Liu Y L, Dong Z, Chen Y H, et al. Research advances of partially coherent beams with novel coherence structures: engineering and applications[J]. Opto-Electron Eng, 2022, 49(11): 220178. doi: 10.12086/oee.2022.220178
Citation: Liu Y L, Dong Z, Chen Y H, et al. Research advances of partially coherent beams with novel coherence structures: engineering and applications[J]. Opto-Electron Eng, 2022, 49(11): 220178. doi: 10.12086/oee.2022.220178

Research advances of partially coherent beams with novel coherence structures: engineering and applications

    Fund Project: National Key Research and Development Project of China (2019YFA0705000), National Natural Science Foundation of China (NSFC) (12192254, 11974218, 11874046, and 11904247), Local Science and Technology Development Project of the Central Government (YDZX20203700001766), and Innovation Group of Jinan (2018GXRC010)
More Information
  • Structured light has rich adjustable spatial degrees of freedom, including amplitude, phase, polarization, degree of coherence, etc. The modulation of these degrees of freedom has triggered a variety of novel physical effects and has found use in constructing new structured light beams and a large range of applications. Compared to the fully coherent light, partially coherent beams (PCBs) have advantages in resisting the speckle noise and the fluctuations of atmospheric turbulence. Recently, the PCBs with nonconventional coherence structures have been found to have important potential applications in atmospheric transmission, optical encryption and imaging, robust information transmission, and high-quality beam shaping. In this review, we summarize in detail the progress of the theoretical construction and experimental generation of PCBs with novel coherence structures. Meanwhile, we outline their robust propagation properties in complex media and important applications in optical encryption, imaging, robust information transfer, and beam shaping. It is found the modulation of spatial coherence structure of PCBs provides not only an efficient way to resist the random fluctuations of complex environments, but also a new degree of freedom to enrich the application scopes of structured light. Finally, the development trend and the further applications of the nonconventional coherence structure engineering are prospected.
  • 加载中
  • [1] Forbes A, De Oliveira M, Dennis M R. Structured light[J]. Nat Photonics, 2021, 15(4): 253−262. doi: 10.1038/s41566-021-00780-4

    CrossRef Google Scholar

    [2] Dorrah A H, Capasso F. Tunable structured light with flat optics[J]. Science, 2022, 376(6591): eabi6860. doi: 10.1126/science.abi6860

    CrossRef Google Scholar

    [3] Cox M A, Mphuthi N, Nape I, et al. Structured light in turbulence[J]. IEEE J Sel Top Quantum Electron, 2021, 27(2): 7500521. doi: 10.1109/JSTQE.2020.3023790

    CrossRef Google Scholar

    [4] Yang Y J, Ren Y X, Chen M Z, et al. Optical trapping with structured light: a review[J]. Adv Photonics, 2021, 3(3): 034001. doi: 10.1117/1.AP.3.3.034001

    CrossRef Google Scholar

    [5] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University Press, 1999.

    Google Scholar

    [6] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Opt Lett, 2007, 32(8): 979−981. doi: 10.1364/OL.32.000979

    CrossRef Google Scholar

    [7] Durnin J, Miceli Jr J J, Eberly J H. Diffraction-free beams[J]. Phys Rev Lett, 1987, 58(15): 1499−1501. doi: 10.1103/PhysRevLett.58.1499

    CrossRef Google Scholar

    [8] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185−8189. doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [9] Simon R, Mukunda N. Twisted gaussian schell-model beams[J]. J Opt Soc America A, 1993, 10(1): 95−109. doi: 10.1364/JOSAA.10.000095

    CrossRef Google Scholar

    [10] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv Opt Photonics, 2009, 1(1): 1−57. doi: 10.1364/AOP.1.000001

    CrossRef Google Scholar

    [11] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 2012, 6(7): 488−496. doi: 10.1038/nphoton.2012.138

    CrossRef Google Scholar

    [12] Kaushal H, Jain V K, Kar S. Free Space Optical Communication[M]. New Delhi: Springer, 2017.

    Google Scholar

    [13] Torres J P, Torner L. Twisted Photons: Applications of Light with Orbital Angular Momentum[M]. Weinheim: John Wiley & Sons, 2011.

    Google Scholar

    [14] Dholakia K, Čižmár T. Shaping the future of manipulation[J]. Nat Photonics, 2011, 5(6): 335−342. doi: 10.1038/nphoton.2011.80

    CrossRef Google Scholar

    [15] Shirai T, Setälä T, Friberg A T. Temporal ghost imaging with classical non-stationary pulsed light[J]. J Opt Soc Am B, 2010, 27(12): 2549−2555. doi: 10.1364/JOSAB.27.002549

    CrossRef Google Scholar

    [16] Goodman J W. Speckle Phenomena in Optics: Theory and Applications[M]. Englewood: Roberts & Co., 2007.

    Google Scholar

    [17] Broky J, Siviloglou G A, Dogariu A, et al. Self-healing properties of optical Airy beams[J]. Opt Express, 2008, 16(17): 12880−12891. doi: 10.1364/OE.16.012880

    CrossRef Google Scholar

    [18] Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media[M]. Bellingham, Wash. : SPIE Press, 2005.

    Google Scholar

    [19] Popoff S, Lerosey G, Fink M, et al. Image transmission through an opaque material[J]. Nat Commun, 2010, 1(1): 81. doi: 10.1038/ncomms1078.

    CrossRef Google Scholar

    [20] Mandel L, Wolf E. Optical Coherence and Quantum Optics[M]. Cambridge: Cambridge University Press, 1995. doi: 10.1017/CBO9781139644105.

    Google Scholar

    [21] Wolf E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Phys Lett A, 2003, 312(5–6): 263−267. doi: 10.1016/S0375-9601(03)00684-4

    CrossRef Google Scholar

    [22] Gbur G, Visser T D. The structure of partially coherent fields[J]. Prog Opt, 2010, 55: 285−341. doi: 10.1016/B978-0-444-53705-8.00005-9

    CrossRef Google Scholar

    [23] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Phys Rev Lett, 1984, 53(11): 1057−1060. doi: 10.1103/PhysRevLett.53.1057

    CrossRef Google Scholar

    [24] Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian Schell beam[J]. J Opt Soc America A, 2003, 20(5): 856−866. doi: 10.1364/JOSAA.20.000856

    CrossRef Google Scholar

    [25] Chen Y H, Norrman A, Ponomarenko S A, et al. Optical coherence and electromagnetic surface waves[J]. Prog Opt, 2020, 65: 105−172. doi: 10.1016/bs.po.2019.11.001

    CrossRef Google Scholar

    [26] Gbur G, Visser T D. Young’s interference experiment: past, present, and future[J]. Prog Opt, 2022, 67: 275−343. doi: 10.1016/bs.po.2022.01.003

    CrossRef Google Scholar

    [27] Young T. XIV. An account of some cases of the production of colours, not hitherto described[J]. Philos Trans R Soc London, 1802, 92: 387−397. doi: 10.1098/rstl.1802.0016

    CrossRef Google Scholar

    [28] Zernike F. The concept of degree of coherence and its application to optical problems[J]. Physica, 1938, 5(8): 785−795. doi: 10.1016/S0031-8914(38)80203-2

    CrossRef Google Scholar

    [29] Friberg A T, Sudol R J. Propagation parameters of Gaussian Schell-model beams[J]. Opt Commun, 1982, 41(6): 383−387. doi: 10.1016/0030-4018(82)90161-4

    CrossRef Google Scholar

    [30] Wolf E. Introduction to the Theory of Coherence and Polarization of Light[M]. Cambridge: Cambridge University Press, 2007.

    Google Scholar

    [31] Friberg A T, Wolf E. Relationships between the complex degrees of coherence in the space–time and in the space–frequency domains[J]. Opt Lett, 1995, 20(6): 623−625. doi: 10.1364/OL.20.000623

    CrossRef Google Scholar

    [32] Gori F. Matrix treatment for partially polarized, partially coherent beams[J]. Opt Lett, 1998, 23(4): 241−243. doi: 10.1364/OL.23.000241

    CrossRef Google Scholar

    [33] Deschamps J, Courjon D, Bulabois J. Gaussian Schell-model sources: an example and some perspectives[J]. J Opt Soc Am, 1983, 73(3): 256−261. doi: 10.1364/JOSA.73.000256

    CrossRef Google Scholar

    [34] Collett E, Wolf E. Is complete spatial coherence necessary for the generation of highly directional light beams?[J]. Opt Lett, 1978, 2(2): 27−29. doi: 10.1364/OL.2.000027

    CrossRef Google Scholar

    [35] Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation[J]. Phys Rev E, 2005, 71(5): 056607. doi: 10.1103/PhysRevE.71.056607

    CrossRef Google Scholar

    [36] Zhao C L, Cai Y J. Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam[J]. Opt Lett, 2011, 36(12): 2251−2253. doi: 10.1364/OL.36.002251

    CrossRef Google Scholar

    [37] Gori F, Guattari G, Padovani C. Modal expansion for J0-correlated Schell-model sources[J]. Opt Commun, 1987, 64(4): 311−316. doi: 10.1016/0030-4018(87)90242-2

    CrossRef Google Scholar

    [38] Palma C, Borghi R, Cincotti G. Beams originated by J0-correlated Schell-model planar sources[J]. Opt Commun, 1996, 125(1–3): 113−121. doi: 10.1016/0030-4018(95)00752-0

    CrossRef Google Scholar

    [39] Gori F, Santarsiero M. Devising genuine spatial correlation functions[J]. Opt Lett, 2007, 32(24): 3531−3533. doi: 10.1364/OL.32.003531

    CrossRef Google Scholar

    [40] Gori F, Ramírez-Sánchez V, Santarsiero M, et al. On genuine cross-spectral density matrices[J]. J Opt A Pure Appl Opt, 2009, 11(8): 085706. doi: 10.1088/1464-4258/11/8/085706

    CrossRef Google Scholar

    [41] Cai Y J, Chen Y H, Yu J Y, et al. Generation of partially coherent beams[J]. Prog Opt, 2017, 62: 157−223. doi: 10.1016/bs.po.2016.11.001

    CrossRef Google Scholar

    [42] Cai Y J, Chen Y H, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited][J]. J Opt Soc America A, 2014, 31(9): 2083−2096. doi: 10.1364/JOSAA.31.002083

    CrossRef Google Scholar

    [43] Wang F, Liang C H, Yuan Y S, et al. Generalized multi-Gaussian correlated Schell-model beam: from theory to experiment[J]. Opt Express, 2014, 22(19): 23456−23464. doi: 10.1364/OE.22.023456

    CrossRef Google Scholar

    [44] Chen Y H, Liu L, Wang F, et al. Elliptical Laguerre-Gaussian correlated Schell-model beam[J]. Opt Express, 2014, 22(11): 13975−13987. doi: 10.1364/OE.22.013975

    CrossRef Google Scholar

    [45] Chen Y H, Wang F, Zhao C L, et al. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam[J]. Opt Express, 2014, 22(5): 5826−5838. doi: 10.1364/OE.22.005826

    CrossRef Google Scholar

    [46] Liu X L, Yu J Y, Cai Y J, et al. Propagation of optical coherence lattices in the turbulent atmosphere[J]. Opt Lett, 2016, 41(18): 4182−4185. doi: 10.1103/PhysRevA.89.013801

    CrossRef Google Scholar

    [47] Chen Y H, Cai Y J. Generation of a controllable optical cage by focusing a Laguerre–Gaussian correlated Schell-model beam[J]. Opt Lett, 2014, 39(9): 2549−2552. doi: 10.1364/OL.39.002549

    CrossRef Google Scholar

    [48] Liang C H, Wang F, Liu X L, et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry[J]. Opt Lett, 2014, 39(4): 769−772. doi: 10.1364/OL.39.000769

    CrossRef Google Scholar

    [49] Liang C H, Zhu X L, Mi C K, et al. High-quality partially coherent Bessel beam array generation[J]. Opt Lett, 2018, 43(13): 3188−3191. doi: 10.1364/OL.43.003188

    CrossRef Google Scholar

    [50] Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations[J]. Opt Lett, 2011, 36(20): 4104−4106. doi: 10.1364/OL.36.004104

    CrossRef Google Scholar

    [51] Lajunen H, Saastamoinen T. Non-uniformly correlated partially coherent pulses[J]. Opt Express, 2013, 21(1): 190−195. doi: 10.1364/OE.21.000190

    CrossRef Google Scholar

    [52] Ding C L, Koivurova M, Turunen J, et al. Self-focusing of a partially coherent beam with circular coherence[J]. J Opt Soc AmericaA, 2017, 34(8): 1441−1447. doi: 10.1364/JOSAA.34.001441

    CrossRef Google Scholar

    [53] Yu J Y, Cai Y J, Gbur G. Rectangular Hermite non-uniformly correlated beams and its propagation properties[J]. Opt Express, 2018, 26(21): 27894−27906. doi: 10.1364/OE.26.027894

    CrossRef Google Scholar

    [54] Yu J Y, Zhu X L, Lin S Q, et al. Vector partially coherent beams with prescribed non-uniform correlation structure[J]. Opt Lett, 2020, 45(13): 3824−3827. doi: 10.1364/OL.397316

    CrossRef Google Scholar

    [55] Zhu X L, Wang F, Zhao C L, et al. Experimental realization of dark and antidark diffraction-free beams[J]. Opt Lett, 2019, 44(9): 2260−2263. doi: 10.1364/OL.44.002260

    CrossRef Google Scholar

    [56] Zhu X L, Yu J Y, Chen Y H, et al. Experimental synthesis of random light sources with circular coherence by digital micro-mirror device[J]. Appl Phys Lett, 2020, 117(12): 121102. doi: 10.1063/5.0024283

    CrossRef Google Scholar

    [57] Zhu X L, Yu J Y, Wang F, et al. Synthesis of vector nonuniformly correlated light beams by a single digital mirror device[J]. Opt Lett, 2021, 46(12): 2996−2999. doi: 10.1364/OL.428508

    CrossRef Google Scholar

    [58] Zhu S J, Chen Y H, Wang J, et al. Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization[J]. Opt Express, 2015, 23(26): 33099−33115. doi: 10.1364/OE.23.033099

    CrossRef Google Scholar

    [59] Chen Y H, Gu J X, Wang F, et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam[J]. Phys Rev A, 2015, 91(1): 013823. doi: 10.1103/PhysRevA.91.013823

    CrossRef Google Scholar

    [60] Korotkova O, Gbur G. Applications of optical coherence theory[J]. Prog Opt, 2020, 65: 43−104. doi: 10.1016/bs.po.2019.11.004

    CrossRef Google Scholar

    [61] Korotkova O. Light propagation in a turbulent ocean[J]. Prog Opt, 2019, 64: 1−43. doi: 10.1016/bs.po.2018.09.001

    CrossRef Google Scholar

    [62] Wang F, Liu X L, Cai Y J. Propagation of partially coherent beam in turbulent atmosphere: a review (invited review)[J]. Prog Electromagn Res, 2015, 150: 123−143. doi: 10.2528/PIER15010802

    CrossRef Google Scholar

    [63] Wang F, Chen Y H, Liu X L, et al. Self-reconstruction of partially coherent light beams scattered by opaque obstacles[J]. Opt Express, 2016, 24(21): 23735−23746. doi: 10.1364/OE.24.023735

    CrossRef Google Scholar

    [64] Goodman J W. Statistical Optics[M]. New York: John Wiley & Sons, 1985.

    Google Scholar

    [65] Wan L P, Zhao D M. Controllable rotating Gaussian Schell-model beams[J]. Opt Lett, 2019, 44(4): 735−738. doi: 10.1364/OL.44.000735

    CrossRef Google Scholar

    [66] Wan L P, Zhao D M. Generalized partially coherent beams with nonseparable phases[J]. Opt Lett, 2019, 44(19): 4714−4717. doi: 10.1364/OL.44.004714

    CrossRef Google Scholar

    [67] Zhou Y J, Zhu W T, Zhao D M. Twisted sinc-correlation Schell-model beams[J]. Opt Express, 2022, 30(2): 1699−1707. doi: 10.1364/OE.450254

    CrossRef Google Scholar

    [68] Wang H Y, Peng X F, Zhang H, et al. Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum[J]. Nanophotonics, 2022, 11(4): 689−696. doi: 10.1515/nanoph-2021-0432

    CrossRef Google Scholar

    [69] Lin R, Yu H C, Zhu X L, et al. The evolution of spectral intensity and orbital angular momentum of twisted Hermite Gaussian Schell model beams in turbulence[J]. Opt Express, 2020, 28(5): 7152−7164. doi: 10.1364/OE.387443

    CrossRef Google Scholar

    [70] Chen Y H, Ponomarenko S A, Cai Y J. Self-steering partially coherent beams[J]. Sci Rep, 2017, 7(1): 39957. doi: 10.1038/srep39957

    CrossRef Google Scholar

    [71] Mao H D, Chen Y H, Liang C H, et al. Self-steering partially coherent vector beams[J]. Opt Express, 2019, 27(10): 14353−14368. doi: 10.1364/OE.27.014353

    CrossRef Google Scholar

    [72] Sun B Y, Huang Z F, Zhu X L, et al. Random source for generating Airy-like spectral density in the far field[J]. Opt Express, 2020, 28(5): 7182−7196. doi: 10.1364/OE.388507

    CrossRef Google Scholar

    [73] Zhu Y M, Dong Z, Wang F, et al. Compact generation of robust Airy beam pattern with spatial coherence engineering[J]. Opt Lett, 2022, 47(11): 2846−2849. doi: 10.1364/OL.460191

    CrossRef Google Scholar

    [74] Chen Y H, Wang F, Liu L, et al. Generation and propagation of a partially coherent vector beam with special correlation functions[J]. Phys Rev A, 2014, 89(1): 013801. doi: 10.1103/PhysRevA.89.013801.

    CrossRef Google Scholar

    [75] Peng X F, Wang H Y, Liu L, et al. Self-reconstruction of twisted Laguerre-Gaussian Schell-model beams partially blocked by an opaque obstacle[J]. Opt Express, 2020, 28(21): 31510−31523. doi: 10.1364/OE.408357

    CrossRef Google Scholar

    [76] Wang F, Lv H, Chen Y H, et al. Three modal decompositions of Gaussian Schell-model sources: comparative analysis[J]. Opt Express, 2021, 29(19): 29676−29689. doi: 10.1364/OE.435767

    CrossRef Google Scholar

    [77] Martínez-Herrero R, Mejías P M, Gori F. Genuine cross-spectral densities and pseudo-modal expansions[J]. Opt Lett, 2009, 34(9): 1399−1401. doi: 10.1364/OL.34.001399

    CrossRef Google Scholar

    [78] Martínez-Herrero R, Mejías P M. Elementary-field expansions of genuine cross-spectral density matrices[J]. Opt Lett, 2009, 34(15): 2303−2305. doi: 10.1364/OL.34.002303

    CrossRef Google Scholar

    [79] Yang S C, Ponomarenko S A, Chen Z Z. Coherent pseudo-mode decomposition of a new partially coherent source class[J]. Opt Lett, 2015, 40(13): 3081−3084. doi: 10.1364/OL.40.003081

    CrossRef Google Scholar

    [80] Prahl S A, Fischer D G, Duncan D D. Monte Carlo Green's function formalism for the propagation of partially coherent light[J]. J Opt Soc America A, 2009, 26(7): 1533−1543. doi: 10.1364/JOSAA.26.001533

    CrossRef Google Scholar

    [81] Wang F, Korotkova O. Convolution approach for beam propagation in random media[J]. Opt Lett, 2016, 41(7): 1546−1549. doi: 10.1364/OL.41.001546

    CrossRef Google Scholar

    [82] Zeng J, Liu X L, Wang F, et al. Partially coherent fractional vortex beam[J]. Opt Express, 2018, 26(21): 26830−26844. doi: 10.1364/OE.26.026830

    CrossRef Google Scholar

    [83] Zeng J, Liang C H, Wang H Y, et al. Partially coherent radially polarized fractional vortex beam[J]. Opt Express, 2020, 28(8): 11493−11513. doi: 10.1364/OE.390922

    CrossRef Google Scholar

    [84] Voelz D, Xiao X F, Korotkova O. Numerical modeling of Schell-model beams with arbitrary far-field patterns[J]. Opt Lett, 2015, 40(3): 352−355. doi: 10.1364/OL.40.000352

    CrossRef Google Scholar

    [85] Hyde IV M W, Basu S, Voelz D G, et al. Experimentally generating any desired partially coherent Schell-model source using phase-only control[J]. J Appl Phys, 2015, 118(9): 093102. doi: 10.1063/1.4929811

    CrossRef Google Scholar

    [86] Hyde IV M W, Bose-Pillai S, Voelz D G, et al. Generation of vector partially coherent optical sources using phase-only spatial light modulators[J]. Phys Rev Appl, 2016, 6(6): 064030. doi: 10.1103/PhysRevApplied.6.064030

    CrossRef Google Scholar

    [87] Hyde IV M W, Bose-Pillai S R, Wood R A. Synthesis of non-uniformly correlated partially coherent sources using a deformable mirror[J]. Appl Phys Lett, 2017, 111(10): 101106. doi: 10.1063/1.4994669

    CrossRef Google Scholar

    [88] Hyde M W, Xiao X F, Voelz D G. Generating electromagnetic nonuniformly correlated beams[J]. Opt Lett, 2019, 44(23): 5719−5722. doi: 10.1364/OL.44.005719

    CrossRef Google Scholar

    [89] Hyde IV M W, Bose-Pillai S, Xiao X, et al. A fast and efficient method for producing partially coherent sources[J]. J Opt, 2017, 19(2): 025601. doi: 10.1088/2040-8986/19/2/025601

    CrossRef Google Scholar

    [90] Lin S Q, Wang C, Zhu X L, et al. Propagation of radially polarized Hermite non-uniformly correlated beams in a turbulent atmosphere[J]. Opt Express, 2020, 28(19): 27238−27249. doi: 10.1364/OE.402021

    CrossRef Google Scholar

    [91] Wang F, Cai Y J, He S L. Experimental observation of coincidence fractional Fourier transform with a partially coherent beam[J]. Opt Express, 2006, 14(16): 6999−7004. doi: 10.1364/OE.14.006999

    CrossRef Google Scholar

    [92] Wang F, Cai Y J. Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics[J]. J Opt Soc America A, 2007, 24(7): 1937−1944. doi: 10.1364/JOSAA.24.001937

    CrossRef Google Scholar

    [93] Huang Z F, Chen Y H, Wang F, et al. Measuring complex degree of coherence of random light fields with generalized Hanbury Brown–Twiss experiment[J]. Phys Rev Appl, 2020, 13(4): 044042. doi: 10.1103/PhysRevApplied.13.044042

    CrossRef Google Scholar

    [94] Dong Z, Huang Z F, Chen Y H, et al. Measuring complex correlation matrix of partially coherent vector light via a generalized hanbury brown–twiss experiment[J]. Opt Express, 2020, 28(14): 20634−20644. doi: 10.1364/OE.398185

    CrossRef Google Scholar

    [95] Wang Z Y, Lu X Y, Huang W R, et al. Measuring the complete complex correlation matrix of a partially coherent vector beam via self-referencing holography[J]. Appl Phys Lett, 2021, 119(11): 111101. doi: 10.1063/5.0061838

    CrossRef Google Scholar

    [96] Lu X Y, Shao Y F, Zhao C L, et al. Noniterative spatially partially coherent diffractive imaging using pinhole array mask[J]. Adv Photonics, 2019, 1(1): 016005. doi: 10.1117/1.AP.1.1.016005

    CrossRef Google Scholar

    [97] Partanen H, Turunen J, Tervo J. Coherence measurement with digital micromirror device[J]. Opt Lett, 2014, 39(4): 1034−1037. doi: 10.1364/OL.39.001034

    CrossRef Google Scholar

    [98] Mejía Y, González A I. Measuring spatial coherence by using a mask with multiple apertures[J]. Opt Commun, 2007, 273(2): 428−434. doi: 10.1016/j.optcom.2007.01.009

    CrossRef Google Scholar

    [99] Divitt S, Lapin Z J, Novotny L. Measuring coherence functions using non-parallel double slits[J]. Opt Express, 2014, 22(7): 8277−8290. doi: 10.1364/OE.22.008277

    CrossRef Google Scholar

    [100] Brown R H, Twiss R Q. LXXIV. A new type of interferometer for use in radio astronomy[J]. Philos Mag, 1954, 45(366): 663−682. doi: 10.1080/14786440708520475

    CrossRef Google Scholar

    [101] Chen Y H, Wang F, Cai Y J. Partially coherent light beam shaping via complex spatial coherence structure engineering[J]. Adv Phys X, 2022, 7(1): 2009742. doi: 10.1080/23746149.2021.2009742

    CrossRef Google Scholar

    [102] Yu J Y, Huang Y, Wang F, et al. Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere[J]. Opt Express, 2019, 27(19): 26676−26688. doi: 10.1364/OE.27.026676

    CrossRef Google Scholar

    [103] Liu Y L, Lin R, Wang F, et al. Propagation properties of Laguerre-Gaussian Schell-model beams with a twist phase[J]. J Quant Spectrosc Radiat Transf, 2021, 264: 107556. doi: 10.1016/j.jqsrt.2021.107556

    CrossRef Google Scholar

    [104] Gu Y L, Gbur G. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence[J]. J Opt Soc America A, 2010, 27(12): 2621−2629. doi: 10.1364/JOSAA.27.002621

    CrossRef Google Scholar

    [105] Yuan Y S, Liu X L, Wang F, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Opt Commun, 2013, 305: 57−65. doi: 10.1016/j.optcom.2013.04.076

    CrossRef Google Scholar

    [106] Korotkova O, Avramov-Zamurovic S, Nelson C, et al. Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence[J]. Proc SPIE, 2014, 9224: 92240M. doi: 10.1117/12.2062601

    CrossRef Google Scholar

    [107] Yu J Y, Wang F, Liu L, et al. Propagation properties of Hermite non-uniformly correlated beams in turbulence[J]. Opt Express, 2018, 26(13): 16333−16343. doi: 10.1364/OE.26.016333

    CrossRef Google Scholar

    [108] Gu Y L, Gbur G. Scintillation of nonuniformly correlated beams in atmospheric turbulence[J]. Opt Lett, 2013, 38(9): 1395−1397. doi: 10.1364/OL.38.001395

    CrossRef Google Scholar

    [109] Gu Y L, Korotkova O, Gbur G. Scintillation of nonuniformly polarized beams in atmospheric turbulence[J]. Opt Lett, 2009, 34(15): 2261−2263. doi: 10.1364/OL.34.002261

    CrossRef Google Scholar

    [110] Wang F, Cai Y J, Eyyuboğlu H T, et al. Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere[J]. Opt Lett, 2012, 37(2): 184−186. doi: 10.1364/OL.37.000184

    CrossRef Google Scholar

    [111] Liu X L, Shen Y, Liu L, et al. Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam[J]. Opt Lett, 2013, 38(24): 5323−5326. doi: 10.1364/OL.38.005323

    CrossRef Google Scholar

    [112] Tong Z S, Korotkova O. Beyond the classical Rayleigh limit with twisted light[J]. Opt Lett, 2012, 37(13): 2595−2597. doi: 10.1364/OL.37.002595

    CrossRef Google Scholar

    [113] Liang C H, Wu G F, Wang F, et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources[J]. Opt Express, 2017, 25(23): 28352−28362. doi: 10.1364/OE.25.028352

    CrossRef Google Scholar

    [114] Liang C H, Monfared Y E, Liu X, et al. Optimizing illumination’s complex coherence state for overcoming Rayleigh’s resolution limit[J]. Chin Opt Lett, 2021, 19(5): 052601. doi: 10.3788/COL202119.052601

    CrossRef Google Scholar

    [115] Jin Y, Wang H Y, Liu L, et al. Orientation-selective sub-Rayleigh imaging with spatial coherence lattices[J]. Opt Express, 2022, 30(6): 9548−9561. doi: 10.1364/OE.454782

    CrossRef Google Scholar

    [116] Shen Y C, Sun H, Peng D M, et al. Optical image reconstruction in 4f imaging system: role of spatial coherence structure engineering[J]. Appl Phys Lett, 2021, 118(18): 181102. doi: 10.1063/5.0046288

    CrossRef Google Scholar

    [117] Shao Y F, Lu X Y, Konijnenberg S, et al. Spatial coherence measurement and partially coherent diffractive imaging using self-referencing holography[J]. Opt Express, 2018, 26(4): 4479−4490. doi: 10.1364/OE.26.004479

    CrossRef Google Scholar

    [118] Lu X Y, Wang Z Y, Zhang S X, et al. Microscopic phase reconstruction of cervical exfoliated cell under partially coherent illumination[J]. J Biophotonics, 2021, 14(1): e202000401. doi: 10.1002/jbio.202000401

    CrossRef Google Scholar

    [119] Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination[J]. Nat Photonics, 2012, 6(6): 355−359. doi: 10.1038/nphoton.2012.90

    CrossRef Google Scholar

    [120] Zhu X L, Yao H N, Yu J Y, et al. Inverse design of a spatial filter in edge enhanced imaging[J]. Opt Lett, 2020, 45(9): 2542−2545. doi: 10.1364/OL.391429

    CrossRef Google Scholar

    [121] Batarseh M, Sukhov S, Shen Z, et al. Passive sensing around the corner using spatial coherence[J]. Nat Commun, 2018, 9(1): 3629. doi: 10.1038/s41467-018-05985-w

    CrossRef Google Scholar

    [122] Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding[J]. Opt Lett, 1995, 20(7): 767−769. doi: 10.1364/OL.20.000767

    CrossRef Google Scholar

    [123] Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier domain[J]. Opt Lett, 2000, 25(12): 887−889. doi: 10.1364/OL.25.000887

    CrossRef Google Scholar

    [124] Wu J J, Xie Z W, Liu Z J, et al. Multiple-image encryption based on computational ghost imaging[J]. Opt Commun, 2016, 359: 38−43. doi: 10.1016/j.optcom.2015.09.039

    CrossRef Google Scholar

    [125] Li X P, Lan T H, Tien C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nat Commun, 2012, 3(1): 998. doi: 10.1038/ncomms2006

    CrossRef Google Scholar

    [126] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nat Photonics, 2020, 14(2): 102−108. doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [127] Chen Y H, Ponomarenko S A, Cai Y J. Experimental generation of optical coherence lattices[J]. Appl Phys Lett, 2016, 109(6): 061107. doi: 10.1063/1.4960966

    CrossRef Google Scholar

    [128] Peng D M, Huang Z F, Liu Y L, et al. Optical coherence encryption with structured random light[J]. PhotoniX, 2021, 2(1): 6. doi: 10.1186/s43074-021-00027-z

    CrossRef Google Scholar

    [129] Lin W, Wen Y H, Chen Y J, et al. Resilient free-space image transmission with helical beams[J]. Phys Rev Appl, 2019, 12(4): 044058. doi: 10.1103/PhysRevApplied.12.044058

    CrossRef Google Scholar

    [130] Fienup J R. Phase retrieval algorithms: a comparison[J]. Appl Opt, 1982, 21(15): 2758−2769. doi: 10.1364/AO.21.002758

    CrossRef Google Scholar

    [131] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Opt Lett, 1978, 3(1): 27−29. doi: 10.1364/OL.3.000027

    CrossRef Google Scholar

    [132] Liu Y L, Chen Y H, Wang F, et al. Robust far-field imaging by spatial coherence engineering[J]. Opto-Electron Adv, 2021, 4(12): 210027. doi: 10.29026/oea.2021.210027

    CrossRef Google Scholar

    [133] Liu Y L, Zhang X, Dong Z, et al. Robust far-field optical image transmission with structured random light beams[J]. Phys Rev Appl, 2022, 17(2): 024043. doi: 10.1103/PhysRevApplied.17.024043

    CrossRef Google Scholar

    [134] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Opt Express, 2000, 7(2): 77−87. doi: 10.1364/OE.7.000077

    CrossRef Google Scholar

    [135] Zhao Y Q, Zhan Q W, Zhang Y L, et al. Creation of a three-dimensional optical chain for controllable particle delivery[J]. Opt Lett, 2005, 30(8): 848−850. doi: 10.1364/OL.30.000848

    CrossRef Google Scholar

    [136] Wang H F, Shi L P, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nat Photonics, 2008, 2(8): 501−505. doi: 10.1038/nphoton.2008.127

    CrossRef Google Scholar

    [137] Chen W B, Zhan Q W. Three-dimensional focus shaping with cylindrical vector beams[J]. Opt Commun, 2006, 265(2): 411−417. doi: 10.1016/j.optcom.2006.04.066

    CrossRef Google Scholar

    [138] Zhan Q W, Leger J R. Focus shaping using cylindrical vector beams[J]. Opt Express, 2002, 10(7): 324−331. doi: 10.1364/OE.10.000324

    CrossRef Google Scholar

    [139] Kozawa Y, Sato S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams[J]. Opt Express, 2010, 18(10): 10828−10833. doi: 10.1364/OE.18.010828

    CrossRef Google Scholar

    [140] Li M M, Yan S H, Liang Y S, et al. Transverse spinning of particles in highly focused vector vortex beams[J]. Phys Rev A, 2017, 95(5): 053802. doi: 10.1103/PhysRevA.95.053802

    CrossRef Google Scholar

    [141] Xue Y X, Wang Y S, Zhou S C, et al. Focus shaping and optical manipulation using highly focused second-order full Poincaré beam[J]. J Opt Soc America A, 2018, 35(6): 953−958. doi: 10.1364/JOSAA.35.000953

    CrossRef Google Scholar

    [142] Zhang L, Qiu X D, Zeng L W, et al. Multiple trapping using a focused hybrid vector beam[J]. Chin Phys B, 2019, 28(9): 094202. doi: 10.1088/1674-1056/ab33ef

    CrossRef Google Scholar

    [143] Novotny L, Beversluis M R, Youngworth K S, et al. Longitudinal field modes probed by single molecules[J]. Phys Rev Lett, 2001, 86(23): 5251−5254. doi: 10.1103/PhysRevLett.86.5251

    CrossRef Google Scholar

    [144] Segawa S, Kozawa Y, Sato S. Resolution enhancement of confocal microscopy by subtraction method with vector beams[J]. Opt Lett, 2014, 39(11): 3118−3121. doi: 10.1364/OL.39.003118

    CrossRef Google Scholar

    [145] Dubey A K, Yadava V. Laser beam machining—a review[J]. Int J Mach Tools Manuf, 2008, 48(6): 609−628. doi: 10.1016/j.ijmachtools.2007.10.017

    CrossRef Google Scholar

    [146] Tsibidis G D, Skoulas E, Stratakis E. Ripple formation on nickel irradiated with radially polarized femtosecond beams[J]. Opt Lett, 2015, 40(22): 5172−5175. doi: 10.1364/OL.40.005172

    CrossRef Google Scholar

    [147] Zhu Z Y, Janasik M, Fyffe A, et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams[J]. Nat Commun, 2021, 12(1): 1666. doi: 10.1038/s41467-021-21793-1

    CrossRef Google Scholar

    [148] Zhu S J, Wang J, Liu X L, et al. Generation of arbitrary radially polarized array beams by manipulating correlation structure[J]. Appl Phys Lett, 2016, 109(16): 161904. doi: 10.1063/1.4965705

    CrossRef Google Scholar

    [149] Tong R H, Dong Z, Chen Y H, et al. Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence[J]. Opt Express, 2020, 28(7): 9713−9727. doi: 10.1364/OE.386187

    CrossRef Google Scholar

  • Optical coherence, as a fundamental resource in all areas of optical physics, plays a vital role in understanding interference, propagation, scattering, imaging, light-matter interactions, and other fundamental characteristics from classical to quantum optical wave fields. The theory of optical coherence is the most powerful tool to describe the statistical characters of random light beams (also named partially coherent beams). In the space-frequency domain, the spatial coherence property of a partially coherent light beam is characterized by a two-point spectral degree of coherence that is a normalized version of the cross-spectral density function. Nowadays, the degree of coherence has been viewed as a novel degree of freedom for the structured partially coherent light beams, which is akin to the deterministic properties, such as the amplitude, phase, and polarization of a fully coherent structured light beam. Due to the fundamental difference between the two-point degree of coherence of partially coherent light and the one-point deterministic features of fully coherent light, the partially coherent beams with customized spatial coherence have shown many unique properties and been found to be more advantageous in particular applications. By simply adjusting the spatial coherence width of the degree of coherence for a partially coherent beam can help reduce the turbulence-induced signal distortion in free-space optical communications and resist the speckle noise in optical imaging. Only recently, it has been found that not only the spatial coherence width but also the spatial coherence distribution of the degree of coherence can be customized, which has enabled a host of novel physical effects, including beam’s self-shaping, self-reconstruction, and self-focusing, and has aroused many important potential applications. In this paper, we review the fundamental theory and efficient experimental protocols for tailoring the spatial coherence structure of the degree of coherence for the partially coherent light beams. The differences and the advantages between the two strategies for producing the partially coherent beams with nonconventional spatial coherence structures are discussed. Meanwhile, we mainly focus on the applications of the spatial coherence structure engineering in coherence-based optical encryption, robust optical imaging, sub-Rayleigh imaging, robust far-field information transfer, and high-quality beam shaping. It is found that the spatial coherence structure engineering provides an efficient degree of freedom for the manipulation of structured light and paves the way for resisting the side effects induced by random fluctuations of complex media. We prospect that the spatial coherence engineering protocols can be extended to the temporal domain or even to the spatiotemporal domain and will find broader applications for light manipulations and light-matter interactions.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(11962) PDF downloads(2597) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint