Zhang H M, Yang Y, Liu K F, et al. Broadband and high-efficiency edge detection device based on quasi-continuous metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220175. doi: 10.12086/oee.2022.220175
Citation: Zhang H M, Yang Y, Liu K F, et al. Broadband and high-efficiency edge detection device based on quasi-continuous metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220175. doi: 10.12086/oee.2022.220175

Broadband and high-efficiency edge detection device based on quasi-continuous metasurface

    Fund Project: National Key R&D Program of China (2020YFC1522900) and National Natural Science Foundation of China (61905031).
More Information
  • In this paper, we design an optical differential device based on quasi-continuous metasurface and realize one-dimensional edge detection of an optical image. By changing the spatial orientation of quasi-continuous nanostrips, the device achieves geometric phase in the range of 0~2π, and maintains high energy efficiency over a wide wavelength range. The simulation results show that when the illumination wavelength increases from 400 nm to 1000 nm, the quasi-continuous meta-device can achieve clear images for the target edge. The maximum energy efficiency is 90.27% (the incident wavelength is 600 nm) and the average energy efficiency is 64.57% (the incident wavelength changes from 400 nm to 1000 nm). It can be expected that the proposed method can promote the application of quasi-continuous metasurface in image information processing and ultrafast optical computation.
  • 加载中
  • [1] Liu F F, Wang T, Qiang L, et al. Compact optical temporal differentiator based on silicon microring resonator[J]. Opt Express, 2008, 16(20): 15880−15886. doi: 10.1364/OE.16.015880

    CrossRef Google Scholar

    [2] Slavik R, Park Y, Ayotte N, et al. Photonic temporal integrator for all-optical computing[J]. Opt Express, 2008, 16(22): 18202−18214. doi: 10.1364/OE.16.018202

    CrossRef Google Scholar

    [3] Yang T, Dong J J, Lu L J, et al. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator[J]. Sci Rep, 2014, 4: 5581. doi: 10.1038/srep05581

    CrossRef Google Scholar

    [4] Doskolovich L L, Bykov D A, Bezus E A, et al. Spatial differentiation of optical beams using phase-shifted Bragg grating[J]. Opt Lett, 2014, 39(5): 1278−1281. doi: 10.1364/OL.39.001278

    CrossRef Google Scholar

    [5] Bykov D A, Doskolovich L L, Morozov A A, et al. First-order optical spatial differentiator based on a guided-mode resonant grating[J]. Opt Express, 2018, 26(8): 10997−11006. doi: 10.1364/OE.26.010997

    CrossRef Google Scholar

    [6] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [7] Luo X G. Subwavelength artificial structures: opening a new era for engineering optics[J]. Adv Mater, 2019, 31(4): 1804680. doi: 10.1002/adma.201804680

    CrossRef Google Scholar

    [8] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    [9] Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electron Adv, 2021, 4(1): 200008. doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [10] Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 2021, 4(2): 200031. doi: 10.29026/oea.2021.200031

    CrossRef Google Scholar

    [11] Gao H, Fan X H, Xiong W, et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electron Adv, 2021, 4(11): 210030. doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [12] Tang D L, Chen L, Liu J, et al. Achromatic metasurface doublet with a wide incident angle for light focusing[J]. Opt Express, 2020, 28(8): 12209−12218. doi: 10.1364/OE.392197

    CrossRef Google Scholar

    [13] Tang D L, Chen L, Liu J J. Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing[J]. Opt Express, 2019, 27(9): 12308−12316. doi: 10.1364/OE.27.012308

    CrossRef Google Scholar

    [14] 周毅, 梁高峰, 温中泉, 等. 光学超分辨平面超构透镜研究进展[J]. 光电工程, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

    CrossRef Google Scholar

    Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

    CrossRef Google Scholar

    [15] Yu N F, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Lett, 2012, 12(12): 6328−6333. doi: 10.1021/nl303445u

    CrossRef Google Scholar

    [16] Zhang X L, Pu M B, Guo Y H, et al. Colorful metahologram with independently controlled images in transmission and reflection spaces[J]. Adv Funct Mater, 2019, 29(22): 1809145. doi: 10.1002/adfm.201809145

    CrossRef Google Scholar

    [17] Wan W W, Gao J, Yang X D. Full-color plasmonic metasurface holograms[J]. ACS Nano, 2016, 10(12): 10671−10680. doi: 10.1021/acsnano.6b05453

    CrossRef Google Scholar

    [18] Ma X L, Pu M B, Li X, et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation[J]. Opto-Electron Adv, 2019, 2(3): 180023. doi: 10.29026/oea.2019.180023

    CrossRef Google Scholar

    [19] Li Y, Li X, Chen L W, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Adv Opt Mater, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502

    CrossRef Google Scholar

    [20] Jin J J, Luo J, Zhang X H, et al. Generation and detection of orbital angular momentum via metasurface[J]. Sci Rep, 2016, 6: 24286. doi: 10.1038/srep24286

    CrossRef Google Scholar

    [21] Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [22] 李柱, 王长涛, 孔维杰, 等. 用于可见光波段切趾成像的宽带消色差超表面滤波器[J]. 光电工程, 2021, 48(5): 200466. doi: 10.12086/oee.2021.200466

    CrossRef Google Scholar

    Li Z, Wang C T, Kong W J, et al. Broadband achromatic metasurface filter for apodization imaging in the visible[J]. Opto-Electron Eng, 2021, 48(5): 200466. doi: 10.12086/oee.2021.200466

    CrossRef Google Scholar

    [23] Zhou J X, Qian H L, Chen C F, et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proc Natl Acad Sci USA, 2019, 116(23): 11137−11140. doi: 10.1073/pnas.1820636116

    CrossRef Google Scholar

    [24] 谢智强, 贺炎亮, 王佩佩, 等. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测[J]. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181

    CrossRef Google Scholar

    Xie Z Q, He Y L, Wang P P, et al. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface[J]. Acta Phys Sin, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181

    CrossRef Google Scholar

    [25] Abdollahramezani S, Chizari A, Dorche A E, et al. Dielectric metasurfaces solve differential and integro-differential equations[J]. Opt Lett, 2017, 42(7): 1197−1200. doi: 10.1364/OL.42.001197

    CrossRef Google Scholar

    [26] Li X, Pu M B, Wang Y Q, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Adv Opt Mater, 2016, 4(5): 659−663. doi: 10.1002/adom.201500713

    CrossRef Google Scholar

    [27] Luo X G, Pu M B, Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light Sci Appl, 2017, 6(6): e16276. doi: 10.1038/lsa.2016.276

    CrossRef Google Scholar

    [28] Wang Y Q, Pu M B, Zhang Z J, et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection[J]. Sci Rep, 2016, 5: 17733. doi: 10.1038/srep17733

    CrossRef Google Scholar

    [29] Guo Y H, Yan L S, Pan W, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Sci Rep, 2016, 6: 30154. doi: 10.1038/srep30154

    CrossRef Google Scholar

    [30] Li X, Pu M B, Zhao Z Y, et al. Catenary nanostructures as compact Bessel beam generators[J]. Sci Rep, 2016, 6: 20524. doi: 10.1038/srep20524

    CrossRef Google Scholar

    [31] Kischkat J, Peters S, Gruska B, et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride[J]. Appl Opt, 2012, 51(28): 6789−6798. doi: 10.1364/AO.51.006789

    CrossRef Google Scholar

    [32] Devlin R C, Khorasaninejad M, Chen W T, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proc Natl Acad Sci USA, 2016, 113(38): 10473−10478. doi: 10.1073/pnas.1611740113

    CrossRef Google Scholar

    [33] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [34] Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298−302. doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [35] Zhou J X, Qian H L, Zhao J X, et al. Two-dimensional optical spatial differentiation and high-contrast imaging[J]. Natl Sci Rev, 2021, 8(6): nwaa176. doi: 10.1093/nsr/nwaa176

    CrossRef Google Scholar

  • Image edge extraction is a widely used and rapidly developing technology, playing an important role in medical imaging, enhanced vision, automatic driving and other fields. In recent years, there has been growing interest in developing miniature metasurface devices to obtain image edge information. Currently, it has been reported that discrete metasurface edge detection devices are used to obtain image edge information, but discrete metasurfaces often maintain a high energy efficiency only near the preset wavelength, and the energy efficiency decreases when deviating from the preset wavelength, which will limit the operating bandwidth of the metasurface optical computing device. Here, an optical differential device is designed by using a metasurface composed of quasi-continuous nanostrips to realize one-dimensional images edge detection. By changing the spatial orientation of quasi-continuous nanostrips, the device achieves geometric phase in the range of 0~2π, and maintains high energy efficiency over a wide wavelength range. The optical path system consists of two linear polarizers and two lenses with the same focal length, of which two lenses are placed in a confocal position to form a classical 4f optical system. The designed quasi-continuous metasurface edge detection device is placed on the Fourier plane of the 4f optical system. The original image is located on the object plane of the 4f optical system (at the front focal plane of the lens 1), and the object edge information is finally obtained on the image plane of the 4f optical system (at the rear focal plane of the lens 2). The simulation results show that the designed sample can achieve high average energy efficiency edge detection in the whole visible and near-infrared bands. Specifically, the quasi-continuous meta-device can obtain a clear image of object edge in the wavelength range of 400 nm~1000 nm, the energy efficiency of the device reaches 90.27% at the wavelength of 600 nm, and the average energy efficiency is 64.57% at the wavelength of 400 nm~1000 nm. Compared with the traditional edge detection devices based on discrete metasurface, the quasi-continuous devices have higher broadband average energy efficiency. Hopefully, this work enjoys many research merits in signal processing, optical communication and machine vision.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint