Xia X L, Zeng X Z, Song S C, et al. Longitudinal super-resolution spherical multi-focus array based on column vector light modulation[J]. Opto-Electron Eng, 2022, 49(11): 220109. doi: 10.12086/oee.2022.220109
Citation: Xia X L, Zeng X Z, Song S C, et al. Longitudinal super-resolution spherical multi-focus array based on column vector light modulation[J]. Opto-Electron Eng, 2022, 49(11): 220109. doi: 10.12086/oee.2022.220109

Longitudinal super-resolution spherical multi-focus array based on column vector light modulation

    Fund Project: National Natural Science Foundation of China (61875073,61605061, 61905097), Guangdong Provincial Innovation and Entrepreneurship Project ( 2016ZT06D081), and Zhijiang Lab (2020MC0AE01).
More Information
  • Featured by the capability of multi degree-of-freedom light-field manipulations while reserving high spatial resolution, multifocal laser arrays have been widely applied in femtosecond laser micro/nanofabrication, optical trapping, and so forth. Yet, due to the relatively lower axial resolution of single focuses within the array in comparison with the lateral resolution of their own, multifocal laser array has been refrained from isotropic 3D nanofabrication. Herein, we propose a feasible method for generation of axially super-resolved multifocal array with quasi-spherical focal spots. In particular, quasi-spherical multifocal array is optically synthesized via precise modulation on the coherent superposition of the orthogonal radially polarized beam (RPB) and azimuthally polarized beam (APB) states in the focal region based on annular amplitude modulation. We show theoretically the generation of quasi-spherical multifocal array with a high uniformity up to 99%. The average axial and lateral full-width-half maximum (FWHM) of the focal array are measured to be 0.76λ with the standard deviations in the axial and lateral directions being 0.005λ and 0.019λ, respectively. The presented strategy for synthesis of quasi-spherical multifocal array with high uniformity paves the way for high-precision laser fabrication of 3D micro/nano devices.
  • 加载中
  • [1] Kato J I, Takeyasu N, Adachi Y, et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Appl Phys Lett, 2005, 86(4): 044102. doi: 10.1063/1.1855404

    CrossRef Google Scholar

    [2] Yamaji M, Kawashima H, Suzuki J I, et al. Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram[J]. Appl Phys Lett, 2008, 93(4): 041116. doi: 10.1063/1.2965451

    CrossRef Google Scholar

    [3] Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 2010, 5(5): 435−448. doi: 10.1016/j.nantod.2010.08.007

    CrossRef Google Scholar

    [4] 聂芳松, 姜美玲, 张明偲, 等. 基于迂回相位的轨道角动量Talbot阵列照明器[J]. 光电工程, 2020, 47(6): 200093. doi: 10.12086/oee.2020.200093

    CrossRef Google Scholar

    Nie F S, Jiang M L, Zhang M S, et al. Orbital angular momentum Talbot array illuminator based on detour phase encoding[J]. Opto-Electron Eng, 2020, 47(6): 200093. doi: 10.12086/oee.2020.200093

    CrossRef Google Scholar

    [5] Dufresne E R, Spalding G C, Dearing M T, et al. Computer-generated holographic optical tweezer arrays[J]. Rev Sci Instrum, 2001, 72(3): 1810. doi: 10.1063/1.1344176

    CrossRef Google Scholar

    [6] Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Opt Express, 2007, 15(4): 1913−1922. doi: 10.1364/OE.15.001913

    CrossRef Google Scholar

    [7] Cai Y N, Yan S H, Wang Z J, et al. Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers[J]. Opt Express, 2020, 28(9): 12729−12739. doi: 10.1364/OE.389897

    CrossRef Google Scholar

    [8] Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses[J]. Opt Lett, 2006, 31(11): 1705−1707. doi: 10.1364/OL.31.001705

    CrossRef Google Scholar

    [9] Hasegawa S, Hayasaki Y. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on a liquid crystal spatial light modulator[J]. Opt Rev, 2007, 14(4): 208−213. doi: 10.1007/s10043-007-0208-9

    CrossRef Google Scholar

    [10] Salter P S, Booth M J. Addressable microlens array for parallel laser microfabrication[J]. Opt Lett, 2011, 36(12): 2302−2304. doi: 10.1364/OL.36.002302

    CrossRef Google Scholar

    [11] Zandrini T, Shan O M, Parodi V, et al. Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine[J]. Sci Rep, 2019, 9(1): 11761. doi: 10.1038/s41598-019-48080-w

    CrossRef Google Scholar

    [12] Geng Q, Wang D E, Chen P F, et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization[J]. Nat Commun, 2019, 10(1): 2179. doi: 10.1038/s41467-019-10249-2

    CrossRef Google Scholar

    [13] Skelton S E, Sergides M, Saija R, et al. Trapping volume control in optical tweezers using cylindrical vector beams[J]. Opt Lett, 2013, 38(1): 28−30. doi: 10.1364/OL.38.000028

    CrossRef Google Scholar

    [14] Biss D P, Youngworth K S, Brown T G. Dark-field imaging with cylindrical-vector beams[J]. Appl Opt, 2006, 45(3): 470−479. doi: 10.1364/AO.45.000470

    CrossRef Google Scholar

    [15] Feng Z X, Cheng D W, Wang Y T. Iterative freeform lens design for prescribed irradiance on curved target[J]. Opto-Electron Adv, 2020, 3(7): 200010. doi: 10.29026/oea.2020.200010

    CrossRef Google Scholar

    [16] 欧阳旭, 徐毅, 冼铭聪, 等. 基于无序金纳米棒编码的多维光信息存储[J]. 光电工程, 2019, 46(3): 180584. doi: 10.12086/oee.2019.180584

    CrossRef Google Scholar

    Ouyang X, Xu Y, Xian M C, et al. Encoding disorder gold nanorods for multi-dimensional optical data storage[J]. Opto-Electron Eng, 2019, 46(3): 180584. doi: 10.12086/oee.2019.180584

    CrossRef Google Scholar

    [17] Ouyang X, Xu Y, Xian M C, et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nat Photonics, 2021, 15(12): 901−907. doi: 10.1038/s41566-021-00880-1

    CrossRef Google Scholar

    [18] 姜美玲, 张明偲, 李向平, 等. 超分辨光存储研究进展[J]. 光电工程, 2019, 46(3): 180649. doi: 10.12086/oee.2019.180649

    CrossRef Google Scholar

    Jiang M L, Zhang M S, Li X P, et al. Research progress of super-resolution optical data storage[J]. Opto-Electron Eng, 2019, 46(3): 180649. doi: 10.12086/oee.2019.180649

    CrossRef Google Scholar

    [19] Wang J Y, Tan X D, Qi P L, et al. Linear polarization holography[J]. Opto-Electron Sci, 2022, 1(2): 210009. doi: 10.29026/oes.2022.210009

    CrossRef Google Scholar

    [20] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Appl Phys A, 2007, 86(3): 329−334. doi: 10.1007/s00339-006-3784-9

    CrossRef Google Scholar

    [21] 曹耀宇, 谢飞, 张鹏达, 等. 双光束超分辨激光直写纳米加工技术[J]. 光电工程, 2017, 44(12): 1133−1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    CrossRef Google Scholar

    Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electron Eng, 2017, 44(12): 1133−1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    CrossRef Google Scholar

    [22] Qin L, Huang Y Q, Xia F, et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography[J]. Nano Lett, 2020, 20(7): 4916−4923. doi: 10.1021/acs.nanolett.0c00978

    CrossRef Google Scholar

    [23] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Opt Express, 2000, 7(2): 77−87. doi: 10.1364/OE.7.000077

    CrossRef Google Scholar

    [24] Yun M J, Liu L R, Sun J F, et al. Transverse or axial superresolution with radial birefringent filter[J]. J Opt Soc Am A, 2004, 21(10): 1869−1874. doi: 10.1364/JOSAA.21.001869

    CrossRef Google Scholar

    [25] Waller E H, Renner M, von Freymann G. Active aberration-and point-spread-function control in direct laser writing[J]. Opt Express, 2012, 20(22): 24949−24956. doi: 10.1364/OE.20.024949

    CrossRef Google Scholar

    [26] Ovsianikov A, Viertl J, Chichkov B, et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication[J]. ACS Nano, 2008, 2(11): 2257−2262. doi: 10.1021/nn800451w

    CrossRef Google Scholar

    [27] Lin H, Jia B H, Gu M. Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam[J]. Opt Lett, 2011, 36(13): 2471−2473. doi: 10.1364/OL.36.002471

    CrossRef Google Scholar

    [28] Neil M A A, Juškaitis R, Wilson T, et al. Optimized pupil-plane filters for confocal microscope point-spread function engineering[J]. Opt Lett, 2000, 25(4): 245−247. doi: 10.1364/OL.25.000245

    CrossRef Google Scholar

    [29] Martínez-Corral M, Ibáñez-López C, Saavedra G, et al. Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters[J]. Opt Express, 2003, 11(15): 1740−1745. doi: 10.1364/OE.11.001740

    CrossRef Google Scholar

    [30] Ibáñez-López C, Saavedra G, Boyer G, et al. Quasi-isotropic 3-D resolution in two-photon scanning microscopy[J]. Opt Express, 2005, 13(16): 6168−6174. doi: 10.1364/OPEX.13.006168

    CrossRef Google Scholar

    [31] de Juana D M, Oti J E, Canales V F, et al. Transverse or axial superresolution in a 4Pi-confocal microscope by phase-only filters[J]. J Opt Soc Am A, 2003, 20(11): 2172−2178. doi: 10.1364/JOSAA.20.002172

    CrossRef Google Scholar

    [32] 蔡建文. 飞秒激光微加工中轴向超分辨相位板的设计及仿真[J]. 应用光学, 2014, 35(5): 908−911. doi: 10.5768/JAO201435.0507003

    CrossRef Google Scholar

    Cai J W. Design and simulation of axial super-resolved phase plate in femtosecond laser microfabrication[J]. J Appl Opt, 2014, 35(5): 908−911. doi: 10.5768/JAO201435.0507003

    CrossRef Google Scholar

    [33] Gu M. Advanced Optical Imaging Theory[M]. Berlin: Springer, 2000.

    Google Scholar

    [34] Lin J, Rodríguez-Herrera O G, Kenny F, et al. Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform[J]. Opt Express, 2012, 20(2): 1060−1069. doi: 10.1364/OE.20.001060

    CrossRef Google Scholar

    [35] Jenness N J, Wulff K D, Johannes M S, et al. Three-dimensional parallel holographic micropatterning using a spatial light modulator[J]. Opt Express, 2008, 16(20): 15942−15948. doi: 10.1364/OE.16.015942

    CrossRef Google Scholar

    [36] Leutenegger M, Rao R, Leitgeb R A, et al. Fast focus field calculations[J]. Opt Express, 2006, 14(23): 11277−11291. doi: 10.1364/OE.14.011277

    CrossRef Google Scholar

    [37] 吕清花, 程壮, 翟中生, 等. 基于计算全息的无衍射光莫尔条纹三自由度测量方法研究[J]. 光电工程, 2020, 47(2): 190331. doi: 10.12086/oee.2020.190331

    CrossRef Google Scholar

    Lv Q H, Cheng Z, Zhai Z S, et al. 3-DOF measurement method for non-diffracting Moiré fringes based on CGH[J]. Opto-Electron Eng, 2020, 47(2): 190331. doi: 10.12086/oee.2020.190331

    CrossRef Google Scholar

    [38] Xue Y, Kuang C F, Li S, et al. Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy[J]. Opt Express, 2012, 20(16): 17653−17666. doi: 10.1364/OE.20.017653

    CrossRef Google Scholar

    [39] Xian M C, Xu Y, Ouyang X, et al. Segmented cylindrical vector beams for massively-encoded optical data storage[J]. Sci Bull, 2020, 65(24): 2072−2079. doi: 10.1016/j.scib.2020.07.016

    CrossRef Google Scholar

  • Featured by the capability of multi degree-of-freedom light-field manipulations while reserving high spatial resolution, multifocal laser arrays have been widely applied in femtosecond laser micro/nanofabrication, optical trapping, etc. However, for lens diffraction, the smaller momentum spread along the optical axis with respect to that in the transverse direction could introduce a larger position spread in real space, which in turn leads to lower axial resolution than the transverse resolution. The anisotropy of the focused laser beam, inherent regardless of paraxial or tight-focusing cases, has been a great hurdle for laser printing of functional microdevices with precise control on feature size and improved mechanical performances. To this end, in this research, a feasible method for generation of isotropic focused laser beam with quasi-spherical 3D point spread function (PSF) is developed based on vectorial light field modulation. We demonstrate that through simultaneous implementation of phase modulation and amplitude modulation, homogeneous multifocal array with quasi-spherical focal spots can be generated. Particularly, with the use of a well-designed annular mask, the suppression on the axial spread of field is accomplished via accurate control on the coherent superposition of the orthogonal radially polarized beam (RPB) and azimuthally polarized beam (APB) in the focal region since the depolarized axial component of the AP beam vanishes in vicinity of the gaussian focus even under tight focusing condition. Using the proposed method, isotropic 3D PSF with identical axial and transverse FWHM of 0.71λ is achieved. Meanwhile, based on iterative phase retrieval algorithm, phase-only holograms are designed and employed transforming the incident wavelet as the summation of sub-wavelets, yielding multiple converging sites in 3D space, thereby generating the multifocal array. We further present the synthesis of quasi-spherical multifocal array. A high uniformity up to 99% for a 10-by-10 multifocal array, in which the single focus elements share near-identical axial and transverse FWHM, being 0.76λ on average. The standard deviation of the axial and transverse FWHM of the multifocal array are evaluated be 0.005λ and 0.019λ, respectively, highlighting the features of high uniformity and isotropy. The reported strategy renders precise control on the axial feature size and is potential for the application in high-precision parallel laser printing technique.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(7564) PDF downloads(1000) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint