Zhang K, Ma Z J, Zhou Y, et al. Silicon-based super-resolution metalens with weak sidelobe[J]. Opto-Electron Eng, 2022, 49(11): 220258. doi: 10.12086/oee.2022.220258
Citation: Zhang K, Ma Z J, Zhou Y, et al. Silicon-based super-resolution metalens with weak sidelobe[J]. Opto-Electron Eng, 2022, 49(11): 220258. doi: 10.12086/oee.2022.220258

Silicon-based super-resolution metalens with weak sidelobe

    Fund Project: National Natural Science Foundation of China (61927818,61575031), and China National Key Basic Research and Development Program (2013CBA01700).
More Information
  • Metasurface is a spatially varying ultrathin nanostructure that has been widely studied and used in optical super-resolution focusing, either in lenses or in systems. However, with the decrease of the focal spot size of the metalens, large sidelobes are inevitably generated, limiting the field of view and potential applications of the lens. In this paper, a method for producing super-resolution metalens with a large numerical aperture (NA=0.944) and weak sidelobe is presented. For a circularly polarized light with the wavelength of λ=632.8 nm, a super-resolution point-focusing with a weak sidelobe is realized based on PB phase regulation of silica-based metasurface. Experimental results show that the FWHM (full-width at half maximum) of our focusing spot is 0.45λ, which is less than the diffraction limit of 0.53λ (the diffraction limit is 0.5λ/NA), and the sidelobe ratio (SR) is 0.07. Our proposed super-resolution metalens bears the potential to realize the miniaturization, lightweight and integration of super-resolution optical devices or systems.
  • 加载中
  • [1] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Arch für Mikrosk Anat, 1873, 9(1): 413−468. doi: 10.1007/BF02956173

    CrossRef Google Scholar

    [2] Betzig E, Trautman J K, Harris T D, et al. Breaking the diffraction barrier: optical microscopy on a nanometric scale[J]. Science, 1991, 251(5000): 1468−1470. doi: 10.1126/science.251.5000.1468

    CrossRef Google Scholar

    [3] Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nat Mater, 2008, 7(6): 435−441. doi: 10.1038/nmat2141

    CrossRef Google Scholar

    [4] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534−537. doi: 10.1126/science.1108759

    CrossRef Google Scholar

    [5] Liu Z W, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686. doi: 10.1126/science.1137368

    CrossRef Google Scholar

    [6] Lu D, Liu Z W. Hyperlenses and metalenses for far-field super-resolution imaging[J]. Nat Commun, 2012, 3: 1205. doi: 10.1038/ncomms2176

    CrossRef Google Scholar

    [7] Zhu Y C, Chen X L, Yuan W Z, et al. A waveguide metasurface based quasi-far-field transverse-electric superlens[J]. Opto-Electron Adv, 2021, 4: 210013. doi: 10.29026/oea.2021.210013

    CrossRef Google Scholar

    [8] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Opt Lett, 1994, 19(11): 780−782. doi: 10.1364/OL.19.000780

    CrossRef Google Scholar

    [9] Huang B, Wang W Q, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810−813. doi: 10.1126/science.1153529

    CrossRef Google Scholar

    [10] Gould T J, Verkhusha V V, Hess S T. Imaging biological structures with fluorescence photoactivation localization microscopy[J]. Nat Protoc, 2009, 4(3): 291−308. doi: 10.1038/nprot.2008.246

    CrossRef Google Scholar

    [11] Schermelleh L, Carlton P M, Haase S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881): 1332−1336. doi: 10.1126/science.1156947

    CrossRef Google Scholar

    [12] Liu X W, Kuang C F, Hao X, et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging[J]. Phys Rev Lett, 2017, 118(7): 076101. doi: 10.1103/PhysRevLett.118.076101

    CrossRef Google Scholar

    [13] Yan Y Z, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809−1816. doi: 10.1021/nn406201q

    CrossRef Google Scholar

    [14] 周锐, 吴梦雪, 沈飞, 等. 基于近场光学的微球超分辨显微效应[J]. 物理学报, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702

    CrossRef Google Scholar

    Zhou R, Wu M X, Shen F, et al. Super-resolution microscopic effect of microsphere based on the near-field optics[J]. Acta Phys Sin, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702

    CrossRef Google Scholar

    [15] Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation[J]. Opto-Electron Sci, 2022, 1(1): 210003. doi: 10.29026/oes.2022.210003

    CrossRef Google Scholar

    [16] Huang K, Ye H P, Teng J H, et al. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser Photon Rev, 2014, 8(1): 152−157. doi: 10.1002/lpor.201300123

    CrossRef Google Scholar

    [17] Berry M V. Evanescent and real waves in quantum billiards and Gaussian beams[J]. J Phys A Math Gen, 1994, 27(11): L391−L398. doi: 10.1088/0305-4470/27/11/008

    CrossRef Google Scholar

    [18] Berry M V, Popescu S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. J Phys A Math Gen, 2006, 39(22): 6965. doi: 10.1088/0305-4470/39/22/011

    CrossRef Google Scholar

    [19] Qin F, Huang K, Wu J F, et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Sci Rep, 2015, 5: 9977. doi: 10.1038/srep09977

    CrossRef Google Scholar

    [20] Chen G, Li Y Y, Yu A P, et al. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Sci Rep, 2016, 6: 29068. doi: 10.1038/srep29068

    CrossRef Google Scholar

    [21] Chen G, Li Y Y, Wang X Y, et al. Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array[J]. IEEE Photon Technol Lett, 2016, 28(3): 335−338. doi: 10.1109/LPT.2015.2496148

    CrossRef Google Scholar

    [22] Chen G, Zhang K, Yu A P, et al. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light[J]. Opt Express, 2016, 24(10): 11002−11008. doi: 10.1364/OE.24.011002

    CrossRef Google Scholar

    [23] Yuan G H, Vezzoli S, Altuzarra C, et al. Quantum super-oscillation of a single photon[J]. Light Sci Appl, 2016, 5(8): e16127. doi: 10.1038/lsa.2016.127

    CrossRef Google Scholar

    [24] Yu A P, Chen G, Zhang Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Sci Rep, 2016, 6: 38859. doi: 10.1038/srep38859

    CrossRef Google Scholar

    [25] Chen G, Wu Z X, Yu A P, et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Sci Rep, 2016, 6: 37776. doi: 10.1038/srep37776

    CrossRef Google Scholar

    [26] 武志翔, 金启见, 张坤, 等. 基于二值振幅调控的角向偏振光超振荡聚焦平面透镜[J]. 光电工程, 2018, 45(4): 170660. doi: 10.12086/oee.2018.170660

    CrossRef Google Scholar

    Wu Z X, Jin Q J, Zhang K, et al. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave[J]. Opto-Electron Eng, 2018, 45(4): 170660. doi: 10.12086/oee.2018.170660

    CrossRef Google Scholar

    [27] Rogers E T F, Savo S, Lindberg J, et al. Super-oscillatory optical needle[J]. Appl Phys Lett, 2013, 102(3): 031108. doi: 10.1063/1.4774385

    CrossRef Google Scholar

    [28] Yuan G H, Rogers E T F, Roy T, et al. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Sci Rep, 2014, 4: 6333. doi: 10.1038/srep06333

    CrossRef Google Scholar

    [29] Chen G, Wu Z X, Yu A P, et al. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Sci Rep, 2017, 7(1): 4697. doi: 10.1038/s41598-017-05060-2

    CrossRef Google Scholar

    [30] Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 2021, 4(2): 200031. doi: 10.29026/oea.2021.200031

    CrossRef Google Scholar

    [31] Zhang S, Chen H, Wu Z X, et al. Synthesis of sub-diffraction quasi-non-diffracting beams by angular spectrum compression[J]. Opt Express, 2017, 25(22): 27104−27118. doi: 10.1364/OE.25.027104

    CrossRef Google Scholar

    [32] Wu Z X, Zhang K, Zhang S, et al. Optimization-free approach for generating sub-diffraction quasi-non-diffracting beams[J]. Opt Express, 2018, 26(13): 16585−16599. doi: 10.1364/OE.26.016585

    CrossRef Google Scholar

    [33] Hu Y W, Wang S W, Jia J H, et al. Optical superoscillatory waves without side lobes along a symmetric cut[J]. Adv Photon, 2021, 3(4): 045002. doi: 10.1117/1.AP.3.4.045002

    CrossRef Google Scholar

    [34] Zuo R Z, Liu W W, Cheng H, et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Adv Opt Mater, 2018, 6(21): 1800795. doi: 10.1002/adom.201800795

    CrossRef Google Scholar

    [35] Li Y Y, Cao L Y, Wen Z Q, et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J]. Opt Lett, 2019, 44(1): 110−113. doi: 10.1364/OL.44.000110

    CrossRef Google Scholar

    [36] Wu Z X, Dong F L, Zhang S, et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 2020, 7(1): 180−189. doi: 10.1021/acsphotonics.9b01356

    CrossRef Google Scholar

    [37] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139−152. doi: 10.1364/optica.4.000139

    CrossRef Google Scholar

    [38] Liu S Q, Chen S Z, Wen S C, et al. Photonic spin hall effect: fundamentals and emergent applications[J]. Opto-Electron Sci, 2022, 1(7): 220007. doi: 10.29026/oes.2022.220007

    CrossRef Google Scholar

    [39] Yuan G H, Rogers K S, Rogers E T F, et al. Far-field superoscillatory metamaterial superlens[J]. Phys Rev Appl, 2019, 11(6): 064016. doi: 10.1103/PhysRevApplied.11.064016

    CrossRef Google Scholar

    [40] Zhang Q, Dong F L, Li H X, et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light[J]. Adv Opt Mater, 2020, 8(9): 1901885. doi: 10.1002/adom.201901885

    CrossRef Google Scholar

    [41] Wen Z Q, He Y H, Li Y Y, et al. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Opt Express, 2014, 22(18): 22163−22171. doi: 10.1364/OE.22.022163

    CrossRef Google Scholar

    [42] Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nat Mater, 2012, 11(5): 432−435. doi: 10.1038/nmat3280

    CrossRef Google Scholar

    [43] Qin F, Huang K, Wu J F, et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Adv Mater, 2017, 29(8): 1602721. doi: 10.1002/adma.201602721

    CrossRef Google Scholar

    [44] Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electron Adv, 2021, 4(1): 200008. doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [45] 周毅, 梁高峰, 温中泉, 等. 光学超分辨平面超构透镜研究进展[J]. 光电工程, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

    CrossRef Google Scholar

    Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

    CrossRef Google Scholar

    [46] Deng D M, Guo Q. Analytical vectorial structure of radially polarized light beams[J]. Opt Lett, 2007, 32(18): 2711−2713. doi: 10.1364/OL.32.002711

    CrossRef Google Scholar

    [47] Jin N B, Rahmat-Samii Y. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations[J]. IEEE Trans Antennas Propag, 2007, 55(3): 556−567. doi: 10.1109/TAP.2007.891552

    CrossRef Google Scholar

    [48] Wang Y J, Chen Q M, Yang W H, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nat Commun, 2021, 12(1): 5560. doi: 10.1038/s41467-021-25797-9

    CrossRef Google Scholar

    [49] Oscurato S L, Reda F, Salvatore M, et al. Shapeshifting diffractive optical devices[J]. Laser Photonics Rev, 2022, 16(4): 2100514. doi: 10.1002/lpor.202100514

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(6759) PDF downloads(1598) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint