Xu K, Wang X E, Fan X H, et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183
Citation: Xu K, Wang X E, Fan X H, et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

Meta-holography: from concept to realization

    Fund Project: National Key R&D Program of China (2021YFF0502700), National Natural Science Foundation of China (62205117, 52275429), Knowledge Innovation Program of Wuhan-Shuguang, and Innovation Research Project of Optics Valley Laboratory.
More Information
  • The pursuit of real-time, full-color, three-dimension (3D), and dynamic display has inspired a rich body of industrial and academic research. With the introduction of "Metaverse", there is an increasing demand for high-performance 3D display devices and technologies. Holographic technology is an ideal approach for future naked-eye 3D display. However, traditional dynamic holographic devices have brought many shortcomings such as small field of view (FOV) and limited information capacity, which hinder the practical applications. As a new class of light field modulator, metasurface is expected to achieve remarkable breakthroughs in the field of holographic display with the advantages of their small pixel size and the emerging ability to manipulate light. This paper gives an overview of the development of meta-holography from four aspects: the design strategy, the modulation principle, the methods for realizing dynamic display and the micro-nano fabrication technologies for optical metasurface. We finally include a brief discussion of the future direction in this field.
  • 加载中
  • [1] 金国藩, 张浩, 苏萍, 等. 计算机制全息图[M]. 北京: 科学出版社, 2020.

    Google Scholar

    Jin G F, Zhang H, Su P, et al. Computer-Generated Holography[M]. Beijing: Science Press, 2020.

    Google Scholar

    [2] Brown B R, Lohmann A W. Complex spatial filtering with binary masks[J]. Appl Opt, 1966, 5(6): 967−969. doi: 10.1364/AO.5.000967

    CrossRef Google Scholar

    [3] Lohmann A W, Paris D P. Binary fraunhofer holograms, generated by computer[J]. Appl Opt, 1967, 6(10): 1739−1748. doi: 10.1364/AO.6.001739

    CrossRef Google Scholar

    [4] Samoylenko S R, Lisitsin A V, Schepanovich D, et al. Single atom movement with dynamic holographic optical tweezers[J]. Laser Phys Lett, 2020, 17(2): 025203. doi: 10.1088/1612-202X/ab6729

    CrossRef Google Scholar

    [5] Casasent D, Rozzi W A. Computer-generated and phase-only synthetic discriminant function filters[J]. Appl Opt, 1986, 25(20): 3767−3772. doi: 10.1364/AO.25.003767

    CrossRef Google Scholar

    [6] Slinger C, Cameron C, Stanley M. Computer-generated holography as a generic display technology[J]. Computer, 2005, 38(8): 46−53. doi: 10.1109/MC.2005.260

    CrossRef Google Scholar

    [7] Reichelt S, Tiziani H. Asphärenprüfung mit computergenerierten Hologrammen (Testing Aspheric Optics by Use of Computer-generated Holograms)[J]. tm - Tech Mess, 2006, 73(10): 554−565. doi: 10.1524/teme.2006.73.10.554

    CrossRef Google Scholar

    [8] Deng L G, Deng J, Guan Z Q, et al. Malus-metasurface-assisted polarization multiplexing[J]. Light Sci Appl, 2020, 9: 101. doi: 10.1038/s41377-020-0327-7

    CrossRef Google Scholar

    [9] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [10] Zhang S F, Huang L L, Li X, et al. Dynamic display of full-stokes vectorial holography based on metasurfaces[J]. ACS Photonics, 2021, 8(6): 1746−1753. doi: 10.1021/acsphotonics.1c00307

    CrossRef Google Scholar

    [11] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses[J]. Light Sci Appl, 2018, 7: 85. doi: 10.1038/s41377-018-0078-x

    CrossRef Google Scholar

    [12] 胡跃强, 李鑫, 王旭东, 等. 光学超构表面的微纳加工技术研究进展[J]. 红外与激光工程, 2020, 49(9): 20201035. doi: 10.3788/IRLA20201035

    CrossRef Google Scholar

    Hu Y Q, Li X, Wang X D, et al. Progress of micro-nano fabrication technologies for optical metasurfaces[J]. Infrared Laser Eng, 2020, 49(9): 20201035. doi: 10.3788/IRLA20201035

    CrossRef Google Scholar

    [13] Tseng M L, Hsiao H H, Chu C H, et al. Metalenses: advances and applications[J]. Adv Opt Mater, 2018, 6(18): 1800554. doi: 10.1002/adom.201800554

    CrossRef Google Scholar

    [14] Chen X Y, Zou H J, Su M Y, et al. All-dielectric metasurface-based beam splitter with arbitrary splitting ratio[J]. Nanomaterials (Basel), 2021, 11(5): 1137. doi: 10.3390/nano11051137

    CrossRef Google Scholar

    [15] Haghtalab M, Tamagnone M, Zhu A Y, et al. Ultrahigh angular selectivity of disorder-engineered metasurfaces[J]. ACS Photonics, 2020, 7(4): 991−1000. doi: 10.1021/acsphotonics.9b01655

    CrossRef Google Scholar

    [16] Larouche S, Tsai Y J, Tyler T, et al. Infrared metamaterial phase holograms[J]. Nat Mater, 2012, 11(5): 450−454. doi: 10.1038/nmat3278

    CrossRef Google Scholar

    [17] Walther B, Helgert C, Rockstuhl C, et al. Diffractive optical elements based on plasmonic metamaterials[J]. Appl Phys Lett, 2011, 98(19): 191101. doi: 10.1063/1.3587622

    CrossRef Google Scholar

    [18] Gao H, Fan X H, Xiong W, et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electron Adv, 2021, 4(11): 210030. doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [19] Pang H, Wang J Z, Cao A X, et al. Accurate hologram generation using layer-based method and iterative Fourier transform algorithm[J]. IEEE Photonics J, 2017, 9(1): 1−8. doi: 10.1109/jphot.2016.2634783

    CrossRef Google Scholar

    [20] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237−246.

    Google Scholar

    [21] Feldman M R, Guest C C. Iterative encoding of high-efficiency holograms for generation of spot arrays[J]. Opt Lett, 1989, 14(10): 479−481. doi: 10.1364/OL.14.000479

    CrossRef Google Scholar

    [22] Yoshikawa N, Itoh M, Yatagai T. Quantized phase optimization of two-dimensional Fourier kinoforms by a genetic algorithm[J]. Opt Lett, 1995, 20(7): 752−754. doi: 10.1364/OL.20.000752

    CrossRef Google Scholar

    [23] Pang H, Wang J Z, Cao A X, et al. High-accuracy method for holographic image projection with suppressed speckle noise[J]. Opt Express, 2016, 24(20): 22766−22776. doi: 10.1364/OE.24.022766

    CrossRef Google Scholar

    [24] Liu S C, Chu D P. Deep learning for hologram generation[J]. Opt Express, 2021, 29(17): 27373−27395. doi: 10.1364/OE.418803

    CrossRef Google Scholar

    [25] Lee J, Jeong J, Cho J, et al. Deep neural network for multi-depth hologram generation and its training strategy[J]. Opt Express, 2020, 28(18): 27137−27154. doi: 10.1364/OE.402317

    CrossRef Google Scholar

    [26] Lee G Y, Yoon G, Lee S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237−4245. doi: 10.1039/C7NR07154J

    CrossRef Google Scholar

    [27] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    [28] Wang E W, Sell D, Phan T, et al. Robust design of topology-optimized metasurfaces[J]. Opt Mater Express, 2019, 9(2): 469−482. doi: 10.1364/OME.9.000469

    CrossRef Google Scholar

    [29] Xu M F, Pu M B, Sang D, et al. Topology-optimized catenary-like metasurface for wide-angle and high-efficiency deflection: from a discrete to continuous geometric phase[J]. Opt Express, 2021, 29(7): 10181−10191. doi: 10.1364/OE.422112

    CrossRef Google Scholar

    [30] Wan W W, Gao J, Yang X D. Metasurface holograms for holographic imaging[J]. Adv Opt Mater, 2017, 5(21): 1700541. doi: 10.1002/adom.201700541

    CrossRef Google Scholar

    [31] Xie X, Pu M B, Jin J J, et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902. doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [32] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 2013, 4(1): 2808. doi: 10.1038/ncomms3808

    CrossRef Google Scholar

    [33] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [34] Zhang X H, Jin J J, Wang Y Q, et al. Metasurface-based broadband hologram with high tolerance to fabrication errors[J]. Sci Rep, 2016, 6: 19856. doi: 10.1038/srep19856

    CrossRef Google Scholar

    [35] Wang L, Kruk S, Tang H Z, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504−1505. doi: 10.1364/OPTICA.3.001504

    CrossRef Google Scholar

    [36] Devlin R C, Khorasaninejad M, Chen W T, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proc Natl Acad Sci USA, 2016, 113(38): 10473−10478. doi: 10.1073/pnas.1611740113

    CrossRef Google Scholar

    [37] 付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学, 2021, 14(4): 886−899. doi: 10.37188/CO.2021-0017

    CrossRef Google Scholar

    Fu R, Li Z L, Zheng G X, et al. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chin Opt, 2021, 14(4): 886−899. doi: 10.37188/CO.2021-0017

    CrossRef Google Scholar

    [38] Butt H, Montelongo Y, Butler T, et al. Carbon nanotube based high resolution holograms[J]. Adv Mater, 2012, 24(44): OP331−OP336. doi: 10.1002/adma.201202593

    CrossRef Google Scholar

    [39] Huang K, Liu H, Garcia-Vidal F J, et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nat Commun, 2015, 6: 7059. doi: 10.1038/ncomms8059

    CrossRef Google Scholar

    [40] Xu Z T, Huang L L, Li X W, et al. Quantitatively correlated amplitude holography based on photon sieves[J]. Adv Opt Mater, 2020, 8(2): 1901169. doi: 10.1002/adom.201901169

    CrossRef Google Scholar

    [41] Fu R, Deng L G, Guan Z Q, et al. Zero-order-free meta-holograms in a broadband visible range[J]. Photonics Res, 2020, 8(5): 723−728. doi: 10.1364/PRJ.387397

    CrossRef Google Scholar

    [42] Overvig A C, Shrestha S, Malek S C, et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J]. Light Sci Appl, 2019, 8: 92. doi: 10.1038/s41377-019-0201-7

    CrossRef Google Scholar

    [43] Gao Y S, Fan Y B, Wang Y J, et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Lett, 2018, 18(12): 8054−8061. doi: 10.1021/acs.nanolett.8b04311

    CrossRef Google Scholar

    [44] 隋晓萌, 何泽浩, 曹良才, 等. 基于液晶空间光调制器的复振幅全息显示进展[J]. 液晶与显示, 2021, 36(6): 797−809. doi: 10.37188/CJLCD.2021-0049

    CrossRef Google Scholar

    Sui X M, He Z H, Cao L C, et al. Recent progress in complex-modulated holographic display based on liquid crystal spatial light modulators[J]. Chin J Liq Cryst Dis, 2021, 36(6): 797−809. doi: 10.37188/CJLCD.2021-0049

    CrossRef Google Scholar

    [45] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nat Commun, 2013, 4(1): 2807. doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [46] Wang Q, Zhang X Q, Xu Y H, et al. Broadband metasurface holograms: toward complete phase and amplitude engineering[J]. Sci Rep, 2016, 6: 32867. doi: 10.1038/srep32867

    CrossRef Google Scholar

    [47] Jiang Q, Cao L C, Huang L L, et al. A complex-amplitude hologram using an ultra-thin dielectric metasurface[J]. Nanoscale, 2020, 12(47): 24162−24168. doi: 10.1039/D0NR06461K

    CrossRef Google Scholar

    [48] Huang T Y, Zhao X, Zeng S W, et al. Planar nonlinear metasurface optics and their applications[J]. Rep Prog Phys, 2020, 83(12): 126101. doi: 10.1088/1361-6633/abb56e

    CrossRef Google Scholar

    [49] 石鸣谦, 刘俊, 陈卓, 等. 基于超构表面的非线性光学与量子光学[J]. 红外与激光工程, 2020, 49(9): 20201028. doi: 10.3788/IRLA20201028

    CrossRef Google Scholar

    Shi M Q, Liu J, Chen Z, et al. Nonlinear optics and quantum optics based on metasurface[J]. Infrared Laser Eng, 2020, 49(9): 20201028. doi: 10.3788/IRLA20201028

    CrossRef Google Scholar

    [50] Frese D, Wei Q S, Wang Y T, et al. Nonlinear bicolor holography using plasmonic metasurfaces[J]. ACS Photonics, 2021, 8(4): 1013−1019. doi: 10.1021/acsphotonics.1c00028

    CrossRef Google Scholar

    [51] Mao N B, Tang Y T, Jin M K, et al. Nonlinear wavefront engineering with metasurface decorated quartz crystal[J]. Nanophotonics, 2022, 11(4): 797−803. doi: 10.1515/nanoph-2021-0464

    CrossRef Google Scholar

    [52] Mao N B, Zhang G Q, Tang Y T, et al. Nonlinear vectorial holography with quad-atom metasurfaces[J]. Proc Natl Acad Sci USA, 2022, 119(22): e2204418119. doi: 10.1073/pnas.2204418119

    CrossRef Google Scholar

    [53] Deng Z L, Wang Z Q, Li F J, et al. Multi-freedom metasurface empowered vectorial holography[J]. Nanophotonics, 2022, 11(9): 1725−1739. doi: 10.1515/nanoph-2021-0662

    CrossRef Google Scholar

    [54] Tan H Y, Deng J H, Zhao R Z, et al. A free-space orbital angular momentum multiplexing communication system based on a metasurface[J]. Laser Photonics Rev, 2019, 13(6): 1800278. doi: 10.1002/lpor.201800278

    CrossRef Google Scholar

    [55] Li Z F, He C, Zhu W R. Secret sharing holographic encryption with off-axis dual-channel metasurface[C]//2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 2020: 815–816. doi: 10.1109/IEEECONF35879.2020.9330314.

    Google Scholar

    [56] Li Z F, Premaratne M, Zhu W R. Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface[J]. Nanophotonics, 2020, 9(11): 3687−3696. doi: 10.1515/nanoph-2020-0298

    CrossRef Google Scholar

    [57] Xiong Y J, Vandenhoute M, Cankaya H C. Control architecture in optical burst-switched WDM networks[J]. IEEE J Sel Areas Commun, 2000, 18(10): 1838−1851. doi: 10.1109/49.887906

    CrossRef Google Scholar

    [58] Nakayama H, Takada N, Ichihashi Y, et al. Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels[J]. Appl Opt, 2010, 49(31): 5993−5996. doi: 10.1364/AO.49.005993

    CrossRef Google Scholar

    [59] Zeng Z X, Zheng H F, Yu Y J, et al. Full-color holographic display with increased-viewing-angle [Invited][J]. Appl Opt, 2017, 56(13): F112−F120. doi: 10.1364/AO.56.00F112

    CrossRef Google Scholar

    [60] Makowski M, Ducin I, Sypek M, et al. Color image projection based on Fourier holograms[J]. Opt Lett, 2010, 35(8): 1227−1229. doi: 10.1364/OL.35.001227

    CrossRef Google Scholar

    [61] Makowski M, Sypek M, Kolodziejczyk A. Colorful reconstructions from a thin multi-plane phase hologram[J]. Opt Express, 2008, 16(15): 11618−11623. doi: 10.1364/OE.16.011618

    CrossRef Google Scholar

    [62] Kozacki T, Chlipala M. Color holographic display with white light LED source and single phase only SLM[J]. Opt Express, 2016, 24(3): 2189−2199. doi: 10.1364/OE.24.002189

    CrossRef Google Scholar

    [63] Zhao W Y, Liu B Y, Jiang H, et al. Full-color hologram using spatial multiplexing of dielectric metasurface[J]. Opt Lett, 2016, 41(1): 147−150. doi: 10.1364/OL.41.000147

    CrossRef Google Scholar

    [64] Wang B, Dong F L, Li Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Lett, 2016, 16(8): 5235−5240. doi: 10.1021/acs.nanolett.6b02326

    CrossRef Google Scholar

    [65] Zhang F, Pu M B, Gao P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Adv Sci, 2020, 7(10): 1903156. doi: 10.1002/advs.201903156

    CrossRef Google Scholar

    [66] Guo X Y, Zhong J Z, Li B J, et al. Full-color holographic display and encryption with full-polarization degree of freedom[J]. Adv Mater, 2022, 34(3): 2103192. doi: 10.1002/adma.202103192

    CrossRef Google Scholar

    [67] Ma D N, Li Z C, Liu W W, et al. Deep-learning enabled multicolor meta-holography[J]. Adv Opt Mater, 2022, 10(15): 2102628. doi: 10.1002/ADOM.202102628

    CrossRef Google Scholar

    [68] Hu Y Q, Luo X H, Chen Y Q, et al. 3D-Integrated metasurfaces for full-colour holography[J]. Light Sci Appl, 2019, 8: 86. doi: 10.1038/s41377-019-0198-y

    CrossRef Google Scholar

    [69] Lim K T P, Liu H L, Liu Y J, et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control[J]. Nat Commun, 2019, 10(1): 25. doi: 10.1038/s41467-018-07808-4

    CrossRef Google Scholar

    [70] Shi Z J, Khorasaninejad M, Huang Y W, et al. Single-layer metasurface with controllable multiwavelength functions[J]. Nano Lett, 2018, 18(4): 2420−2427. doi: 10.1021/acs.nanolett.7b05458

    CrossRef Google Scholar

    [71] Hu Y Q, Li L, Wang Y J, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Lett, 2020, 20(2): 994−1002. doi: 10.1021/acs.nanolett.9b04107

    CrossRef Google Scholar

    [72] Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Sci Adv, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [73] Deng Z L, Jin M K, Ye X, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Adv Funct Mater, 2020, 30(21): 1910610. doi: 10.1002/adfm.201910610

    CrossRef Google Scholar

    [74] Huo P C, Song M W, Zhu W Q, et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface[J]. Optica, 2020, 7(9): 1171−1172. doi: 10.1364/OPTICA.403092

    CrossRef Google Scholar

    [75] Bao Y J, Yu Y, Xu H F, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light Sci Appl, 2019, 8: 95. doi: 10.1038/s41377-019-0206-2

    CrossRef Google Scholar

    [76] Wei Q S, Sain B, Wang Y T, et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces[J]. Nano Lett, 2019, 19(12): 8964−8971. doi: 10.1021/acs.nanolett.9b03957

    CrossRef Google Scholar

    [77] Kamali S M, Arbabi E, Arbabi A, et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles[J]. Phys Rev X, 2017, 7(4): 041056. doi: 10.1103/PhysRevX.7.041056

    CrossRef Google Scholar

    [78] Jang J, Lee G Y, Sung J, et al. Independent multichannel wavefront modulation for angle multiplexed meta-holograms[J]. Adv Opt Mater, 2021, 9(17): 2100678. doi: 10.1002/adom.202100678

    CrossRef Google Scholar

    [79] Wang E L, Niu J B, Liang Y H, et al. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields[J]. Adv Opt Mater, 2020, 8(6): 1901674. doi: 10.1002/adom.201901674

    CrossRef Google Scholar

    [80] Wan S, Tang J, Wan C W, et al. Angular-encrypted quad-fold display of nanoprinting and meta-holography for optical information storage[J]. Adv Opt Mater, 2022, 10(11): 2102820. doi: 10.1002/adom.202102820

    CrossRef Google Scholar

    [81] Zhang X H, Jin J J, Pu M B, et al. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes[J]. Nanoscale, 2017, 9(4): 1409−1415. doi: 10.1039/C6NR07854K

    CrossRef Google Scholar

    [82] Wang J Y, Tan X D, Qi P L, et al. Linear polarization holography[J]. Opto-Electron Sci, 2022, 1(2): 210009. doi: 10.29026/oes.2022.210009

    CrossRef Google Scholar

    [83] Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Lett, 2014, 14(1): 225−230. doi: 10.1021/nl403811d

    CrossRef Google Scholar

    [84] Montelongo Y, Tenorio-Pearl J O, Milne W I, et al. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas[J]. Nano Lett, 2014, 14(1): 294−298. doi: 10.1021/nl4039967

    CrossRef Google Scholar

    [85] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 2015, 6: 8241. doi: 10.1038/ncomms9241

    CrossRef Google Scholar

    [86] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [87] Li Z L, Chen C, Guan Z Q, et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach[J]. Laser Photonics Rev, 2020, 14(6): 2000032. doi: 10.1002/lpor.202000032

    CrossRef Google Scholar

    [88] Kuroda K. Theory of polarization holography[C]//2011 10th Euro-American Workshop on Information Optics, 2011: 1–3,doi: 10.1109/WIO.2011.5981446.

    Google Scholar

    [89] Zhao R Z, Sain B, Wei Q S, et al. Multichannel vectorial holographic display and encryption[J]. Light Sci Appl, 2018, 7: 95. doi: 10.1038/s41377-018-0091-0

    CrossRef Google Scholar

    [90] Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Lett, 2018, 18(5): 2885−2892. doi: 10.1021/acs.nanolett.8b00047

    CrossRef Google Scholar

    [91] Arbabi E, Kamali S M, Arbabi A, et al. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation[J]. ACS Photonics, 2019, 6(11): 2712−2718. doi: 10.1021/acsphotonics.9b00678

    CrossRef Google Scholar

    [92] Ren H R, Shao W, Li Y, et al. Three-dimensional vectorial holography based on machine learning inverse design[J]. Sci Adv, 2020, 6(16): eaaz4261. doi: 10.1126/sciadv.aaz4261

    CrossRef Google Scholar

    [93] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 2012, 6(7): 488−496. doi: 10.1038/nphoton.2012.138

    CrossRef Google Scholar

    [94] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545−1548. doi: 10.1126/science.1237861

    CrossRef Google Scholar

    [95] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313−316. doi: 10.1038/35085529

    CrossRef Google Scholar

    [96] Fickler R, Lapkiewicz R, Plick W N, et al. Quantum entanglement of high angular momenta[J]. Science, 2012, 338(6107): 640−643. doi: 10.1126/science.1227193

    CrossRef Google Scholar

    [97] O’Neil A T, MacVicar I, Allen L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam[J]. Phys Rev Lett, 2002, 88(5): 053601. doi: 10.1103/PhysRevLett.88.053601

    CrossRef Google Scholar

    [98] Ren H R, Briere G, Fang X Y, et al. Metasurface orbital angular momentum holography[J]. Nat Commun, 2019, 10(1): 2986. doi: 10.1038/s41467-019-11030-1

    CrossRef Google Scholar

    [99] Ren H R, Fang X Y, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nat Nanotechnol, 2020, 15(11): 948−955. doi: 10.1038/s41565-020-0768-4

    CrossRef Google Scholar

    [100] Jin L, Huang Y W, Jin Z W, et al. Dielectric multi-momentum meta-transformer in the visible[J]. Nat Commun, 2019, 10(1): 4789. doi: 10.1038/s41467-019-12637-0

    CrossRef Google Scholar

    [101] Izumi R, Ikezawa S, Iwami K. Metasurface holographic movie: a cinematographic approach[J]. Opt Express, 2020, 28(16): 23761−23770. doi: 10.1364/OE.399369

    CrossRef Google Scholar

    [102] Gao H, Wang Y X, Fan X H, et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate[J]. Sci Adv, 2020, 6(28): eaba8595. doi: 10.1126/sciadv.aba8595

    CrossRef Google Scholar

    [103] Tang J, Wan S, Shi Y Y, et al. Dynamic augmented reality display by layer-folded metasurface via electrical-driven liquid crystal[J]. Adv Opt Mater, 2022, 10(12): 2200418. doi: 10.1002/adom.202200418

    CrossRef Google Scholar

    [104] Li J X, Yu P, Zhang S, et al. A reusable metasurface template[J]. Nano Lett, 2020, 20(9): 6845−6851. doi: 10.1021/acs.nanolett.0c02876

    CrossRef Google Scholar

    [105] Sounas D L, Alù A. Non-reciprocal photonics based on time modulation[J]. Nat Photonics, 2017, 11(12): 774−783. doi: 10.1038/s41566-017-0051-x

    CrossRef Google Scholar

    [106] Frese D, Wei Q S, Wang Y T, et al. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces[J]. Nano Lett, 2019, 19(6): 3976−3980. doi: 10.1021/acs.nanolett.9b01298

    CrossRef Google Scholar

    [107] Ansari M A, Kim I, Rukhlenko I D, et al. Engineering spin and antiferromagnetic resonances to realize an efficient direction-multiplexed visible meta-hologram[J]. Nanoscale Horiz, 2020, 5(1): 57−64. doi: 10.1039/C9NH00460B

    CrossRef Google Scholar

    [108] Naveed M A, Ansari M A, Kim I, et al. Optical spin-symmetry breaking for high-efficiency directional helicity-multiplexed metaholograms[J]. Microsyst Nanoeng, 2021, 7: 5. doi: 10.1038/S41378-020-00226-X

    CrossRef Google Scholar

    [109] Kruk S S, Wang L, Sain B, et al. Asymmetric parametric generation of images with nonlinear dielectric metasurfaces[J]. Nat Photonics, 2022, 16(8): 561−565. doi: 10.1038/S41566-022-01018-7

    CrossRef Google Scholar

    [110] Qu G Y, Yang W H, Song Q H, et al. Reprogrammable meta-hologram for optical encryption[J]. Nat Commun, 2020, 11(1): 5484. doi: 10.1038/s41467-020-19312-9

    CrossRef Google Scholar

    [111] Georgi P, Wei Q S, Sain B, et al. Optical secret sharing with cascaded metasurface holography[J]. Sci Adv, 2021, 7(16): eabf9718. doi: 10.1126/sciadv.abf9718

    CrossRef Google Scholar

    [112] Wei Q S, Huang L L, Zhao R Z, et al. Rotational multiplexing method based on cascaded metasurface holography[J]. Adv Opt Mater, 2022, 10(8): 2102166. doi: 10.1002/adom.202102166

    CrossRef Google Scholar

    [113] Zhang X H, Pu M B, Guo Y H, et al. Colorful metahologram with independently controlled images in transmission and reflection spaces[J]. Adv Funct Mater, 2019, 29(22): 1809145. doi: 10.1002/adfm.201809145

    CrossRef Google Scholar

    [114] Zheng G X, Zhou N, Deng L G, et al. Full-space metasurface holograms in the visible range[J]. Opt Express, 2021, 29(2): 2920−2930. doi: 10.1364/OE.417202

    CrossRef Google Scholar

    [115] Zhao R Z, Geng G Z, Wei Q S, et al. Controllable polarization and diffraction modulated multi-functionality based on metasurface[J]. Adv Opt Mater, 2022, 10(8): 2102596. doi: 10.1002/adom.202102596

    CrossRef Google Scholar

    [116] Li X, Zhang X, Zhao R Z, et al. Independent light field manipulation in diffraction orders of metasurface holography[J]. Laser Photonics Rev, 2022, 16(8): 2100592. doi: 10.1002/LPOR.202100592

    CrossRef Google Scholar

    [117] Kim I, Kim W S, Kim K, et al. Holographic metasurface gas sensors for instantaneous visual alarms[J]. Sci Adv, 2021, 7(15): eabe9943. doi: 10.1126/sciadv.abe9943

    CrossRef Google Scholar

    [118] Li X, Zhao R Z, Wei Q S, et al. Code division multiplexing inspired dynamic metasurface holography[J]. Adv Funct Mater, 2021, 31(35): 2103326. doi: 10.1002/adfm.202103326

    CrossRef Google Scholar

    [119] Wan W P, Yang W H, Feng H, et al. Multiplexing vectorial holographic images with arbitrary metaholograms[J]. Adv Opt Mater, 2021, 9(20): 2100626. doi: 10.1002/adom.202100626

    CrossRef Google Scholar

    [120] Ding F, Deshpande R, Bozhevolnyi S I. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence[J]. Light Sci Appl, 2018, 7(4): 17178. doi: 10.1038/lsa.2017.178

    CrossRef Google Scholar

    [121] Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 2012, 11(5): 426−431. doi: 10.1038/nmat3292

    CrossRef Google Scholar

    [122] Huang Z Q, Marks D L, Smith D R. Polarization-selective waveguide holography in the visible spectrum[J]. Opt Express, 2019, 27(24): 35631−35645. doi: 10.1364/OE.27.035631

    CrossRef Google Scholar

    [123] Huang Z Q, Marks D L, Smith D R. Out-of-plane computer-generated multicolor waveguide holography[J]. Optica, 2019, 6(2): 119−124. doi: 10.1364/OPTICA.6.000119

    CrossRef Google Scholar

    [124] Ha Y L, Guo Y H, Pu M B, et al. Monolithic-integrated multiplexed devices based on metasurface-driven guided waves[J]. Adv Theory Simul, 2021, 4(2): 2000239. doi: 10.1002/adts.202000239

    CrossRef Google Scholar

    [125] Shi Y Y, Wan C W, Dai C J, et al. Augmented reality enabled by on-chip meta-holography multiplexing[J]. Laser Photonics Rev, 2022, 16(6): 2100638. doi: 10.1002/lpor.202100638

    CrossRef Google Scholar

    [126] Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials[J]. Adv Sci, 2018, 5(10): 1800835. doi: 10.1002/advs.201800835

    CrossRef Google Scholar

    [127] Zhou H Q, Wang Y T, Li X W, et al. Switchable active phase modulation and holography encryption based on hybrid metasurfaces[J]. Nanophotonics, 2020, 9(4): 905−912. doi: 10.1515/nanoph-2019-0519

    CrossRef Google Scholar

    [128] Choi C, Mun S E, Sung J, et al. Hybrid state engineering of phase-change metasurface for all-optical cryptography[J]. Adv Funct Mater, 2021, 31(4): 2007210. doi: 10.1002/adfm.202007210

    CrossRef Google Scholar

    [129] Tripathi A, John J, Kruk S, et al. Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials[J]. ACS Photonics, 2021, 8(4): 1206−1213. doi: 10.1021/acsphotonics.1c00124

    CrossRef Google Scholar

    [130] Liu X B, Wang Q, Zhang X Q, et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface[J]. Adv Opt Mater, 2019, 7(12): 1900175. doi: 10.1002/adom.201900175

    CrossRef Google Scholar

    [131] Yang J K, Jeong H S. Switchable metasurface with VO2 thin film at visible light by changing temperature[J]. Photonics, 2021, 8(2): 57. doi: 10.3390/photonics8020057

    CrossRef Google Scholar

    [132] Li J X, Kamin S, Zheng G X, et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Sci Adv, 2018, 4(6): eaar6768. doi: 10.1126/sciadv.aar6768

    CrossRef Google Scholar

    [133] Li T Y, Wei Q S, Reineke B, et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels[J]. Opt Express, 2019, 27(15): 21153−21162. doi: 10.1364/OE.27.021153

    CrossRef Google Scholar

    [134] Li J X, Chen Y Q, Hu Y Q, et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display[J]. ACS Nano, 2020, 14(7): 7892−7898. doi: 10.1021/acsnano.0c01469

    CrossRef Google Scholar

    [135] Malek S C, Ee H S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Lett, 2017, 17(6): 3641−3645. doi: 10.1021/acs.nanolett.7b00807

    CrossRef Google Scholar

    [136] Kim I, Ansari M A, Mehmood M Q, et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators[J]. Adv Mater, 2020, 32(50): 2004664. doi: 10.1002/adma.202004664

    CrossRef Google Scholar

    [137] Xu Q, Su X Q, Zhang X Q, et al. Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves[J]. Adv Photonics, 2022, 4(1): 016002. doi: 10.1117/1.AP.4.1.016002

    CrossRef Google Scholar

    [138] Xiong B, Xu Y H, Wang J N, et al. Realizing colorful holographic mimicry by metasurfaces[J]. Adv Mater, 2021, 33(21): 2005864. doi: 10.1002/adma.202005864

    CrossRef Google Scholar

    [139] Cai H G, Dolan J A, Gordon G S D, et al. Polarization-insensitive medium-switchable holographic metasurfaces[J]. ACS Photonics, 2021, 8(9): 2581−2589. doi: 10.1021/acsphotonics.1c00836

    CrossRef Google Scholar

    [140] Yang R, Wan S, Shi Y Y, et al. Immersive tuning the guided waves for multifunctional on-chip metaoptics[J]. Laser Photonics Rev, 2022, 16(8): 2200127. doi: 10.1002/LPOR.202200127

    CrossRef Google Scholar

    [141] Badloe T, Lee J, Seong J, et al. Tunable metasurfaces: the path to fully active nanophotonics[J]. Adv Photonics Res, 2021, 2(9): 2000205. doi: 10.1002/adpr.202000205

    CrossRef Google Scholar

    [142] Hu Y Q, Ou X N, Zeng T B, et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region[J]. Nano Lett, 2021, 21(11): 4554−4562. doi: 10.1021/acs.nanolett.1c00104

    CrossRef Google Scholar

    [143] Li J X, Yu P, Zhang S, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nat Commun, 2020, 11(1): 3574. doi: 10.1038/s41467-020-17390-3

    CrossRef Google Scholar

    [144] Yu P, Li J X, Liu N. Electrically tunable optical metasurfaces for dynamic polarization conversion[J]. Nano Lett, 2021, 21(15): 6690−6695. doi: 10.1021/acs.nanolett.1c02318

    CrossRef Google Scholar

    [145] Kaissner R, Li J X, Lu W Z, et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies[J]. Sci Adv, 2021, 7(19): eabd9450. doi: 10.1126/sciadv.abd9450

    CrossRef Google Scholar

    [146] Li L L, Jun Cui T, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nat Commun, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9

    CrossRef Google Scholar

    [147] Venkatesh S, Lu X Y, Saeidi H, et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips[J]. Nat Electron, 2020, 3(12): 785−793. doi: 10.1038/s41928-020-00497-2

    CrossRef Google Scholar

    [148] Li X P, Ren H R, Chen X, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nat Commun, 2015, 6: 6984. doi: 10.1038/ncomms7984

    CrossRef Google Scholar

    [149] Wang Z P, Jiang L, Li X W, et al. Thermally reconfigurable hologram fabricated by spatially modulated femtosecond pulses on a heat-shrinkable shape memory polymer for holographic multiplexing[J]. ACS Appl Mater Interfaces, 2021, 13(43): 51736−51745. doi: 10.1021/acsami.1c15012

    CrossRef Google Scholar

    [150] Hsu W L, Chen Y C, Yeh S P, et al. Review of metasurfaces and metadevices: advantages of different materials and fabrications[J]. Nanomaterials (Basel), 2022, 12(12): 1973. doi: 10.3390/nano12121973

    CrossRef Google Scholar

    [151] Arbabi A, Arbabi E, Kamali S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nat Commun, 2016, 7: 13682. doi: 10.1038/ncomms13682

    CrossRef Google Scholar

    [152] Zhou Y, Kravchenko I I, Wang H, et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J]. Nano Lett, 2018, 18(12): 7529−7537. doi: 10.1021/acs.nanolett.8b03017

    CrossRef Google Scholar

    [153] Groever B, Chen W T, Capasso F. Meta-lens doublet in the visible region[J]. Nano Lett, 2017, 17(8): 4902−4907. doi: 10.1021/acs.nanolett.7b01888

    CrossRef Google Scholar

    [154] Hong Y, Zhao D, Wang J Y, et al. Solvent-free nanofabrication based on ice-assisted electron-beam lithography[J]. Nano Lett, 2020, 20(12): 8841−8846. doi: 10.1021/acs.nanolett.0c03809

    CrossRef Google Scholar

    [155] Chen Y Q, Xiang Q, Li Z Q, et al. “Sketch and peel” lithography for high-resolution multiscale patterning[J]. Nano Lett, 2016, 16(5): 3253−3259. doi: 10.1021/acs.nanolett.6b00788

    CrossRef Google Scholar

    [156] Chen Y Q, Bi K X, Wang Q J, et al. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via “sketch and peel” strategy[J]. ACS Nano, 2016, 10(12): 11228−11236. doi: 10.1021/acsnano.6b06290

    CrossRef Google Scholar

    [157] She A L, Zhang S Y, Shian S, et al. Large area metalenses: design, characterization, and mass manufacturing[J]. Opt Express, 2018, 26(2): 1573−1585. doi: 10.1364/OE.26.001573

    CrossRef Google Scholar

    [158] Luo J, Zeng B, Wang C T, et al. Fabrication of anisotropically arrayed Nano-slots metasurfaces using reflective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805−18812. doi: 10.1039/C5NR05153C

    CrossRef Google Scholar

    [159] Liu L Q, Zhang X H, Zhao Z Y, et al. Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography[J]. Adv Opt Mater, 2017, 5(21): 1700429. doi: 10.1002/adom.201700429

    CrossRef Google Scholar

    [160] Pu M B, Guo Y H, Li X, et al. Revisitation of extraordinary young’s interference: from catenary optical fields to spin–orbit interaction in metasurfaces[J]. ACS Photonics, 2018, 5(8): 3198−3204. doi: 10.1021/acsphotonics.8b00437

    CrossRef Google Scholar

    [161] Oh D K, Lee T, Ko B, et al. Nanoimprint lithography for high-throughput fabrication of metasurfaces[J]. Front Optoelectron, 2021, 14(2): 229−251. doi: 10.1007/s12200-021-1121-8

    CrossRef Google Scholar

    [162] Atighilorestani M, Jiang H, Kaminska B. Electrochromic-polymer-based switchable plasmonic color devices using surface-relief nanostructure pixels[J]. Adv Opt Mater, 2018, 6(23): 1801179. doi: 10.1002/adom.201801179

    CrossRef Google Scholar

    [163] Lee G Y, Hong J Y, Hwang S, et al. Metasurface eyepiece for augmented reality[J]. Nat Commun, 2018, 9(1): 4562. doi: 10.1038/s41467-018-07011-5

    CrossRef Google Scholar

    [164] Makarov S V, Milichko V, Ushakova E V, et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces[J]. ACS Photonics, 2017, 4(4): 728−735. doi: 10.1021/acsphotonics.6b00940

    CrossRef Google Scholar

    [165] Faniayeu I, Mizeikis V. Realization of a helix-based perfect absorber for IR spectral range using the direct laser write technique[J]. Opt Mater Express, 2017, 7(5): 1453−1462. doi: 10.1364/OME.7.001453

    CrossRef Google Scholar

    [166] Balli F, Sultan M, Lami S K, et al. A hybrid achromatic metalens[J]. Nat Commun, 2020, 11(1): 3892. doi: 10.1038/s41467-020-17646-y

    CrossRef Google Scholar

    [167] 曹良才, 何泽浩, 刘珂瑄, 等. 元宇宙中的动态全息三维显示: 发展与挑战(特邀)[J]. 红外与激光工程, 2022, 51(1): 20210935. doi: 10.3788/IRLA20210935

    CrossRef Google Scholar

    Cao L C, He Z H, Liu K X, et al. Progress and challenges in dynamic holographic 3D display for the metaverse (Invited)[J]. Infrared Laser Eng, 2022, 51(1): 20210935. doi: 10.3788/IRLA20210935

    CrossRef Google Scholar

    [168] Zhang C L, Zhang D F, Bian Z P. Dynamic full-color digital holographic 3D display on single DMD[J]. Opto-Electron Adv, 2021, 4(3): 200049. doi: 10.29026/oea.2021.200049

    CrossRef Google Scholar

    [169] Zheng P X, Li J X, Li Z L, et al. Compressive imaging encryption with secret sharing metasurfaces[J]. Adv Opt Mater, 2022, 10(15): 2200257. doi: 10.1002/adom.202200257

    CrossRef Google Scholar

    [170] 玛地娜, 李智, 程化, 等. 超表面多维光场调控及基于机器学习的优化[J]. 科学通报, 2020, 65(18): 1824−1844. doi: 10.1360/TB-2020-0023

    CrossRef Google Scholar

    Ma D N, Li Z, Cheng H, et al. Multi-dimensional manipulation of optical field withmetasurfaces and its optimization based on machine learning[J]. Chin Sci Bull, 2020, 65(18): 1824−1844. doi: 10.1360/TB-2020-0023

    CrossRef Google Scholar

    [171] Shi L, Li B C, Kim C, et al. Towards real-time photorealistic 3D holography with deep neural networks[J]. Nature, 2021, 591(7849): 234−239. doi: 10.1038/s41586-020-03152-0

    CrossRef Google Scholar

    [172] Shi Z J, Zhu A Y, Li Z Y, et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion[J]. Sci Adv, 2020, 6(23): eaba3367. doi: 10.1126/sciadv.aba3367

    CrossRef Google Scholar

  • As an ideal 3D display technology, holography can reconstruct the wavefront of the whole light wave, and can provide all the 3D depth cues required by the human eyes, including binocular parallax, motion parallax, accommodation, occlusion, etc. Due to the limitation of the modulation principle, DMD and most SLM cannot optically reconstruct the complex amplitude of a wavefield, resulting in partial information loss and complex wavefront calculation. At the same time, the two devices have a pixel size larger than 6 μm, which is much larger than the wavelength of visible light. The limitation of large pixel size and modulation principle brings many disadvantages, such as narrow field of view, twin-image, narrow band, and multi-order diffraction, which greatly restrict the development of CGH. As a new class of light field modulators, metasurface can control the amplitude, phase, polarization and dispersion of the light simultaneously by optimizing the design and arrangement of the elements. Thanks to the previous exploration of micro-nano manufacturing technology and materials for metasurface, the size of the unit cell can be reduced to the order of sub-wavelength. According to the grating equation, the smaller the pixel size is, the larger the diffraction angle is. Therefore, metasurface can provide a diffraction angle close to 90°. As the loading medium of holograms, metasurface meets the requirements of holograms for high-precision and complex light field modulation and has the advantages of high design freedom, high spatial resolution, low noise, broadband and so on, providing a solution to some problems currently faced by CGH. In this paper, the basic process of designing meta-holography devices is discussed. Furthermore, the basic concepts and development of static meta-holography are introduced based on the principles of metasurfaces, including phase modulation, amplitude modulation, complex-amplitude modulation, and nonlinear modulation. However, such static meta-holography devices cannot change the display patterns after design and manufacture, which is inconsistent with the rapidly changing real world and requirements of diverse functions, limiting its applications. Therefore, the two methods of realizing dynamic meta-holography are introduced in detail. Finally, the micro-nano fabrication technologies for metasurface are discussed. In conclusion, this paper presents the design, principle, development, and manufacturing implementation of meta-holographic devices in an all-around way, and puts forward problems and possible solutions for the development of meta-holography at present.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint