Lan X, Deng Q R, Zhang W T, et al. Efficient chiral absorber based on twisted catenary structure[J]. Opto-Electron Eng, 2022, 49(10): 220157. doi: 10.12086/oee.2022.220157
Citation: Lan X, Deng Q R, Zhang W T, et al. Efficient chiral absorber based on twisted catenary structure[J]. Opto-Electron Eng, 2022, 49(10): 220157. doi: 10.12086/oee.2022.220157

Efficient chiral absorber based on twisted catenary structure

    Fund Project: National Natural Science Foundation of China (6210522) and Natural Science Foundation of Sichuan Province (2022NSFSC2000).
More Information
  • As a kind of artificial two-dimensional material, metasurfaces have drawn wide attentions in recent years due to their ultra-thin profile and flexible electromagnetic manipulation capability. Therefore, how to further improve the working efficiency of metasurface devices has become a hotspot in this field. Catenary electromagnetics as an emerging metasurface design principle provides new ideas and methods for designing efficient metasurfaces. Here, we proposed a metasurface absorber based on twisted catenary structure that can achieve efficient spin-selective absorption. The simulated results indicate that the perfect absorption can be achieved for left-handed circularly polarized incidence at the working wavelength, while the absorption for right-handed circularly polarized incidence is below 22%. The corresponding circular dichroism is larger than 78%. Besides, the physical mechanism for the chiral absorption is analyzed and a promising application for information encryption is also discussed. This work may find potential applications in chiral imaging and chiral sensing.
  • 加载中
  • [1] Luo X G. Subwavelength electromagnetics[J]. Front Optoelectron, 2016, 9(2): 138−150. doi: 10.1007/s12200-016-0632-1

    CrossRef Google Scholar

    [2] Luo X G. Metamaterials and metasurfaces[J]. Adv Opt Mater, 2019, 7(14): 1900885. doi: 10.1002/adom.201900885

    CrossRef Google Scholar

    [3] Luo X G, Tsai D, Gu M, et al. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion[J]. Chem Soc Rev, 2019, 48(8): 2458−2494. doi: 10.1039/C8CS00864G

    CrossRef Google Scholar

    [4] Yu N F, Genevet P, Aieta F, et al. Flat optics: controlling wavefronts with optical antenna metasurfaces[J]. IEEE J Sel Top Quantum Electron, 2013, 19(3): 4700423. doi: 10.1109/JSTQE.2013.2241399

    CrossRef Google Scholar

    [5] Yang Z M, Zhou Y M, Chen Y Q, et al. Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber[J]. Adv Opt Mater, 2016, 4(8): 1196−1202. doi: 10.1002/adom.201600110

    CrossRef Google Scholar

    [6] Ma J, Huang Y J, Pu M B, et al. Inverse design of broadband metasurface absorber based on convolutional autoencoder network and inverse design network[J]. J Phys D Appl Phys, 2020, 53(46): 464002. doi: 10.1088/1361-6463/aba3ec

    CrossRef Google Scholar

    [7] Yu P, Besteiro L V, Huang Y J, et al. Broadband metamaterial absorbers[J]. Adv Opt Mater, 2019, 7(3): 1800995. doi: 10.1002/adom.201800995

    CrossRef Google Scholar

    [8] Huang Y J, Xiao T X, Xie Z W, et al. Single-layered reflective metasurface achieving simultaneous spin-selective perfect absorption and efficient wavefront manipulation[J]. Adv Opt Mater, 2021, 9(5): 2001663. doi: 10.1002/adom.202001663

    CrossRef Google Scholar

    [9] Huang Y J, Xiao T X, Xie Z W, et al. Single-layered phase-change metasurfaces achieving efficient wavefront manipulation and reversible chiral transmission[J]. Opt Express, 2022, 30(2): 1337−1350. doi: 10.1364/OE.447545

    CrossRef Google Scholar

    [10] Xie X, Liu K P, Pu M B, et al. All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation[J]. Nanophotonics, 2020, 9(10): 3209−3215. doi: 10.1515/nanoph-2019-0415

    CrossRef Google Scholar

    [11] Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [12] Qin F, Liu B Q, Zhu L W, et al. π-phase modulated monolayer supercritical lens[J]. Nat Commun, 2021, 12(1): 32. doi: 10.1038/s41467-020-20278-x

    CrossRef Google Scholar

    [13] Li Z, Zhang T, Wang Y Q, et al. Achromatic Broadband super‐resolution imaging by super‐oscillatory metasurface[J]. Laser Photonics Rev, 2018, 12(10): 1800064. doi: 10.1002/lpor.201800064

    CrossRef Google Scholar

    [14] Lu D, Liu Z W. Hyperlenses and metalenses for far-field super resolution imaging[J]. Nat Commun, 2012, 3(1): 1205. doi: 10.1038/ncomms2176

    CrossRef Google Scholar

    [15] Wang YL, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electron Adv, 2021, 4(1): 200008. doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [16] Huang Y J, Pu M B, Zhang F, et al. Broadband functional metasurfaces: achieving nonlinear phase generation toward achromatic surface cloaking and lensing[J]. Adv Opt Mater, 2019, 7(7): 1801480. doi: 10.1002/adom.201801480

    CrossRef Google Scholar

    [17] Yang Y H, Jing L Q, Zheng B, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase[J]. Adv Mater, 2016, 28(32): 6866−6871. doi: 10.1002/adma.201600625

    CrossRef Google Scholar

    [18] Qian C, Zheng B, Shen Y C, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nat Photonics, 2020, 14(6): 383−390. doi: 10.1038/s41566-020-0604-2

    CrossRef Google Scholar

    [19] Gao H, Fan X H, Xiong W, et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electron Adv, 2021, 4(11): 210030. doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [20] Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Lett, 2018, 18(5): 2885−2892. doi: 10.1021/acs.nanolett.8b00047

    CrossRef Google Scholar

    [21] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [22] Zhang X H, Pu M B, Guo Y H, et al. Colorful metahologram with independently controlled images in transmission and reflection spaces[J]. Adv Funct Mater, 2019, 29(22): 1809145. doi: 10.1002/adfm.201809145

    CrossRef Google Scholar

    [23] Luo X G, Pu M B, Guo Y H, et al. Catenary functions meet electromagnetic waves: opportunities and promises[J]. Adv Opt Mater, 2020, 8(23): 2001194. doi: 10.1002/adom.202001194

    CrossRef Google Scholar

    [24] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [25] Wang Y Q, Pu M B, Zhang Z J, et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection[J]. Sci Rep, 2015, 5(1): 17733. doi: 10.1038/srep17733

    CrossRef Google Scholar

    [26] Luo X G, Pu M B, Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light Sci Appl, 2017, 6(6): e16276. doi: 10.1038/lsa.2016.276

    CrossRef Google Scholar

    [27] Zhang F, Pu M B, Li X, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces[J]. Adv Mater, 2021, 33(11): 2008157. doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [28] Pu M B, Ma X L, Guo Y H, et al. Theory of microscopic meta-surface waves based on catenary optical fields and dispersion[J]. Opt Express, 2018, 26(15): 19555−19562. doi: 10.1364/OE.26.019555

    CrossRef Google Scholar

    [29] Huang Y J, Luo J, Pu M B, et al. Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas[J]. Adv Sci, 2019, 6(7): 1801691. doi: 10.1002/advs.201801691

    CrossRef Google Scholar

    [30] Li X, Pu M B, Wang Y Q, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Adv Opt Mater, 2016, 4(5): 659−663. doi: 10.1002/adom.201500713

    CrossRef Google Scholar

    [31] Guo Y H, Ma X L, Pu M B, et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens[J]. Adv Opt Mater, 2018, 6(19): 1800592. doi: 10.1002/adom.201800592

    CrossRef Google Scholar

    [32] Guo Y H, Huang Y J, Li X, et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Adv Opt Mater, 2019, 7(18): 1900503. doi: 10.1002/adom.201900503

    CrossRef Google Scholar

    [33] Palik E D. Handbook of Optical Constants of Solids[M]. San Diego: Academic Press, 1998: 3.

    Google Scholar

    [34] Huang Y J, Xie X, Pu M B, et al. Dual-functional metasurface toward giant linear and circular dichroism[J]. Adv Opt Mater, 2020, 8(11): 1902061. doi: 10.1002/adom.201902061

    CrossRef Google Scholar

    [35] Li Z G, Rosenmann D, Czaplewski D A, et al. Strong circular dichroism in chiral plasmonic metasurfaces optimized by micro-genetic algorithm[J]. Opt Express, 2019, 27(20): 28313−28323. doi: 10.1364/OE.27.028313

    CrossRef Google Scholar

    [36] Cao T, Wei C W, Mao L B, et al. Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array[J]. Sci Rep, 2014, 4: 7442. doi: 10.1038/srep07442

    CrossRef Google Scholar

    [37] Huang Y J, Xiao T X, Xie Z W, et al. Multistate nonvolatile metamirrors with tunable optical chirality[J]. ACS Appl Mater Interfaces, 2021, 13(38): 45890−45897. doi: 10.1021/ACSAMI.1C14204

    CrossRef Google Scholar

    [38] Huang Y J, Liu L, Pu M B, et al. A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum[J]. Nanoscale, 2018, 10(17): 8298−8303. doi: 10.1039/C8NR01728J

    CrossRef Google Scholar

    [39] Jing L Q, Wang Z J, Maturi R, et al. Gradient chiral metamirrors for spin-selective anomalous reflection[J]. Laser Photonics Rev, 2017, 11(6): 1700115. doi: 10.1002/lpor.201700115

    CrossRef Google Scholar

  • Metasurface is a new kind of artificial two-dimensional material. Its working principle is to flexibly control the amplitude, phase and polarization of the incident electromagnetic wave by using the local interaction between the subwavelength scale unit cell and electromagnetic wave. Compared with traditional optical devices, devices based on metasurfaces have the advantages of compact structure, diverse functions, and easy integration. Therefore, metasurface has become a research hotspot in optics and photonics. At present, the electromagnetic manipulation devices based on the metasurfaces have achieved many novel functionalities, such as perfect absorption, anomalous deflection, focused imaging, electromagnetic cloak, and high efficiency holography. However, there are still some key problems to be solved in this field such as low working efficiency and narrow bandwidth. In recent years, the emergence of catenary electromagnetics provides new ideas and methods to solve these problems. In fact, catenary was first used in engineering and architecture to describe the shape of a soft rope suspended under the uniform gravitational force between two horizontal points. The use of catenary equations to solve problems in the field of electromagnetism has only recently been discovered by researchers. In this paper, we proposed a metasurface absorber based on a twisted catenary structure in the near-infrared band. The local electric field enhancement effect of the structure is different when the incident electromagnetic wave is with opposite spins, which can achieve efficient chiral selective absorption. The simulation results show that the circular dichroism is larger than 78% at the working wavelength. At the same time, the designed structure also has good angular stability, and can still get larger than 60% circular dichroism absorption in the case of oblique incidence at different azimuth angles. Besides, a possible method of information encryption using this kind of structure is proposed. Different information can be read by controlling the handedness of incident electromagnetic wave. This work further enriches the content of catenary electromagnetics, and has certain research value in the fields of chiral imaging and chiral sensing.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint