Citation: | Han Y Y, Chen P P, Wang M, et al. SPPs directional excitation of linearly polarized light based on catenary nanoparticle metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220105. doi: 10.12086/oee.2022.220105 |
[1] | 周毅, 梁高峰, 温中泉, 等. 光学超分辨平面超构透镜研究进展[J]. 光电工程, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399 Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399 |
[2] | 李柱, 王长涛, 孔维杰, 等. 用于可见光波段切趾成像的宽带消色差超表面滤波器[J]. 光电工程, 2021, 48(5): 200466. doi: 10.12086/oee.2021.200466 Li Z, Wang C T, Kong W J, et al. Broadband achromatic metasurface filter for apodization imaging in the visible[J]. Opto-Electron Eng, 2021, 48(5): 200466. doi: 10.12086/oee.2021.200466 |
[3] | Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation[J]. Opto-Electron Sci, 2022, 1(1): 210003. doi: 10.29026/oes.2022.210003 |
[4] | Dou K H, Xie X, Pu M B, et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging[J]. Opto-Electron Adv, 2020, 3(4): 190005. doi: 10.29026/oea.2020.190005 |
[5] | Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electron Adv, 2021, 4(1): 200008. doi: 10.29026/oea.2021.200008 |
[6] | Xu N, Cheng Z D, Tang J D, et al. Recent advances in nano-opto-electro-mechanical systems[J]. Nanophotonics, 2021, 10(9): 2265−2281. doi: 10.1515/nanoph-2021-0082 |
[7] | Zhang Y B, Liu H, Cheng H, et al. Multidimensional manipulation of wave fields based on artificial microstructures[J]. Opto-Electron Adv, 2020, 3(11): 200002. doi: 10.29026/oea.2020.200002 |
[8] | Gao H, Fan X H, Xiong W, et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electron Adv, 2021, 4(11): 210030. doi: 10.29026/oea.2021.210030 |
[9] | Chen K X, Xu C T, Zhou Z, et al. Multifunctional liquid crystal device for grayscale pattern display and holography with tunable spectral-response[J]. Laser Photonics Rev, 2022, 16(3): 2100591. doi: 10.1002/lpor.202100591 |
[10] | Lotfi F, Sang-Nourpour N, Kheradmand R. Plasmonic all-optical switching based on metamaterial/metal waveguides with local nonlinearity[J]. Nanotechnology, 2020, 31(1): 015201. doi: 10.1088/1361-6528/ab44fc |
[11] | Song X Y, Zhang Z X, Liao H M, et al. Efficient unidirectional launching of surface plasmons by a cascade asymmetric-groove structure[J]. Nanoscale, 2016, 8(12): 6777−6782. doi: 10.1039/C6NR00342G |
[12] | Yang J, Xiao X, Hu C, et al. Broadband surface Plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair[J]. Nano Lett, 2014, 14(2): 704−709. doi: 10.1021/nl403954h |
[13] | 张飞, 郭迎辉, 蒲明博, 等. 基于非对称光子自旋—轨道相互作用的超构表面[J]. 光电工程, 2020, 47(10): 200366. doi: 10.12086/oee.2020.200366 Zhang F, Guo Y H, Pu M B, et al. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electron Eng, 2020, 47(10): 200366. doi: 10.12086/oee.2020.200366 |
[14] | Fang C Z, Yang Q Y, Yuan Q C, et al. High- Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J]. Opto-Electron Adv, 2021, 4(6): 200030. doi: 10.29026/oea.2021.200030 |
[15] | Nemati A, Wang Q, Ang N S S, et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances[J]. Opto-Electron Adv, 2021, 4(7): 200088. doi: 10.29026/oea.2021.200088 |
[16] | 崔建华, 马晓亮, 蒲明博, 等. 弱手性超表面中的超常极化旋转[J]. 光电工程, 2020, 47(7): 190052. doi: 10.12086/oee.2020.190052 Cui J H, Ma X L, Pu M B, et al. Extraordinary strong optical rotation in weak chiral metasurface[J]. Opto-Electron Eng, 2020, 47(7): 190052. doi: 10.12086/oee.2020.190052 |
[17] | Tao J, You Q, Li Z L, et al. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless- broadcasting communications[J]. Adv Mater, 2022, 34(6): 2106080. doi: 10.1002/adma.202106080 |
[18] | Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014 |
[19] | Zhang J Y, Dai J W, Yang J, et al. Invertible plasmonic spin-Hall effect at nanoscale based on U-shaped optical slot nanoantenna[J]. Nanotechnology, 2019, 30(34): 345201. doi: 10.1088/1361-6528/ab1e8a |
[20] | Meng C, Tang S W, Ding F, et al. Optical gap-surface Plasmon Metasurfaces for spin-controlled surface Plasmon excitation and anomalous beam steering[J]. ACS Photonics, 2020, 7(7): 1849−1856. doi: 10.1021/acsphotonics.0c00681 |
[21] | 申益佳, 谢鑫, 蒲明博, 等. 基于传输相位和几何相位协同调控的消色差超透镜[J]. 光电工程, 2020, 47(10): 200237. doi: 10.12086/oee.2020.200237 Shen Y J, Xie X, Pu M B, et al. Achromatic metalens based on coordinative modulation of propagation phase and geometric phase[J]. Opto-Electron Eng, 2020, 47(10): 200237. doi: 10.12086/oee.2020.200237 |
[22] | Luo X G, Pu M B, Guo Y H, et al. Catenary functions meet electromagnetic waves: opportunities and promises[J]. Adv Opt Mater, 2020, 8(23): 2001194. doi: 10.1002/adom.202001194 |
[23] | Zhang F, Zeng Q Y, Pu M B, et al. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces[J]. Nanophotonics, 2020, 9(9): 2829−2837. doi: 10.1515/nanoph-2020-0057 |
[24] | 代成伟, 闫超, 曾庆玉, 等. 一种新型贝塞尔光束器件的设计方法[J]. 光电工程, 2020, 47(6): 190190. doi: 10.12086/oee.2020.190190 Dai C W, Yan C, Zeng Q Y, et al. A method of designing new Bessel beam generator[J]. Opto-Electron Eng, 2020, 47(6): 190190. doi: 10.12086/oee.2020.190190 |
[25] | Song R R, Deng Q L, Zhou S L, et al. Catenary-based phase change metasurfaces for mid-infrared switchable wavefront control[J]. Opt Express, 2021, 29(15): 23006−23018. doi: 10.1364/OE.434844 |
[26] | Xu M F, Pu M B, Sang D, et al. Topology-optimized catenary-like metasurface for wide-angle and high-efficiency deflection: from a discrete to continuous geometric phase[J]. Opt Express, 2021, 29(7): 10181−10191. doi: 10.1364/OE.422112 |
[27] | Zhang F, Pu M B, Li X, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces[J]. Adv Mater, 2021, 33(11): 2008157. doi: 10.1002/adma.202008157 |
[28] | Guo Y H, Pu M B, Li X, et al. Ultra-broadband spin-controlled directional router based on single optical catenary integrated on silicon waveguide[J]. Appl Phys Express, 2018, 11(9): 092202. doi: 10.7567/APEX.11.092202 |
[29] | Jin J J, Li X, Guo Y H, et al. Polarization-controlled unidirectional excitation of surface plasmon polaritons utilizing catenary apertures[J]. Nanoscale, 2019, 11(9): 3952−3957. doi: 10.1039/C8NR09383K |
[30] | Chen C, Mi J J, Chen P P, et al. Broadband spin-dependent directional coupler via single optimized metallic catenary antenna[J]. Materials, 2021, 14(2): 326. doi: 10.3390/ma14020326 |
[31] | Palik E D. Handbook of Optical Constants of Solids[M]. New York: Academic Press, 1985. |
[32] | Chen P P, Chen C, Qin S S, et al. Efficient planar plasmonic directional launching of linearly polarized light in a catenary metasurface[J]. Phys Chem Chem Phys, 2020, 22(47): 27554−27559. doi: 10.1039/D0CP05095D |
[33] | Hwang Y, Yang J K. Directional coupling of surface Plasmon polaritons at complementary split-ring resonators[J]. Sci Rep, 2019, 9(1): 7348. doi: 10.1038/s41598-019-43914-z |
Surface plasmon polaritons (SPPs) directional excitation is the basis for the development of on-chip integrated photonic systems, such as the super-resolution imaging, the nano lithography, and the high sensitivity biosensors. It is difficult for traditional directional structures, such as prisms, nano slits and grooves to satisfy the accurate phase-matching condition required for SPPs excitation, resulting in an unsatisfactory coupling efficiency, a low extinction ratio, and high loss and noise. In recent years, the directional excitation of surface plasmon polaritons based on the catenary metasurface began to be valued because of the continuous and linear geometric phase control ability. However, the research of SPPs directional excitation with linearly polarized light is less than that of circularly polarized light. In this paper, all excitation is explained according to the multi-level scattering theory and the Huygens-Fresnel principle. The simulation results show that at the resonance wavelength (836 nm), the SPPs directional excitation is effectively achieved due to the stronger electric dipole excited by SPPs resonances. At the same time, in the effective bandwidth range (820 nm~870 nm) of unit catenary nanoparticle, the electric dipole scattering intensity and spectral extinction ratio curve both show the trend of increasing first and then decreasing. Therefore, there is a positive correlation between the electric dipole scattering intensity and spectral extinction ratio curve. The above analysis shows that the dipole intensity is the main factor affecting the directional extinction ratio. The designed directional excitation of surface plasmon polaritons with linearly polarized light based on the catenary nanoparticle metasurface is effective. The peak extinction ratio is up to 27 dB (corresponding to the incident wavelength of 820 nm), and the bandwidth above 10 dB is about 47 nm (798 nm~845 nm). Therefore, these results are helpful for the research and development of the catenary multifunctional devices which has great potential in the design of SPP directional excitation devices. Besides, it is also a planar integrated device, which can provide new ideas for chip-level photonic device or system design. Moreover, the method in this paper is also suitable for circularly polarized light, therefore it can be referenced in the design of other multi-functional integrated photonic devices such as multi-directional beam splitters and polarization detectors.
Schematic diagram of the SPPs directional excitation based on catenary nanoparticle metasurface
Spectral extinction ratio curve of unit catenary nanoparticle (Inset is the electric field distribution at typical wavelengths)
Multipole scattering intensity distribution of unit catenary nanoparticles
Array structure period parameter optimization results. (a) Ty; (b) Tx
Spectral extinction ratio curves of catenary nanoparticle metasurfaces
Ez field distribution of catenary nanoparticle metasurface. (a) Electric field amplitude; (b) Electric field phase