电磁波[M]. 北京: 清华大学出版社, 2013.

    Google Scholar

    Zhang H X, Shen Y M, Han Y N. Field and Wave Electromagnetics[M]. Beijing: Tsinghua University Press, 2013.

    Google Scholar

    [25] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    [26] He J W, He X J, Dong T, et al. Recent progress and applications of terahertz metamaterials[J]. J Phys D Appl Phys, 2022, 55(12): 123002. doi: 10.1088/1361-6463/ac3282

    CrossRef Google Scholar

    [27] 任子明, 白冰, 王任鑫, 等. 基于梳齿式电容加速度计的深硅刻蚀[J]. 微纳电子技术, 2017, 54(9): 633−638.

    Google Scholar

    Ren Z M, Bai B, Wang R X, et al. Deep silicon etching based on comb-tooth capacitance accelerometer[J]. Micronanoelectron Technol, 2017, 54(9): 633−638.

    Google Scholar

    [28] 欧阳旭, 谢子健, 张孟瑞, 等. 基于激光诱导表面周期结构的微纳防伪结构色[J]. 光电工程, 2022, 49(1): 210320. doi: 10.12086/oee.2022.210320

    CrossRef Google Scholar

    Ouyang X, Xie Z J, Zhang M R, et al. Laser-induced periodic surface structure for microscale anti-counterfeiting structural colors[J]. Opto-Electron Eng, 2022, 49(1): 210320. doi: 10.12086/oee.2022.210320

    CrossRef Google Scholar

    [29] MacLeod H A. Thin-Film Optical Filters[M]. 4th ed. Boca Raton: CRC Press, 2010.

    Google Scholar

    [30] Hu D, Wang X K, Feng S F, et al. Ultrathin terahertz planar elements[J]. Adv Opt Mater, 2013, 1(2): 186−191. doi: 10.1002/adom.201200044

    CrossRef Google Scholar

    [31] Chen W T, Khorasaninejad M, Zhu A Y, et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light Sci Appl, 2017, 6(5): e16259. doi: 10.1038/lsa.2016.259

    CrossRef Google Scholar

    [32] 吴良斌. 激光器与光纤耦合技术的研究[D]. 武汉: 华中科技大学, 2006.

    Google Scholar

    Wu L B. Research on coupling technology of laser and fiber[D]. Wuhan: Huazhong University of Science and Technology, 2006.

    Google Scholar

    [33] Yu X, Shen Y, Dai G H, et al. Phase-controlled planar metalenses for high-resolution terahertz focusing[J]. Photonics, 2021, 8(5): 143. doi: 10.3390/photonics8050143

    CrossRef Google Scholar

    [34] Yang Q L, Gu J Q, Wang D Y, et al. Efficient flat metasurface lens for terahertz imaging[J]. Opt Express, 2014, 22(21): 25931−25939. doi: 10.1364/OE.22.025931

    CrossRef Google Scholar

    [35] Jia D L, Tian Y, Ma W, et al. Transmissive terahertz metalens with full phase control based on a dielectric metasurface[J]. Opt Lett, 2017, 42(21): 4494−4497. doi: 10.1364/OL.42.004494

    CrossRef Google Scholar

    [36] Wang Z W, Li Q, Yan F. A high numerical aperture terahertz all-silicon metalens with sub-diffraction focus and long depth of focus[J]. J Phys D Appl Phys, 2021, 54(8): 085103. doi: 10.1088/1361-6463/abc3ee

    CrossRef Google Scholar

    [37] 曾大俊. 微纳介质块超表面的聚焦效应仿真分析[D]. 重庆: 重庆大学, 2016.

    Google Scholar

    Zeng D J. Analysis of focal effect of metasurfaces based on dielectric nanobrick by simulation[D]. Chongqing: Chongqing University, 2016.

    Google Scholar

    [38] Lin D M, Holsteen A L, Maguid E, et al. Photonic multitasking interleaved Si nanoantenna phased array[J]. Nano Lett, 2016, 16(12): 7671−7676. doi: 10.1021/acs.nanolett.6b03505

    CrossRef Google Scholar

  • Terahertz detector is an important device in the field of terahertz technology, and it is important to improve its sensitivity. The sensitivity of the detector can be improved in two aspects: one is to further optimize the antenna of the detector, and the other is to optimize the size of the detector and the spot size of incident terahertz wave. Due to the long wavelength of the electromagnetic wave in the terahertz band, the spot size is much larger than the effective acceptance area of the detector, which limits the effective absorption rate of the detector to the incident terahertz wave. In order to make the focus spot to be small, the lens aperture needs to be increased. At present, the commonly used method is to integrate the hyper-hemispheric silicon lens with the terahertz detector to reduce the spot size by one order of magnitude and increase the electric field energy density. However, hyper-hemispheric silicon lens is difficult to be ultra-thin and ultra-light, and is not planar, which is not conducive to the device integration, especially for array detectors. In this paper, a series of metasurface lenses for terahertz detectors are designed using sub-wavelength silicon cylinders. By tuning the diameter of the silicon cylinders, the transmission phase of the terahertz wave can be controlled from 0 to 2π with high transmission amplitude. At 1 THz, the backside integration of the designed single-surface lens with the terahertz detector can increase the electric field energy density in the core region of the THz detector to 32 times that of the incident plane wave, and reduce the focal spot to the same order of magnitude as the wavelength. Based on the feasibility of fabrication and anti-reflection considerations, we propose a two-sided metasurface lens, which further increases the energy density of the electric field to 44 times that of the incident plane wave. Compared with the traditional hyper-hemispheric silicon lenses, the size and thickness of the metasurface lens are smaller and more convenient for integration. Metasurface lenses have a great prospect for reducing the complexity of the terahertz system and improving the responsiveness of the detector, and provide a new idea for the integration and miniaturization of the terahertz device. However, the current metasurface lenses produce many side lobes after focusing, resulting in low focusing efficiency. Further research needs to further optimize the materials and unit structures of the metasurface lenses, to improve the focusing efficiency and electric field energy density.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint