Wang X X, Chen H W, Zhu J K, et al. Research on surface plasmon refractive index sensing of gold nano cone array and gold film coupling structure[J]. Opto-Electron Eng, 2022, 49(12): 220135. doi: 10.12086/oee.2022.220135
Citation: Wang X X, Chen H W, Zhu J K, et al. Research on surface plasmon refractive index sensing of gold nano cone array and gold film coupling structure[J]. Opto-Electron Eng, 2022, 49(12): 220135. doi: 10.12086/oee.2022.220135

Research on surface plasmon refractive index sensing of gold nano cone array and gold film coupling structure

    Fund Project: National Natural Science Foundation of China (61865008, 62165013), and HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology
More Information
  • A surface plasmon resonance refractive index sensor based on the coupling structure of gold nano cones and a gold film with a SiO2 film as spacer-layer is designed. The surface plasmon resonance modes in the composite structure are studied by using the Finite Difference Time Domain method. The composite structure can stimulate not only localized surface plasmon, but also propagating surface plasmon. The energy of the incident electromagnetic wave is partially coupled to the localized surface plasmon through a single gold nano cone, and partially coupled to the propagating surface plasmon through a grating of gold nano cone array. The reflection spectra of the composite structure are simulated in the refractive index range of 1.30 to 1.40. It is found that the resonance wavelength has a linear relationship with the refractive index of the analyte, and the reflectivity at the resonance is almost zero due to the strong resonance coupling between localized and propagating surface plasmon. In addition, the full width at half maximum of propagating surface plasmon resonance mode is very narrow when the geometric parameters of gold nano cone are optimized. The sensitivity and figure of merit reach 770 nm/RIU and 113 RIU−1 respectively, and it has good refractive index sensing performance. The designed composite structure is expected to be widely used in the field of biochemical detection.
  • 加载中
  • [1] Wang X X, Zhu J K, Tong H, et al. A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer[J]. Chin Phys B, 2019, 28(4): 044201. doi: 10.1088/1674-1056/28/4/044201

    CrossRef Google Scholar

    [2] Liu C, Lü J W, Liu W, et al. Overview of refractive index sensors comprising photonic crystal fibers based on the surface Plasmon resonance effect [Invited][J]. Chin Opt Lett, 2021, 19(10): 102202. doi: 10.3788/COL202119.102202

    CrossRef Google Scholar

    [3] Liu C, Yang L, Liu Q, et al. Analysis of a surface Plasmon resonance probe based on photonic crystal fibers for low refractive index detection[J]. Plasmonics, 2018, 13(3): 779−784. doi: 10.1007/s11468-017-0572-7

    CrossRef Google Scholar

    [4] Wang X X, Zhu J K, Xu Y Q, et al. A plasmonic refractive index sensor with double self-reference characteristic[J]. Europhys Lett, 2021, 135(2): 27001. doi: 10.1209/0295-5075/135/27001

    CrossRef Google Scholar

    [5] Cheng T T, Gao H J, Liu G R, et al. Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions[J]. Colloids Surf A-Physicochem Eng Asp, 2022, 633: 127918. doi: 10.1016/j.colsurfa.2021.127918

    CrossRef Google Scholar

    [6] Guan S T, Li R S, Sun X F, et al. Construction of novel ternary Au/LaFeO3/Cu2O composite photocatalysts for RhB degradation via photo-Fenton catalysis[J]. Mater Technol, 2021, 36(10): 603−615. doi: 10.1080/10667857.2020.1782062

    CrossRef Google Scholar

    [7] Gao H J, Zhao X X, Zhang H M, et al. Construction of 2D/0D/2D face-to-face contact g-C3N4@Au@Bi4Ti3O12 heterojunction photocatalysts for degradation of rhodamine B[J]. J Electron Mater, 2020, 49(9): 5248−5259. doi: 10.1007/s11664-020-08243-2

    CrossRef Google Scholar

    [8] Jia T X, Wang X X, Ren Y Q, et al. Incidence angle effects on the fabrication of microstructures using six-beam laser interference lithography[J]. Coatings, 2021, 11(1): 62. doi: 10.3390/coatings11010062

    CrossRef Google Scholar

    [9] Wang X X, Jia T X, Zhu J K, et al. Theoretical study of micro-structure fabrication by multi-beam laser interference lithography with different polarization combinations[J]. Mod Phys Lett B, 2021, 35(32): 2150459. doi: 10.1142/S0217984921504595

    CrossRef Google Scholar

    [10] Wang X X, Zhang J, Zhu J K, et al. Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film[J]. Chin Phys B, 2021, 31(2): 024210. doi: 10.1088/1674-1056/ac3816

    CrossRef Google Scholar

    [11] Chen J, Peng C, Qi S B, et al. Photonic microcavity-enhanced magnetic Plasmon resonance of metamaterials for sensing applications[J]. IEEE Photonics Technol Lett, 2019, 31(2): 113−116. doi: 10.1109/LPT.2018.2881989

    CrossRef Google Scholar

    [12] Chen J, Nie H, Tang C J, et al. Highly sensitive refractive-index sensor based on strong magnetic resonance in metamaterials[J]. Appl Phys Express, 2019, 12(5): 052015. doi: 10.7567/1882-0786/ab14fa

    CrossRef Google Scholar

    [13] 张伟建, 曾祥龙, 杨傲, 等. 纳米金涂覆微纳光纤的倏逝场氨气检测研究[J]. 光电工程, 2021, 48(9): 200451. doi: 10.12086/oee.2021.200451

    CrossRef Google Scholar

    Zhang W J, Zeng X L, Yang A, et al. Research on evanescent field ammonia detection with gold-nanosphere coated microfibers[J]. Opto-Electron Eng, 2021, 48(9): 200451. doi: 10.12086/oee.2021.200451

    CrossRef Google Scholar

    [14] 张俊卿, 吴毅萍, 陈晟皓, 等. 改进型蝴蝶结超表面及在痕量铅离子检测中的应用[J]. 光电工程, 2021, 48(8): 210123. doi: 10.12086/oee.2021.210123

    CrossRef Google Scholar

    Zhang J Q, Wu Y P, Chen S H, et al. Optimized bow-tie metasurface and its application in trace detection of lead ion[J]. Opto-Electron Eng, 2021, 48(8): 210123. doi: 10.12086/oee.2021.210123

    CrossRef Google Scholar

    [15] Zhou F Q, Qin F, Yi Z, et al. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface Plasmon resonance[J]. Phys Chem Chem Phys, 2021, 23(31): 17041−17048. doi: 10.1039/D1CP03036A

    CrossRef Google Scholar

    [16] Yan Z D, Lu X, Du W, et al. Ultraviolet graphene ultranarrow absorption engineered by lattice Plasmon resonance[J]. Nanotechnology, 2021, 32(46): 465202. doi: 10.1088/1361-6528/ac1af9

    CrossRef Google Scholar

    [17] Wu X L, Zheng Y, Luo Y, et al. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity[J]. Phys Chem Chem Phys, 2021, 23(47): 26864−26873. doi: 10.1039/D1CP04568G

    CrossRef Google Scholar

    [18] Yu M D, Huang Z P, Liu Z Q, et al. Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates[J]. Sens Actuators B Chem, 2018, 262: 845−851. doi: 10.1016/j.snb.2018.02.048

    CrossRef Google Scholar

    [19] Liu G Q, Liu Y, Tang L, et al. Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures[J]. Nanophotonics, 2019, 8(6): 1095−1107. doi: 10.1515/nanoph-2019-0078

    CrossRef Google Scholar

    [20] Fu Q, Zhang D G, Chen Y K, et al. Surface enhanced Raman scattering arising from plasmonic interaction between silver Nano-cubes and a silver grating[J]. Appl Phys Lett, 2013, 103(4): 041122. doi: 10.1063/1.4816739

    CrossRef Google Scholar

    [21] Chu Y Z, Crozier K B. Experimental study of the interaction between localized and propagating surface plasmons[J]. Opt Lett, 2009, 34(3): 244−246. doi: 10.1364/OL.34.000244

    CrossRef Google Scholar

    [22] Kohandani R, Saini S S. Self-referencing plasmonic array sensors[J]. Plasmonics, 2020, 15(5): 1359−1368. doi: 10.1007/s11468-020-01155-1

    CrossRef Google Scholar

    [23] Abutoama M, Abdulhalim I. Self-referenced biosensor based on thin dielectric grating combined with thin metal film[J]. Opt Express, 2015, 23(22): 28667−28682. doi: 10.1364/OE.23.028667

    CrossRef Google Scholar

    [24] Shougaijam B, Singh S S. Structural and optical analysis of Ag nanoparticle-assisted and vertically aligned TiO2 nanowires for potential DSSCs application[J]. J Mater Sci Mater Electron, 2021, 32(14): 19052−19061. doi: 10.1007/s10854-021-06421-4

    CrossRef Google Scholar

    [25] Ouhibi A, Raouafi A, Lorrain N, et al. Functionalized SERS substrate based on silicon nanowires for rapid detection of prostate specific antigen[J]. Sens Actuators B Chem, 2021, 330: 129352. doi: 10.1016/j.snb.2020.129352

    CrossRef Google Scholar

    [26] Gebavi H, Ristić D, Baran N, et al. Development of silicon nanowires based on Ag-Au metal alloy seed system for sensing technologies[J]. Sens Actuators A Phys, 2021, 331: 112931. doi: 10.1016/j.sna.2021.112931

    CrossRef Google Scholar

    [27] Xu B J, Jiang M Y, Chen X N, et al. Synthesis of alloyed Au-Ag nanospheres with tunable compositions and SERS enhancement effects[J]. Mater Sci Forum, 2021, 1026: 197−207. doi: 10.4028/www.scientific.net/MSF.1026.197

    CrossRef Google Scholar

    [28] Zhu J K, Wang X X, Qi Y P, et al. Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings[J]. Chin Phys B, 2022, 31(1): 014206. doi: 10.1088/1674-1056/ac1335

    CrossRef Google Scholar

    [29] Zhu W L, Xu T T, Liu W K, et al. High-performance ethanol sensor based on In2O3 nanospheres grown on silicon nanoporous pillar array[J]. Sens Actuators B Chem, 2020, 324: 128734. doi: 10.1016/j.snb.2020.128734

    CrossRef Google Scholar

    [30] Jiao S X, Gu S F, Yang H R, et al. Research on dual-core photonic crystal fiber based on local surface Plasmon resonance sensor with silver nanowires[J]. J Nanophotonics, 2018, 12(4): 046015. doi: 10.1117/1.JNP.12.046015

    CrossRef Google Scholar

    [31] Zhu L W, Cao Y Y, Chen Q Q, et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J]. Opto-Electron Adv, 2021, 4(11): 210002. doi: 10.29026/oea.2021.210002

    CrossRef Google Scholar

    [32] Zhou F, Liu Y, Cai W P. Huge local electric field enhancement in hybrid plasmonic arrays[J]. Opt Lett, 2014, 39(5): 1302−1305. doi: 10.1364/OL.39.001302

    CrossRef Google Scholar

    [33] Cao J J, Sun Y, Kong Y, et al. The sensitivity of grating-based SPR sensors with wavelength interrogation[J]. Sensors, 2019, 19(2): 405. doi: 10.3390/s19020405

    CrossRef Google Scholar

    [34] Zhu J K, Wang X X, Wu Y, et al. Plasmonic refractive index sensors based on one- and two-dimensional gold grating on a gold film[J]. Photonic Sens, 2020, 10(4): 375−386. doi: 10.1007/s13320-020-0598-x

    CrossRef Google Scholar

    [35] Sharma A K, Pandey A K. Self-referenced plasmonic sensor with TiO2 grating on thin Au layer: simulated performance analysis in optical communication band[J]. J Opt Soc Am B, 2019, 36(8): F25−F31. doi: 10.1364/JOSAB.36.000F25

    CrossRef Google Scholar

    [36] Arora P, Talker E, Mazurski N, et al. Dispersion engineering with plasmonic Nano structures for enhanced surface Plasmon resonance sensing[J]. Sci Rep, 2018, 9(1): 9060. doi: 10.1038/s41598-018-27023-x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint