Chen X S, Du W J, Lou Z L, et al. Label-free far-field subdiffraction imaging based on hyperbolic metamaterial[J]. Opto-Electron Eng, 2022, 49(11): 220056. doi: 10.12086/oee.2022.220056
Citation: Chen X S, Du W J, Lou Z L, et al. Label-free far-field subdiffraction imaging based on hyperbolic metamaterial[J]. Opto-Electron Eng, 2022, 49(11): 220056. doi: 10.12086/oee.2022.220056

Label-free far-field subdiffraction imaging based on hyperbolic metamaterial

    Fund Project: National Natural Science Foundation of China (62105276, 61905073), the Hunan Natural Science Foundation of China (2020JJ5550).
More Information
  • Super-resolution optical microscopy is an important technology due to the non-contact and non-destructive advantages. Currently, most of the super-resolution imaging methods rely on fluorescent dyes, which limited their applications. The label-free far-field microscopy imaging method based on the frequency shift effect has been proposed and developed in recent years. However, its spatial resolution is limited by the refractive index of waveguide materials. Based on the characteristic of optical spatial spectrum band-pass filtering in hyperbolic metamaterials (HMM), a large-area uniform bulk plasmon polariton (BPP) field with high spatial frequency can be achieved by combining with nano-scale gratings. Due to the large wave vector of the BPP illumination, the high-frequency information of the object can be transferred to the passband in traditional imaging systems and participate in super-resolution imaging. Illuminated by a BPP field with 2.66 k0 at a wavelength of 532 nm, a double-slit structure with a 100 nm-wide center-to-center distance has been resolved with a 0.85 numerical aperture standard objective based on this method. The lateral resolution is improved to λ/5.32. By further improving the transverse wave vector of BPP, it can be improved to λ/7.82. This design is label-free and conveniently integrated with traditional microscopes, which provides a visual super-resolution imaging method for applications in biomedicine, on-chip industry, material science, and other fields.
  • 加载中
  • [1] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology[J]. Appl Spectrosc, 2011, 65(9): 967−980. doi: 10.1366/11-06398

    CrossRef Google Scholar

    [2] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642−1645. doi: 10.1126/science.1127344

    CrossRef Google Scholar

    [3] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Opt Lett, 1994, 19(11): 780−782. doi: 10.1364/OL.19.000780

    CrossRef Google Scholar

    [4] Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation[J]. Opto-Electron Sci, 2022, 1(1): 210003. doi: 10.29026/oes.2022.210003

    CrossRef Google Scholar

    [5] Lewis A, Isaacson M, Harootunian A, et al. Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures[J]. Ultramicroscopy, 1984, 13(3): 227−231. doi: 10.1016/0304-3991(84)90201-8

    CrossRef Google Scholar

    [6] 刘小威. 基于照明调控的无标记远场超分辨显微成像[D]. 杭州: 浙江大学, 2017: 7–11.

    Google Scholar

    Liu X W. Label-free far-field super resolution microscopy based on illumination modulation[D]. Hangzhou: Zhejiang University, 2017: 7–11.

    Google Scholar

    [7] Axelrod D, Thompson N L, Burghardt T P. Total internal reflection fluorescent microscopy[J]. J Microsc, 1983, 129(1): 19−28. doi: 10.1111/j.1365-2818.1983.tb04158.x

    CrossRef Google Scholar

    [8] Farinas J, Simanek V, Verkman A S. Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs[J]. Biophys J, 1995, 68(4): 1613−1620. doi: 10.1016/S0006-3495(95)80335-8

    CrossRef Google Scholar

    [9] Cox I J, Sheppard C J R. Scanning optical microscope incorporating a digital framestore and microcomputer[J]. Appl Opt, 1983, 22(10): 1474−1478. doi: 10.1364/AO.22.001474

    CrossRef Google Scholar

    [10] White J G, Amos W B, Fordham M. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy[J]. J Cell Biol, 1987, 105(1): 41−48. doi: 10.1083/jcb.105.1.41

    CrossRef Google Scholar

    [11] Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proc Natl Acad Sci USA, 2000, 97(15): 8206−8210. doi: 10.1073/pnas.97.15.8206

    CrossRef Google Scholar

    [12] Hell S W, Kroug M. Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit[J]. Appl Phys B, 1995, 60(5): 495−497. doi: 10.1007/BF01081333

    CrossRef Google Scholar

    [13] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nat Methods, 2006, 3(10): 793−796. doi: 10.1038/nmeth929

    CrossRef Google Scholar

    [14] Betzig E. Proposed method for molecular optical imaging[J]. Opt Lett, 1995, 20(3): 237−239. doi: 10.1364/OL.20.000237

    CrossRef Google Scholar

    [15] Schermelleh L, Carlton P M, Haase S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881): 1332−1336. doi: 10.1126/science.1156947

    CrossRef Google Scholar

    [16] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. J Microsc, 2000, 198(2): 82−87. doi: 10.1046/j.1365-2818.2000.00710.x

    CrossRef Google Scholar

    [17] Wei F F, Liu Z W. Plasmonic structured illumination microscopy[J]. Nano Lett, 2010, 10(7): 2531−2536. doi: 10.1021/nl1011068

    CrossRef Google Scholar

    [18] Wei F F, Lu D L, Shen H, et al. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy[J]. Nano Lett, 2014, 14(8): 4634−4639. doi: 10.1021/nl501695c

    CrossRef Google Scholar

    [19] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution fourier ptychographic microscopy[J]. Nat Photonics, 2013, 7(9): 739−745. doi: 10.1038/nphoton.2013.187

    CrossRef Google Scholar

    [20] Hao X, Liu X, Kuang C F, et al. Far-field super-resolution imaging using near-field illumination by micro-fiber[J]. Appl Phys Lett, 2013, 102(1): 013104. doi: 10.1063/1.4773572

    CrossRef Google Scholar

    [21] Hao X, Kuang C F, Li Y H, et al. Evanescent-wave-induced frequency shift for optical super resolution imaging[J]. Opt Lett, 2013, 38(14): 2455−2458. doi: 10.1364/OL.38.002455

    CrossRef Google Scholar

    [22] Liu X W, Kuang C F, Hao X, et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging[J]. Phys Rev Lett, 2017, 118(7): 076101. doi: 10.1103/PhysRevLett.118.076101

    CrossRef Google Scholar

    [23] Ling J Z, Wang Y C, Liu X, et al. Resolution improvement of dark-field microscopy via microparticle near-field illumination[J]. Opt Lett, 2021, 46(6): 1265−1268. doi: 10.1364/OL.418159

    CrossRef Google Scholar

    [24] Song M W, Wang D, Kudyshev Z A, et al. Enabling optical steganography, data storage, and encryption with plasmonic colors[J]. Laser Photon Rev, 2021, 15(3): 2000343. doi: 10.1002/lpor.202000343

    CrossRef Google Scholar

    [25] Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electron Adv, 2021, 4(1): 200008. doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [26] Zhu Y C, Chen X L, Yuan W Z, et al. A waveguide metasurface based quasi-far-field transverse-electric superlens[J]. Opto-Electron Adv, 2021, 4(10): 210013. doi: 10.29026/oea.2021.210013

    CrossRef Google Scholar

    [27] Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 2021, 4(2): 200031. doi: 10.29026/oea.2021.200031

    CrossRef Google Scholar

    [28] 周毅, 梁高峰, 温中泉, 等. 光学超分辨平面超构透镜研究进展[J]. 光电工程, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

    CrossRef Google Scholar

    Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

    CrossRef Google Scholar

    [29] Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [30] Luo X G, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Appl Phys Lett, 2004, 84(23): 4780−4782. doi: 10.1063/1.1760221

    CrossRef Google Scholar

    [31] Luo X G, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance[J]. Opt Express, 2004, 12(14): 3055−3065. doi: 10.1364/OPEX.12.003055

    CrossRef Google Scholar

    [32] Pu M B, Guo Y H, Li X, et al. Revisitation of extraordinary young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces[J]. ACS Photonics, 2018, 5(8): 3198−3204. doi: 10.1021/acsphotonics.8b00437

    CrossRef Google Scholar

    [33] Luo X G, Pu M B, Li X, et al. Young’s double-slit interference enabled by surface plasmon polaritons: a review[J]. J Phys D Appl Phys, 2020, 53(5): 053001. doi: 10.1088/1361-6463/ab50cd

    CrossRef Google Scholar

    [34] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534−537. doi: 10.1126/science.1108759

    CrossRef Google Scholar

    [35] Wang C T, Zhao Z Y, Gao P, et al. Surface plasmon lithography beyond the diffraction limit[J]. Chin Sci Bull, 2016, 61(6): 585−599. doi: 10.1360/N972015-01038

    CrossRef Google Scholar

    [36] Luo X G. Extraordinary Young’s Interferences and Super-Diffraction Laser Lithography[M]//Sugioka K. Handbook of Laser Micro- and Nano-Engineering. Cham: Springer, 2020: 1–40.

    Google Scholar

    [37] Gao P, Yao N, Wang C T, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Appl Phys Lett, 2015, 106(9): 093110. doi: 10.1063/1.4914000

    CrossRef Google Scholar

    [38] Beliaev L Y, Takayama O, Melentiev P N, et al. Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review[J]. Opto-Electron Adv, 2021, 4(8): 210031. doi: 10.29026/oea.2021.210031

    CrossRef Google Scholar

    [39] Schurig D, Smith D R. Spatial filtering using media with indefinite permittivity and permeability tensors[J]. Appl Phys Lett, 2003, 82(14): 2215−2217. doi: 10.1063/1.1562344

    CrossRef Google Scholar

    [40] Wood B, Pendry J B, Tsai D P. Directed subwavelength imaging using a layered metal-dielectric system[J]. Phys Rev B, 2006, 74(11): 115116. doi: 10.1103/PhysRevB.74.115116

    CrossRef Google Scholar

    [41] Wang C T, Gao P, Tao X, et al. Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films[J]. Appl Phys Lett, 2013, 103(3): 031911. doi: 10.1063/1.4815924

    CrossRef Google Scholar

    [42] Guo Z, Zhao Z Y, Yan L S, et al. Moiré fringes characterization of surface plasmon transmission and filtering in multi metal-dielectric films[J]. Appl Phys Lett, 2014, 105(14): 141107. doi: 10.1063/1.4896022

    CrossRef Google Scholar

    [43] Liu Z W, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686. doi: 10.1126/science.1137368

    CrossRef Google Scholar

    [44] Liu H C, Kong W J, Liu K P, et al. Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons[J]. Opt Express, 2017, 25(17): 20511−20521. doi: 10.1364/OE.25.020511

    CrossRef Google Scholar

    [45] Kong W J, Du W J, Liu K P, et al. Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth[J]. Nanoscale, 2016, 8(38): 17030−17038. doi: 10.1039/C6NR03313J

    CrossRef Google Scholar

    [46] Kong W, Du W J, Liu K P, et al. Surface imaging microscopy with tunable penetration depth as short as 20 nm by employing hyperbolic metamaterials[J]. J Mater Chem C, 2018, 6(7): 1797−1805. doi: 10.1039/C7TC04748G

    CrossRef Google Scholar

    [47] 杜文娟, 王长涛, 赵泽宇, 等. 金属-介质多层膜超衍射材料频谱滤波特性[J]. 光电工程, 2014, 41(11): 89−94. doi: 10.3969/j.issn.1003-501X.2014.11.015

    CrossRef Google Scholar

    Du W J, Wang C T, Zhao Z Y, et al. Characteristic investigation of spatial spectrums filtering in metal-dielectric multilayer metamaterials[J]. Opto-Electron Eng, 2014, 41(11): 89−94. doi: 10.3969/j.issn.1003-501X.2014.11.015

    CrossRef Google Scholar

    [48] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University, 1999.

    Google Scholar

    [49] Palik E D. Handbook of Optical Constants of Solids. Volume III[M]. San Diego: Academic Press, 1998: 356, 760.

    Google Scholar

  • The spatial resolution of traditional optical microscopy is limited by the diffraction limit λ/(2NA) (λ is the wavelength, NA is the numerical aperture of the objective lens of system), and the lateral resolution is about 200 nm~300 nm, which makes it difficult to achieve clear imaging for micro-nano structures or cell samples. In this paper, a label-free far-field super-resolution imaging method based on hyperbolic metamaterial is proposed. Super-resolution optical microscopy is an important technology due to the non-contact and non-destructive advantages. Currently, most of the super-resolution imaging methods rely on the fluorescent dyes, which limited their applications. The label-free far-field microscopy imaging method based on the frequency shift effect has been proposed and developed in recent years. However, its spatial resolution is limited by the refractive index of waveguide materials. Based on the characteristic of optical spatial spectrum band-pass filtering in hyperbolic metamaterials (HMM), a large-area uniform bulk plasmon polariton (BPP) field with high spatial frequency can be achieved by combining with nano-scale gratings. Due to the large wave vector of the BPP illumination, the high-frequency information of the object can be transferred to the passband in traditional imaging systems and participate in super-resolution imaging. Illuminated by a BPP field with 2.66k0 at the wavelength of 532 nm, a double-slits structure with a 100 nm-wide center-to-center distance has been resolved with a 0.85 numerical aperture standard objective based on this method. The lateral resolution is improved to λ/5.32. By further improving the transverse wave vector of BPP, it can be improved to λ/7.82. This design is label-free and conveniently integrated with traditional microscopes, which provides a visual super-resolution imaging method for applications in biomedicine, on-chip industry, material science, and other fields.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(8113) PDF downloads(775) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint