Xiong G Y, Tang A, Lan B, et al. Vortex field manipulation based on deformation mirror with continuous surface[J]. Opto-Electron Eng, 2022, 49(11): 220066. doi: 10.12086/oee.2022.220066
Citation: Xiong G Y, Tang A, Lan B, et al. Vortex field manipulation based on deformation mirror with continuous surface[J]. Opto-Electron Eng, 2022, 49(11): 220066. doi: 10.12086/oee.2022.220066

Vortex field manipulation based on deformation mirror with continuous surface

    Fund Project: National Natural Science Foundation of China (61901449), Equipment Pre-research Key Laboratory Fund (6142A04190212), and Frontier Research Fund of Institute of Optics and Electronics, Chinese Academy of Sciences (C21K006)
More Information
  • A complete orthogonal basis was constructed by using the eigen-mode method of continuous surface deformation mirror, and the voltage of each driver of the deformation mirror can be obtained according to the spiral wavefront information which needs to be manipulated. The spiral wavefront of integral order, fractional order, multi-fractional order, and superposition state with the absolute value of topological charge less than 5 was generated, and the dynamic manipulation of the vortex beam was realized. The results obtained were the same as those obtained by the ideal spiral wavefront. The ability of the continuous surface deformation mirror to fit the spiral wavefront was demonstrated and good results were obtained. This method has a good application prospect in the dynamic manipulation of high-power vortex laser.
  • 加载中
  • [1] Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light Sci Appl, 2019, 8: 90. doi: 10.1038/s41377-019-0194-2

    CrossRef Google Scholar

    [2] Gahagan K T, Swartzlander G A. Optical vortex trapping of particles[J]. Opt Lett, 1996, 21(11): 827−829. doi: 10.1364/OL.21.000827

    CrossRef Google Scholar

    [3] He H, Friese M E J, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Phys Rev Lett, 1995, 75(5): 826−829. doi: 10.1103/PhysRevLett.75.826

    CrossRef Google Scholar

    [4] Figliozzi P, Sule N, Yan Z J, et al. Driven optical matter: dynamics of electrodynamically coupled nanoparticles in an optical ring vortex[J]. Phys Rev E, 2017, 95(2): 022604. doi: 10.1103/PhysRevE.95.022604

    CrossRef Google Scholar

    [5] Zhang Y X, Liu X F, Lin H, et al. Ultrafast multi-target control of tightly focused light fields[J]. Opto-Electron Adv, 2022, 5(3): 210026. doi: 10.29026/oea.2022.210026

    CrossRef Google Scholar

    [6] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545−1548. doi: 10.1126/science.1237861

    CrossRef Google Scholar

    [7] Huang H, Yue Y, Ahmed N, et al. Systems and techniques for orbital angular momentum based reconfigurable switching: 2015/349910 A1[P]. 2015-12-03.

    Google Scholar

    [8] Du J, Li S H, Zhao Y F, et al. Demonstration of M-ary encoding/decoding using visible-light Bessel beams carrying orbital angular momentum (OAM) for free-space obstruction-free optical communications[C]//Proceedings of 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, 2015. doi: 10.1364/OFC.2015.M2F.4.

    Google Scholar

    [9] 柯熙政, 郭新龙. 用光束轨道角动量实现相位信息编码[J]. 量子电子学报, 2015, 32(1): 69−76. doi: 10.3969/j.issn.1007-5461.2015.01.010

    CrossRef Google Scholar

    Ke X Z, Guo X L. Realization of optical phase information encode by using orbital angular momentum of light beam[J]. Chin J Quantum Electron, 2015, 32(1): 69−76. doi: 10.3969/j.issn.1007-5461.2015.01.010

    CrossRef Google Scholar

    [10] Li S H, Xu Z D, Liu J, et al. Experimental demonstration of free-space optical communications using orbital angular momentum (OAM) array encoding/decoding[C]//Proceedings of 2015 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2015. doi: 10.1364/CLEO_AT.2015.JTh2A.67.

    Google Scholar

    [11] 周红平, 潘珍珍, 郭凯, 等. OAM光通信系统能量利用效率研究[J]. 电子学报, 2021, 49(10): 1881−1892. doi: 10.12263/DZXB.20210231

    CrossRef Google Scholar

    Zhou H P, Pan Z Z, Guo K, et al. Research on the energy-utilization efficiency of OAM based optical communication systems[J]. Acta Electron Sin, 2021, 49(10): 1881−1892. doi: 10.12263/DZXB.20210231

    CrossRef Google Scholar

    [12] 郭忠义, 潘珍珍, 龚超凡, 等. OAM光通信路由器件研究[J]. 通信学报, 2020, 41(11): 185−197. doi: 10.11959/j.issn.1000-436x.2020184

    CrossRef Google Scholar

    Guo Z Y, Pan Z Z, Gong C F, et al. Research on router device of OAM optical communication[J]. J Commun, 2020, 41(11): 185−197. doi: 10.11959/j.issn.1000-436x.2020184

    CrossRef Google Scholar

    [13] Kai C H, Huang P, Shen F, et al. Orbital angular momentum shift keying based optical communication system[J]. IEEE Photon J, 2017, 9(2): 7902510. doi: 10.1109/JPHOT.2017.2672642

    CrossRef Google Scholar

    [14] 郭忠义, 龚超凡, 刘洪郡, 等. OAM光通信技术研究进展[J]. 光电工程, 2020, 47(3): 90−123. doi: 10.12086/oee.2020.190593

    CrossRef Google Scholar

    Guo Z Y, Gong C F, Liu H J, et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electron Eng, 2020, 47(3): 90−123. doi: 10.12086/oee.2020.190593

    CrossRef Google Scholar

    [15] Chen Y, Gao J, Jiao Z Q, et al. Mapping twisted light into and out of a photonic chip[J]. Phys Rev Lett, 2018, 121(23): 233602. doi: 10.1103/PhysRevLett.121.233602

    CrossRef Google Scholar

    [16] Yang L, Qian D D, Xin C, et al. Direct laser writing of complex microtubes using femtosecond vortex beams[J]. Appl Phys Lett, 2017, 110(22): 221103. doi: 10.1063/1.4984744

    CrossRef Google Scholar

    [17] Masajada J, Popiołek-Masajada A, Wieliczka D M. The interferometric system using optical vortices as phase markers[J]. Opt Commun, 2002, 207(1–6): 85−93. doi: 10.1016/S0030-4018(02)01489-X

    CrossRef Google Scholar

    [18] Emile O, Emile J. Naked eye picometer resolution in a Michelson interferometer using conjugated twisted beams[J]. Opt Lett, 2017, 42(2): 354−357. doi: 10.1364/OL.42.000354

    CrossRef Google Scholar

    [19] Hemo E, Spektor B, Shamir J. Scattering of singular beams by subwavelength objects[J]. Appl Opt, 2011, 50(1): 33−42. doi: 10.1364/AO.50.000033

    CrossRef Google Scholar

    [20] 孙海滨, 孙平. 涡旋光用于物体面内位移变形测量的模拟[J]. 光电子·激光, 2014, 25(11): 2252−2258. doi: 10.16136/j.joel.2014.11.031

    CrossRef Google Scholar

    Sun H B, Sun P. Simulation of in-plane displacement deformation measurement using vortex beams[J]. J Optoelectron Laser, 2014, 25(11): 2252−2258. doi: 10.16136/j.joel.2014.11.031

    CrossRef Google Scholar

    [21] 孙海滨, 刘婷婷, 孙平. 光学涡旋应用于微测量的研究进展[J]. 激光杂志, 2015, 36(6): 8−11. doi: 10.14016/j.cnki.jgzz.2015.06.008

    CrossRef Google Scholar

    Sun H B, Liu T T, Sun P. Research progress of applications of optical vortex in micro-measurement[J]. Laser J, 2015, 36(6): 8−11. doi: 10.14016/j.cnki.jgzz.2015.06.008

    CrossRef Google Scholar

    [22] 张利宏, 沈锋, 兰斌. 涡旋光束轨道角动量在大气湍流传输下的特性分析[J]. 光电工程, 2020, 47(4): 190272. doi: 10.12086/oee.2020.190272

    CrossRef Google Scholar

    Zhang L H, Shen F, Lan B. Characteristic analysis of orbital angular momentum of vortex beam propagating in atmospheric turbulent[J]. Opto-Electronic Eng, 2020, 47(4): 190272. doi: 10.12086/oee.2020.190272

    CrossRef Google Scholar

    [23] 贺锋涛, 房伟, 张建磊, 等. 汉克-贝塞尔光束在各向异性海洋湍流中轨道角动量传输特性分析[J]. 光电工程, 2020, 47(6): 190591. doi: 10.12086/oee.2020.190591

    CrossRef Google Scholar

    He F T, Fang W, Zhang J L, et al. Analysis of the transmission characteristics of Hank-Bessel beam in anisotropic ocean turbulence[J]. Opto-Electronic Eng, 2020, 47(6): 190591. doi: 10.12086/oee.2020.190591

    CrossRef Google Scholar

    [24] Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers[J]. Opt Commun, 2002, 207(1–6): 169−175. doi: 10.1016/S0030-4018(02)01524-9

    CrossRef Google Scholar

    [25] Curtis J E, Grier D G. Modulated optical vortices[J]. Opt Lett, 2003, 28(11): 872−874. doi: 10.1364/OL.28.000872

    CrossRef Google Scholar

    [26] Curtis J E, Grier D G. Structure of optical vortices[J]. Phys Rev Lett, 2003, 90(13): 133901. doi: 10.1103/PhysRevLett.90.133901

    CrossRef Google Scholar

    [27] 朱艳英, 沈军峰, 窦红星, 等. 计算全息法获取高阶类贝塞尔光束的新设计[J]. 光电子·激光, 2011, 22(8): 1263−1268. doi: 10.16136/j.joel.2011.08.015

    CrossRef Google Scholar

    Zhu Y Y, Shen J F, Dou H X, et al. A new design of computer generated holography to obtain high order Bessel-like beam[J]. J Optoelectron Laser, 2011, 22(8): 1263−1268. doi: 10.16136/j.joel.2011.08.015

    CrossRef Google Scholar

    [28] 薄斌, 门克内木乐, 赵建林, 等. 用反射式纯相位液晶空间光调制器产生涡旋光束[J]. 光电子·激光, 2012, 23(1): 74−78. doi: 10.16136/j.joel.2012.01.014

    CrossRef Google Scholar

    Bo B, Neimule M, Zhao J L, et al. Generation of vortex beams with a reflected type phase only LCSLM[J]. J Optoelectron Laser, 2012, 23(1): 74−78. doi: 10.16136/j.joel.2012.01.014

    CrossRef Google Scholar

    [29] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Opt Commun, 1994, 112(5–6): 321−327. doi: 10.1016/0030-4018(94)90638-6

    CrossRef Google Scholar

    [30] Zhao Z, Wang J, Li S H, et al. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams[J]. Opt Lett, 2013, 38(6): 932−934. doi: 10.1364/OL.38.000932

    CrossRef Google Scholar

    [31] Beijersbergen M W, Allen L, van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Opt Commun, 1993, 96(1–3): 123−132. doi: 10.1016/0030-4018(93)90535-D

    CrossRef Google Scholar

    [32] Lee C Y, Chang C C, Cho C Y, et al. Generation of higher order vortex beams from a YVo4/Nd: YVO4 self-Raman laser via off-axis pumping with mode converter[J]. IEEE J Sel Top Quantum Electron, 2015, 21(1): 1600305. doi: 10.1109/JSTQE.2014.2324754

    CrossRef Google Scholar

    [33] Tang A, Yu T, Zuo J, et al. Experimental research on a multi-aperture phase modulation technique based on a corner-cube reflector array[J]. Opt Express, 2022, 30(3): 3793−3803. doi: 10.1364/OE.448379

    CrossRef Google Scholar

    [34] 陈光明, 林惠川, 蒲继雄. 轴棱锥聚焦涡旋光束获得高阶贝塞尔光束[J]. 光电子·激光, 2011, 22(6): 945−950. doi: 10.16136/j.joel.2011.06.015

    CrossRef Google Scholar

    Chen G M, Lin H C, Pu J X. Generation of high-order Bessel beams by focusing vortex beams with an axicon[J]. J Optoelectron Laser, 2011, 22(6): 945−950. doi: 10.16136/j.joel.2011.06.015

    CrossRef Google Scholar

    [35] Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror[J]. J Opt Soc Am A, 2010, 27(9): 2072−2077. doi: 10.1364/JOSAA.27.002072

    CrossRef Google Scholar

    [36] Lin X J, Feng Q C, Zhu Y, et al. Diode-pumped wavelength-switchable visible Pr3+: YLF laser and vortex laser around 670 nm[J]. Opto-Electron Adv, 2021, 4(4): 210006. doi: 10.29026/oea.2021.210006

    CrossRef Google Scholar

    [37] Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes[J]. Nat Commun, 2013, 4: 2289. doi: 10.1038/ncomms3289

    CrossRef Google Scholar

    [38] Aadhi A, Samanta G K, Kumar S C, et al. Controlled switching of orbital angular momentum in an optical parametric oscillator[J]. Optica, 2017, 4(3): 349−355. doi: 10.1364/OPTICA.4.000349

    CrossRef Google Scholar

    [39] Lu J L, Lin H F, Zhang G, et al. Direct generation of an optical vortex beam from a diode-pumped Yb: MgWO4 laser[J]. Laser Phys Lett, 2017, 14(8): 085807. doi: 10.1088/1612-202X/aa7878

    CrossRef Google Scholar

    [40] Hou T Y, Chang Q, Yu T, et al. Switching the orbital angular momentum state of light with mode sorting assisted coherent laser array system[J]. Opt Express, 2021, 29(9): 13428−13440. doi: 10.1364/OE.422635

    CrossRef Google Scholar

    [41] Braverman B, Skerjanc A, Sullivan N, et al. Fast generation and detection of spatial modes of light using an acousto-optic modulator[J]. Opt Express, 2020, 28(20): 29112−29121. doi: 10.1364/OE.404309

    CrossRef Google Scholar

    [42] Strain M J, Cai X L, Wang J W, et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters[J]. Nat Commun, 2014, 5: 4856. doi: 10.1038/ncomms5856

    CrossRef Google Scholar

    [43] Jiang W H. Overview of adaptive optics development[J]. Opto-Electron Eng, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489

    CrossRef Google Scholar

    [44] 姜文汉, 杨泽平, 官春林, 等. 自适应光学技术在惯性约束聚变领域应用的新进展[J]. 中国激光, 2009, 36(7): 1625−1634. doi: 10.3788/CJL20093607.1625

    CrossRef Google Scholar

    Jiang W H, Yang Z P, Guan C L, et al. New progress on adaptive optics in inertial confinement fusion facility[J]. Chin J Laser, 2009, 36(7): 1625−1634. doi: 10.3788/CJL20093607.1625

    CrossRef Google Scholar

    [45] Baranova N B, Mamaev A V, Pilipetsky N F, et al. Wave-front dislocations: topological limitations for adaptive systems with phase conjugation[J]. J Opt Soc Am, 1983, 73(5): 525−528. doi: 10.1364/JOSA.73.000525

    CrossRef Google Scholar

    [46] Yu X M, Todi A, Tang H M. Bessel beam generation using a segmented deformable mirror[J]. Appl Opt, 2018, 57(16): 4677−4682. doi: 10.1364/AO.57.004677

    CrossRef Google Scholar

    [47] Ghai D P, Senthilkumaran P, Sirohi R S. Adaptive helical mirror for generation of optical phase singularity[J]. Appl Opt, 2008, 47(10): 1378−1383. doi: 10.1364/AO.47.001378

    CrossRef Google Scholar

    [48] Tyson R K, Scipioni M, Viegas J. Generation of an optical vortex with a segmented deformable mirror[J]. Appl Opt, 2008, 47(33): 6300−6306. doi: 10.1364/AO.47.006300

    CrossRef Google Scholar

    [49] Scipioni M, Tyson R K, Viegas J. Mode purity comparison of optical vortices generated by a segmented deformable mirror and a static multilevel phase plate[J]. Appl Opt, 2008, 47(28): 5098−5102. doi: 10.1364/AO.47.005098

    CrossRef Google Scholar

    [50] Bovino F A, Braccini M, Bertolotti M. Design of a programmable spiral phase mirror[Z]. arXiv: 1111.3483, 2012. https://doi.org/10.48550/arXiv.1111.3483.

    Google Scholar

    [51] 唐奥, 兰斌, 沈锋. 基于连续镜面变形镜生成模式可调的涡旋光束仿真研究[J]. 光子学报, 2022, 51(1): 0151120. doi: 10.3788/gzxb20225101.0151120

    CrossRef Google Scholar

    Tang A, Lan B, Shen F. Simulation of generating vortex beam with controllable mode based on deformable mirror with continuous surface[J]. Acta Photon Sin, 2022, 51(1): 0151120. doi: 10.3788/gzxb20225101.0151120

    CrossRef Google Scholar

    [52] 杨平, 许冰, 姜文汉, 等. 遗传算法在自适应光学系统中的应用[J]. 光学学报, 2007, 27(9): 1628−1632. doi: 10.3321/j.issn:0253-2239.2007.09.017

    CrossRef Google Scholar

    Yang P, Xu B, Jiang W H, et al. Study of a genetic algorithm used in an adaptive optical system[J]. Acta Opt Sin, 2007, 27(9): 1628−1632. doi: 10.3321/j.issn:0253-2239.2007.09.017

    CrossRef Google Scholar

    [53] El-Agmy R, Bulte H, Greenaway A H, et al. Adaptive beam profile control using a simulated annealing algorithm[J]. Opt Express, 2005, 13(16): 6085−6091. doi: 10.1364/OPEX.13.006085

    CrossRef Google Scholar

    [54] Yang H Z, Li X Y, Gong C L, et al. Restoration of turbulence-degraded extended object using the stochastic parallel gradient descent algorithm: numerical simulation[J]. Opt Express, 2009, 17(5): 3052−3062. doi: 10.1364/OE.17.003052

    CrossRef Google Scholar

    [55] Alda J, Boreman G D. Zernike-based matrix model of deformable mirrors: optimization of aperture size[J]. Appl Opt, 1993, 32(13): 2431−2438. doi: 10.1364/AO.32.002431

    CrossRef Google Scholar

    [56] 张楠, 郭宋明, 卢佳琦, 等. 基于变形镜生成Airy光束特性研究[J]. 激光与光电子学进展, 2020, 57(15): 152601. doi: 10.3788/LOP57.152601

    CrossRef Google Scholar

    Zhang N, Guo S M, Lu J Q, et al. Characteristics of airy beams generated with deformable mirrors[J]. Laser Optoelectron Prog, 2020, 57(15): 152601. doi: 10.3788/LOP57.152601

    CrossRef Google Scholar

    [57] Débarre D, Booth M J, Wilson T. Image based adaptive optics through optimisation of low spatial frequencies[J]. Opt Express, 2007, 15(13): 8176−8190. doi: 10.1364/OE.15.008176

    CrossRef Google Scholar

    [58] 李新阳, 王春鸿, 鲜浩, 等. 自适应光学系统的实时模式复原算法[J]. 强激光与粒子束, 2002, 14(1): 53−56. doi: 10.1016/S0731-7085(02)00201-7

    CrossRef Google Scholar

    Li X Y, Wang C H, Xian H, et al. Real-time modal reconstruction algorithm for adaptive optics systems[J]. High Power Laser Part Beams, 2002, 14(1): 53−56. doi: 10.1016/S0731-7085(02)00201-7

    CrossRef Google Scholar

    [59] 闫伟, 陈志华, 杜太焦, 等. 基于变形镜本征模式法校正大气热晕的数值模拟[J]. 光学学报, 2014, 34(11): 1101001. doi: 10.3788/AOS201434.1101001

    CrossRef Google Scholar

    Yan W, Chen Z H, Du T J, et al. Numerical simulation of correction thermal blooming based on deformable mirror Eigen mode[J]. Acta Opt Sin, 2014, 34(11): 1101001. doi: 10.3788/AOS201434.1101001

    CrossRef Google Scholar

    [60] 喻际, 董冰. 基于变形镜本征模式的无波前传感器自适应光学系统实验研究[J]. 光学学报, 2015, 35(3): 0322004. doi: 10.3788/AOS201535.0322004

    CrossRef Google Scholar

    Yu J, Dong B. Experimental study of wavefront sensorless adaptive optics based on deformable mirror Eigen modes[J]. Acta Opt Sin, 2015, 35(3): 0322004. doi: 10.3788/AOS201535.0322004

    CrossRef Google Scholar

    [61] 梁佳新, 向汝建, 杜应磊, 等. 基于变形镜本征模式和远场测量的光束净化[J]. 强激光与粒子束, 2020, 32(8): 081002. doi: 10.11884/HPLPB202032.200082

    CrossRef Google Scholar

    Liang J X, Xiang R J, Du Y L, et al. Laser beam cleanup based on deformable-mirror Eigen modes and far-field measurement[J]. High Power Laser Part Beams, 2020, 32(8): 081002. doi: 10.11884/HPLPB202032.200082

    CrossRef Google Scholar

    [62] 李恩德, 戴云, 王海英, 等. 微加工薄膜变形镜本征模分析[J]. 强激光与粒子束, 2006, 18(8): 1265−1270.

    Google Scholar

    Li E D, Dai Y, Wang H Y, et al. Eigen mode of micromachined membrane deformable mirror[J]. High Power Laser Part Beams, 2006, 18(8): 1265−1270.

    Google Scholar

    [63] Shi Y, Wu Q W, Ming J. An archimedean spiral antenna for generation of tunable angular momentum wave[J]. IEEE Access, 2021, 9: 63122−63130. doi: 10.1109/ACCESS.2021.3074210

    CrossRef Google Scholar

    [64] Tao S H, Yuan X C, Lin J, et al. Fractional optical vortex beam induced rotation of particles[J]. Opt Express, 2005, 13(20): 7726−7731. doi: 10.1364/OPEX.13.007726

    CrossRef Google Scholar

    [65] Hu J T, Tai Y P, Zhu L H, et al. Optical vortex with multi-fractional orders[J]. Appl Phys Lett, 2020, 116(20): 201107. doi: 10.1063/5.0004692

    CrossRef Google Scholar

    [66] MacDonald M P, Paterson L, Volke-Sepulveda K, et al. Creation and manipulation of three-dimensional optically trapped structures[J]. Science, 2002, 296(5570): 1101−1103. doi: 10.1126/science.1069571

    CrossRef Google Scholar

  • In recent years, vortex beams have become the focus of research, and their orbital angular momentum makes them have many important applications, like optical communication, particle manipulation, and optical measurement. At the same time, researchers are paying attention to more abundant generation methods. In previous studies, vortex beam generation methods are usually divided into two categories. The first category is the outcavity, such as spiral phase plate method, spatial light modulator method, mode conversion method, metasurface method, and corner array method, and the second category is the incavity, such as point-loss method, off-axis pumping method, and spatial light modulator method. However, these methods can not tolerate high power laser output and adjust topological charges flexibly. Therefore, how to generate a vortex beam that can tolerate high power laser output and adjust the topological charges flexibly is an important problem to be solved. Continuous surface deformation mirror is a key component of adaptive optical system. In the study of wavefront fitting for continuous surface deformation mirrors, there are usually two kinds of methods. The first type is model-free method, such as genetic algorithm, simulated annealing algorithm, stochastic parallel gradient descent (SPGD) algorithm, etc. These methods generally require many iterations and slow convergence, and it is difficult to change the topological charge flexibly. The second type is pattern method, such as Zernike mode method, Lukosz mode method, and enginmode method. This method first defines a set of complete orthogonal modes, calculates the mode coefficients, and completes the fitting of the target wavefront by linear superposition of each mode. Zernike mode is orthogonal in the circular domain, Lukosz mode is orthogonal in the circular domain derivative. However, usually the configuretion of deformation mirror is not circular domain. For example, the deformation mirror driver used in this paper is arranged in circular domain. In this case, the orthogonal basis needs to be rebuilt to use these two methods. The eigenmode of the deformed mirror is directly and precisely derived from the influence function of the deformed mirror drivers, so it can not only avoid the influence of fitting error, improve the fitting accuracy, but also adapt to the different configuration of the deformed mirror. Combined with the eigenmode method, continuous surface deformation mirror can fit all kinds of vortex beams with high precision and fast fitting speed, and can be applied to all kinds of deformation mirrors with different configurations. In this paper, the eigenmode method of continuous surface deformation mirror is used to simulate and analyze the fitting of the spiral wavefront of integer order with topological charge is −5 to 5, fractional order, multi-fractional order, and superposition state with the absolute value of topological charge less than 5. Various vortex light fields are generated by dynamic manipulation. The results show that the continuous surface deformation mirror will have a good application prospect in the field of high-power vortex field manipulation.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Article Metrics

Article views(7801) PDF downloads(817) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint