Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177
Citation: Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

Directional-multiplexing holography by on-chip metasurface

    Fund Project: Hubei Province Funds for Distinguished Young Scientists (2021CFA043), Wuhan Science and Technology Bureau (2020010601012196), Recruitment Program of Global Experts (501100010871), The Natural Science Foundation of Jiangsu Province (BK20220281), and Start-up Program of Wuhan University (501100007046).
More Information
  • The on-chip metasurface is introduced into integrated optical waveguides to achieve arbitrary modulation of guided waves, which provides a convenient and versatile platform for the conversion between guided waves and free-space functions. Despite previous explorations in on-chip holography demonstration, it still faces critical challenges to expand the encoding freedom and multiplexing. Here, we propose and experimentally demonstrate a quad-fold multiplexed holographic display optics device based on an on-chip metasurface. By mixing the detour phase and Pancharatnam-Berry (PB) phase, the on-chip metasurface couples the guided waves into free space in circular polarization, destroying the phase degeneracy that exists in the wavevector directions with only the detour phase. Moreover, by utilizing simulated annealing phase optimization algorithm and multiplexing, we achieved a quad-fold multiplexed far-field holographic display with independent encoding capability. The proposed method in this paper opens up a new prospect for multifunctional integration of on-chip metasurfaces and provides an alternative approach for integrated optical communication with high information storage capacity.
  • 加载中
  • [1] 郭旭岳, 李冰洁, 樊鑫豪, 等. 基于电介质超表面的光场复振幅调制及应用[J]. 红外与激光工程, 2020, 49(9): 20201031. doi: 10.3788/IRLA20201031

    CrossRef Google Scholar

    Guo X Y, Li B J, Fan X H, et al. Complex amplitude modulation of light fields based on dielectric metasurfaces and its applications[J]. Infrared Laser Eng, 2020, 49(9): 20201031. doi: 10.3788/IRLA20201031

    CrossRef Google Scholar

    [2] 杨渤, 程化, 陈树琪, 等. 基于傅里叶分析的超表面多维光场调控[J]. 光学学报, 2019, 39(1): 0126005. doi: 10.3788/AOS201939.0126005

    CrossRef Google Scholar

    Yang B, Cheng H, Chen S Q, et al. Multi-dimensional manipulation of optical field by metasurfaces based on Fourier analysis[J]. Acta Opt Sin, 2019, 39(1): 0126005. doi: 10.3788/AOS201939.0126005

    CrossRef Google Scholar

    [3] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    [4] Wan S, Tang J, Wan C W, et al. Angular‐encrypted quad‐fold display of nanoprinting and meta‐holography for optical information storage[J]. Adv Opt Mater, 2022, 10(11): 2102820. doi: 10.1002/adom.202102820

    CrossRef Google Scholar

    [5] Tang J, Wan S, Shi Y Y, et al. Dynamic augmented reality display by layer‐folded metasurface via electrical‐driven liquid crystal[J]. Adv Opt Mater, 2022, 10(12): 2200418. doi: 10.1002/adom.202200418

    CrossRef Google Scholar

    [6] Cao T, Lian M, Liu K, et al. Wideband mid-infrared thermal emitter based on stacked nanocavity metasurfaces[J]. Int J Extreme Manuf, 2022, 4(1): 015402. doi: 10.1088/2631-7990/ac3bb1

    CrossRef Google Scholar

    [7] Wang Z J, Dai C J, Li Z, et al. Free-space optical merging via meta-grating inverse-design[J]. Nano Lett, 2022, 22(5): 2059−2064. doi: 10.1021/ACS.NANOLETT.1C05026

    CrossRef Google Scholar

    [8] Wan C W, Li Z, Wan S, et al. Electric‐driven meta‐optic dynamics for simultaneous near‐/far‐field multiplexing display[J]. Adv Funct Mater, 2022, 32(10): 2110592. doi: 10.1002/adfm.202110592

    CrossRef Google Scholar

    [9] Wang Z J, Dai C J, Zhang J, et al. Real‐time tunable nanoprinting‐multiplexing with simultaneous meta‐holography displays by stepwise nanocavities[J]. Adv Funct Mater, 2022, 32(9): 2110022. doi: 10.1002/adfm.202110022

    CrossRef Google Scholar

    [10] Zhang D S, Liu R J, Li Z G, et al. Irregular LIPSS produced on metals by single linearly polarized femtosecond laser[J]. Int J Extreme Manuf, 2022, 4(1): 015102. doi: 10.1088/2631-7990/ac376c

    CrossRef Google Scholar

    [11] Li Z Y, Kim M H, Wang C, et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nat Nanotechnol, 2017, 12(7): 675−683. doi: 10.1038/nnano.2017.50

    CrossRef Google Scholar

    [12] Meng Y, Liu Z T, Xie Z W, et al. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface[J]. Photonics Res, 2020, 8(4): 564−576. doi: 10.1364/PRJ.384449

    CrossRef Google Scholar

    [13] Ding F, Deshpande R, Bozhevolnyi S I. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence[J]. Light Sci Appl, 2018, 7: 17178. doi: 10.1038/lsa.2017.178

    CrossRef Google Scholar

    [14] Yang R, Shi Y Y, Wan S, et al. On-chip metasurface for optical directional rectification[J]. J Lightwave Technol, 2021, 39(17): 5558−5562. doi: 10.1109/JLT.2021.3091431

    CrossRef Google Scholar

    [15] Shi Y Y, Yang R, Dai C J, et al. On-chip asymmetric beam-steering for broadband visible light[J]. Opt Lett, 2022, 47(2): 369−372. doi: 10.1364/OL.443888

    CrossRef Google Scholar

    [16] Wang Z, Li T T, Soman A, et al. On-chip wavefront shaping with dielectric metasurface[J]. Nat Commun, 2019, 10(1): 3547. doi: 10.1038/s41467-019-11578-y

    CrossRef Google Scholar

    [17] Yang R, Shi Y Y, Dai C J, et al. On-chip metalenses based on one-dimensional gradient trench in the broadband visible[J]. Opt Lett, 2020, 45(20): 5640−5643. doi: 10.1364/OL.405446

    CrossRef Google Scholar

    [18] Ding Y M, Chen X, Duan Y, et al. Metasurface-dressed two-dimensional on-chip waveguide for free-space light field manipulation[J]. ACS Photonics, 2022, 9(2): 398−404. doi: 10.1021/acsphotonics.1c01577

    CrossRef Google Scholar

    [19] Zhou N, Zheng S, Cao X P, et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 x 3.6 μm2 footprint[J]. Sci Adv, 2019, 5(5): eaau9593. doi: 10.1126/sciadv.aau9593

    CrossRef Google Scholar

    [20] Yang R, Wan S, Shi Y Y, et al. Immersive tuning the guided waves for multifunctional on‐chip metaoptics[J]. Laser Photonics Rev, 2022, 16(8): 2200127. doi: 10.1002/LPOR.202200127

    CrossRef Google Scholar

    [21] Shi Y Y, Wan C W, Dai C J, et al. Augmented reality enabled by on‐chip meta‐holography multiplexing[J]. Laser Photonics Rev, 2022, 16(6): 2100638. doi: 10.1002/lpor.202100638

    CrossRef Google Scholar

    [22] Shi Y Y, Wan C W, Dai C J, et al. On-chip meta-optics for semi-transparent screen display in sync with AR projection[J]. Optica, 2022, 9(6): 670−676. doi: 10.1364/OPTICA.456463

    CrossRef Google Scholar

    [23] Huang Z Q, Marks D L, Smith D R. Out-of-plane computer-generated multicolor waveguide holography[J]. Optica, 2019, 6(2): 119−124. doi: 10.1364/OPTICA.6.000119

    CrossRef Google Scholar

    [24] Gao H, Fan X H, Xiong W, et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electron Adv, 2021, 4(11): 210030. doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [25] Yulaev A, Zhu W Q, Zhang C, et al. Metasurface-integrated photonic platform for versatile free-space beam projection with polarization control[J]. ACS Photonics, 2019, 6(11): 2902−2909. doi: 10.1021/acsphotonics.9b01000

    CrossRef Google Scholar

    [26] Guo X X, Ding Y M, Chen X, et al. Molding free-space light with guided wave–driven metasurfaces[J]. Sci Adv, 2020, 6(29): eabb4142. doi: 10.1126/sciadv.abb4142

    CrossRef Google Scholar

    [27] Fang B, Wang Z Z, Gao S L, et al. Manipulating guided wave radiation with integrated geometric metasurface[J]. Nanophotonics, 2022, 11(9): 1923−1930. doi: 10.1515/NANOPH-2021-0466

    CrossRef Google Scholar

    [28] Ha Y L, Guo Y H, Pu M B, et al. Monolithic‐integrated multiplexed devices based on metasurface‐driven guided waves[J]. Adv Theory Simul, 2021, 4(2): 2000239. doi: 10.1002/ADTS.202000239

    CrossRef Google Scholar

    [29] Lin J, Genevet P, Kats M A, et al. Nanostructured holograms for broadband manipulation of vector beams[J]. Nano Lett, 2013, 13(9): 4269−4274. doi: 10.1021/nl402039y

    CrossRef Google Scholar

    [30] Pancharatnam S. Generalized theory of interference and its applications: Part II. Partially coherent pencils[J]. Proc Indiana Acad Sci, 1956, 44(6): 398−417. doi: 10.1007/BF03046095

    CrossRef Google Scholar

    [31] Zhan Q W, Leger J R. Interferometric measurement of the geometric phase in space-variant polarization manipulations[J]. Opt Commun, 2002, 213(4–6): 241−245. doi: 10.1016/S0030-4018(02)02123-5

    CrossRef Google Scholar

    [32] Chrostowski L, Hochberg M. Silicon Photonics Design: from Devices to Systems[M]. New York: Cambridge University Press, 2015.

    Google Scholar

    [33] Li L L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nat Commun, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9

    CrossRef Google Scholar

    [34] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

  • Photonic integrated circuits (PIC) serve as an essential and promising candidate to eventually replace electronic circuits for the next-generation information processing. However, traditional PIC devices based on optical waveguides are usually bulky and lack full control at the subwavelength scale to achieve arbitrary wavefront-shaping functionalities. Recently, the invention of on-chip metasurface promotes the connection between guided and free-space optics and realizes the arbitrary conversion of guided waves and free-space light. As a new type of on-chip nanophotonic device, the introduction of metasurface onto the optical waveguide has made significant progress and exhibited multi-functional conversion from the guided waves to free-space, including directional beam-steering emitters, mode-conversion, on-chip lensing, optical router, and on-chip holography, etc. These on-chip nanophotonics devices provide new avenues for photonic chip-scale devices and miniature on-chip systems. For instance, meta-holography is an emerging and universal strategy based on engineered nanoantennas array to construct an optical-field image. However, on-chip far-field holographs are limited for realizing multiplexing for multiple directions due to a lack the arbitrary-encoding capability because their detour phases are complementarily related when the source propagates and excites the on-chip array from either positive or negative direction. Here, we propose and experimentally demonstrate a quad-fold multiplexed far-filed holographic display optics device based on an on-chip metasurface. This optics device is composed of silicon nanopillar arrays on top of a planar waveguide of Si3N4, in which a relatively thick layer of silica serves as the bottom cladding substrate. By mixing the detour phase and Pancharatnam-Berry (PB) phase, the on-chip metasurface could couple the guided waves into free space in circular polarization. The phase degeneracy in the positive and negative directions could be decoupled by selecting the desired circular polarization. Subsequently, utilizing a simulated annealing phase optimization algorithm to optimize the phase required by holograms and the multiplexing technology of on-chip directional, we achieved a quad-fold multiplexed far-field holographic display with independent encoding capability. Eventually, to verify the on-chip quad-fold multiplexed holography performance, we fabricated an on-chip metasurface sample by the conventional electron-beam lithography technique and the reactive ion etching processing. Through end-fire coupling from the laser source at λ = 650 nm into the on-chip metasurface sample along ±xy - directions, the far-field holographic images of the four letters (“A”, “B”, “C”, and “D”) multiplexing are successfully observed at their corresponding areas. The method proposed here opens up new prospects for the multifunctional integration of on-chip metasurfaces and provides an alternative approach for integrated optical communication with high information storage capacity.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint