Wang Q L, Quan H Y, Hu S, et al. Review of absolute measurement of wavefront aberration in lithography objective[J]. Opto-Electron Eng, 2023, 50(5): 220001. doi: 10.12086/oee.2023.220001
Citation: Wang Q L, Quan H Y, Hu S, et al. Review of absolute measurement of wavefront aberration in lithography objective[J]. Opto-Electron Eng, 2023, 50(5): 220001. doi: 10.12086/oee.2023.220001

Review of absolute measurement of wavefront aberration in lithography objective

More Information
  • The lithography objective is the core component of the lithography machine, and its wave aberration determines the resolution and overlay accuracy of the lithography machine. With the gradual improvement of the performance of the lithography machine, the wave aberration requirement of the lithography objective lens has been reduced to below 0.5 nm (RMS), which is a great challenge to the detection of the wave aberration. The detection accuracy of current lithography objective wave aberration detection methods (such as Hartmann method, shear interference method and point diffraction method, etc.) is often limited by its systematic error, and absolute detection technology is a method that can separate the systematic error. The technology that came out finally broke the limit of precision. This paper reviews the wave aberration detection method and surface absolute detection technology of lithography objective lens system, combs the application and research progress of absolute detection technology in wave aberration detection in detail, and summarizes the application of absolute detection technology in different wave aberration detection methods. At the same time, combined with these difficulties, the future development trend of the absolute detection technology of wave aberration of lithography objective lens is prospected.
  • 加载中
  • [1] 姚汉民, 胡松, 邢廷文. 光学投影曝光微纳加工技术[M]. 北京: 北京工业大学出版社, 2006.

    Google Scholar

    Yao M H, Hu S, Xing T W. Optical Projection Exposure Micro-Nano Processing Technology[M]. Beijing: Beijing University of Technology Press, 2006.

    Google Scholar

    [2] De Boeij W P, Pieternella R, Bouchoms I, et al. Extending immersion lithography down to 1x nm production nodes[J]. Proc SPIE, 2013, 8683: 86831L. doi: 10.1117/12.2021397

    CrossRef Google Scholar

    [3] Quan H Y. Uncertainty evaluation for interferometric testing of absolute surface figure error[D]. Chengdu: University of Chinese Academy of Sciences, 2017.

    Google Scholar

    [4] Poultney S K. Methods for measuring a wavefront of an optical system: 7602503[P]. 2009-10-13.

    Google Scholar

    [5] Latypov A, Poultney S K, Vladimirsky Y. Method and system for wavefront measurements of an optical system: 7768653[P]. 2010-08-03.

    Google Scholar

    [6] Sugisaki K, Okada M, Otaki K, et al. EUV wavefront measurement of six-mirror optics using EWMS[J]. Proc SPIE, 2008, 6921: 69212U. doi: 10.1117/12.772624

    CrossRef Google Scholar

    [7] Ohsaki Y, Mori T, Koga S, et al. A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA[J]. Proc SPIE, 2006, 6154: 615424. doi: 10.1117/12.657865

    CrossRef Google Scholar

    [8] Polo A, Bociort F, Pereira S F, et al. Wavefront measurement for EUV lithography system through Hartmann sensor[J]. Proc SPIE, 2011, 7971: 79712R. doi: 10.1117/12.877044

    CrossRef Google Scholar

    [9] Zhu Y C, Odate S, Sugaya A, et al. Method for designing phase-calculation algorithms for two-dimensional grating phase-shifting interferometry[J]. Appl Opt, 2011, 50(18): 2815−2822. doi: 10.1364/AO.50.002815

    CrossRef Google Scholar

    [10] Krasin G, Stsepuro N, Gritsenko I, et al. Holographic method for precise measurement of wavefront aberrations[J]. Proc SPIE, 2021, 11774: 1177407.

    Google Scholar

    [11] Bautsch J, Schake M, Ehret G, et al. Traceable calibration of Shack–Hartmann wavefront sensors employing spherical wavefronts[J]. Opt Eng, 2020, 59(8): 084104.

    Google Scholar

    [12] Dubey N, Kumar R, Rosen J. COACH-based Shack–Hartmann wavefront sensor with an array of phase coded masks[J]. Opt Express, 2021, 29(20): 31859−31874. doi: 10.1364/OE.438379

    CrossRef Google Scholar

    [13] Fuerst M E, Csencsics E, Berlakovich N, et al. Automated measurement of highly divergent optical wavefronts with a scanning shack–hartmann sensor[J]. IEEE Trans Instrument Measur, 2020, 70: 7001909.

    Google Scholar

    [14] 诸波尔, 王向朝, 李思坤, 等. 超高NA光刻投影物镜高阶波像差检测方法[J]. 光学学报, 2017, 37(4): 0412003. doi: 10.3788/AOS201737.0412003

    CrossRef Google Scholar

    Zhu B E, Wang X Z, Li S K, et al. High-order aberration measurement method for hyper-NA lithographic projection lens[J]. Acta Opt Sin, 2017, 37(4): 0412003. doi: 10.3788/AOS201737.0412003

    CrossRef Google Scholar

    [15] Li P, Tang F, Wang X Z. Relationship between shear ratio and reconstruction accuracy in lateral shearing interferometry[J]. Opt Eng, 2020, 59(3): 034113. doi: 10.1117/1.OE.59.3.034113

    CrossRef Google Scholar

    [16] 杨济硕, 王向朝, 李思坤, 等. 基于相位环空间像主成分分析的投影物镜波像差检测方法[J]. 光学学报, 2014, 34(2): 0211004. doi: 10.3788/AOS201434.0211004

    CrossRef Google Scholar

    Yang J S, Wang X Z, Li S K, et al. In situ aberration measurement method based on a phase-shift rings target[J]. Acta Opt Sin, 2014, 34(2): 0211004. doi: 10.3788/AOS201434.0211004

    CrossRef Google Scholar

    [17] Li P, Tang F, Wang X Z. FFT wavefront reconstruction algorithm with periodical extension for lateral shearing interferometry[J]. Proc SPIE, 2020, 11552: 1155203. doi: 10.1117/12.2573639

    CrossRef Google Scholar

    [18] Li P, Tang F, Wang X Z. Comparison of processing speed of typical wavefront reconstruction methods for lateral shearing interferometry[J]. Appl Opt, 2020, 60(2): 312−325. doi: 10.1364/AO.409315

    CrossRef Google Scholar

    [19] Peng C Z, Tang F, Wang X Z, et al. Calibration method of shear amount based on the optical layout of point source microscope for lateral shearing interferometric wavefront sensor[J]. Opt Eng, 2020, 59(9): 094106. doi: 10.1117/1.OE.59.9.094106

    CrossRef Google Scholar

    [20] 赵磊. 投影光刻物镜像质补偿策略与补偿技术研究[D]. 长春: 中国科学院大学, 2017.

    Google Scholar

    Zhao L. Imaging performance compensation strategy and compensation technology of lithography lens[D]. Changchun: University of Chinese Academy of Sciences, 2017.

    Google Scholar

    [21] 方超. 光刻物镜系统波像差横向剪切干涉测量研究[D]. 长春: 中国科学院大学, 2018.

    Google Scholar

    Fang C. Research on lateral shearing interferometry in measurement of wavefront aberration of lithography lens[D]. Changchun: University of Chinese Academy of Sciences, 2018.

    Google Scholar

    [22] 方超, 向阳, 齐克奇. 抑制零级串扰的光栅横向剪切干涉测量[J]. 中国激光, 2018, 45(5): 0504002. doi: 10.3788/CJL201845.0504002

    CrossRef Google Scholar

    Fang C, Xiang Y, Qi K Q. Grating lateral shearing interferometry for suppressing zero-order crosstalk[J]. Chin J Lasers, 2018, 45(5): 0504002. doi: 10.3788/CJL201845.0504002

    CrossRef Google Scholar

    [23] Chao F, Yang X, Qi K Q. A general method of designing phase-shifting algorithms for grating lateral shearing interferometry[J]. Front Inform Technol Electron Eng, 2018, 19(6): 809−814. doi: 10.1631/FITEE.1601692

    CrossRef Google Scholar

    [24] Gu H, Zhao Z Y, Zhang Z G, et al. High-precision wavefront reconstruction from Shack-Hartmann wavefront sensor data by a deep convolutional neural network[J]. Measur Sci Technol, 2021, 32(8): 085101. doi: 10.1088/1361-6501/abf708

    CrossRef Google Scholar

    [25] Hu S W, Hu L J, Gong W, et al. Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes[J]. Front Inform Technol Electron Eng, 2021, 22(10): 1277−1288. doi: 10.1631/FITEE.2000422

    CrossRef Google Scholar

    [26] Quan H Y, Hou X, Wu F, et al. Absolute measurement of optical flats based on basic iterative methods[J]. Opt Express, 2015, 23(12): 16305−16319. doi: 10.1364/OE.23.016305

    CrossRef Google Scholar

    [27] 张帅, 全海洋, 侯溪, 等. 基于改进六步翻转法的平行平板面形及均匀性绝对检测方法[J]. 光电工程, 2021, 48(7): 210047.

    Google Scholar

    Zhang S, Quan H Y, Hou X, et al. Absolute testing of planarity and inhomogeneity with modified six-step method[J]. Opto-Electron Eng, 2021, 48(7): 210047.

    Google Scholar

    [28] 侯溪, 张帅, 胡小川, 等. 超高精度面形干涉检测技术进展[J]. 光电工程, 2020, 47(8): 200209. doi: 10.12086/oee.2020.200209

    CrossRef Google Scholar

    Hou X, Zhang S, Hu X C, et al. The research progress of surface interferometric measurement with higher accuracy[J]. Opto-Electron Eng, 2020, 47(8): 200209. doi: 10.12086/oee.2020.200209

    CrossRef Google Scholar

    [29] Neal R M, Wyant J C. Polarization phase-shifting point-diffraction interferometer[J]. Appl Opt, 2006, 45(15): 3463−3476. doi: 10.1364/AO.45.003463

    CrossRef Google Scholar

    [30] Bueno J M, Acosta E, Schwarz C, et al. Wavefront measurements of phase plates combining a point-diffraction interferometer and a Hartmann-Shack sensor[J]. Appl Opt, 2010, 49(3): 450−456. doi: 10.1364/AO.49.000450

    CrossRef Google Scholar

    [31] Zhou X, Guo R H, Zhu W H, et al. Dynamic wavefront measurement with a pinhole linear polarizer point-diffraction interferometer[J]. Appl Opt, 2017, 56(29): 8040−8047. doi: 10.1364/AO.56.008040

    CrossRef Google Scholar

    [32] 于长淞, 向阳. 点衍射干涉仪小孔掩模技术研究进展[J]. 激光与光电子学进展, 2013, 50(3): 030004. doi: 10.3788/LOP50.030004

    CrossRef Google Scholar

    Yu C S, Xiang Y. Research progress of pinhole mask technology of point diffraction interferometer[J]. Laser Optoelectr Progr, 2013, 50(3): 030004. doi: 10.3788/LOP50.030004

    CrossRef Google Scholar

    [33] Sun Y, Shen H, Li X, et al. Wavelength-tuning point diffraction interferometer resisting inconsistent light intensity and environmental vibration: application to high-precision measurement of a large-aperture spherical surface[J]. Appl Opt, 2019, 58(5): 1253−1260. doi: 10.1364/AO.58.001253

    CrossRef Google Scholar

    [34] 许伟才. 投影光刻物镜的光学设计与像质补偿[D]. 长春: 中国科学院研究生院, 2011.

    Google Scholar

    Xu W C. Optical design and imaging performance compensation for the lithographic lens[D]. Changchun: University of Chinese Academy of Sciences, 2011.

    Google Scholar

    [35] Dirksen P, Braat J J M, Janssen A J E M, et al. Aerial image based lens metrology for wafer steppers[J]. Proc SPIE, 2006, 6154: 61540X. doi: 10.1117/12.659428

    CrossRef Google Scholar

    [36] Hartmann J. Bemerkungen uber den bau und die justirung von spektrographen[J]. Zt Instrumentenkd, 1900, 20: 47.

    Google Scholar

    [37] Shack P, Platt B. Production and use of a Lenticular hartmann screen[J]. J Opt Soc Am, 1971, 61(5): 656−661.

    Google Scholar

    [38] Campbell H I, Greenaway A H. Wavefront sensing: from historical roots to the State-of-the-Art[J]. Eas Publicat Ser, 2006, 22: 165−185. doi: 10.1051/eas:2006131

    CrossRef Google Scholar

    [39] Fujii T, Kougo J, Mizuno Y, et al. Portable phase measuring interferometer using Shack-Hartmann method[J]. Proc SPIE, 2003, 5038: 726−732. doi: 10.1117/12.482699

    CrossRef Google Scholar

    [40] Schreiber H, Bruning J H. Phase shifting interferometry[M]//Malacara D. Optical Shop Testing. Hoboken: John Wiley & Sons, Inc., 1992.

    Google Scholar

    [41] 陈小君. 近场光强分布对四波横向剪切干涉仪波前复原的影响研究[D]. 成都: 中国科学院大学, 2019.

    Google Scholar

    Chen X J. Study on the influence of intensity distribution on wavefront reconstruction by quadri-wave lateral shearing interferometers[D]. Chengdu: University of Chinese Academy of Sciences, 2019.

    Google Scholar

    [42] Van De Kerkhof M, Jan Voogd R, Schasfoort A, et al. Diffuser concepts for in-situ wavefront measurements of EUV projection optics[J]. Proc SPIE, 2018, 10583: 105830S.

    Google Scholar

    [43] Linnik V P. Simple interferometer for the investigation of optical systems[J]. Proc Acad Sci USSR, 1933, 1: 208−210.

    Google Scholar

    [44] Smart R N, Strong J. Point-diffraction interferometer[J]. Opt J Soc Am, 1972, 62: 737.

    Google Scholar

    [45] Medecki H, Tejnil E, Goldberg K A, et al. Phase-shifting point diffraction interferometer[J]. Opt Lett, 1996, 21(19): 1526−1528. doi: 10.1364/OL.21.001526

    CrossRef Google Scholar

    [46] 李瑶, 杨甬英, 王晨, 等. 点衍射干涉检测技术[J]. 中国光学, 2017, 10(4): 391−414. doi: 10.3788/co.20171004.0391

    CrossRef Google Scholar

    Li Y, Yang Y Y, Wang C, et al. Point diffraction in terference detection technology[J]. Chin Opt, 2017, 10(4): 391−414. doi: 10.3788/co.20171004.0391

    CrossRef Google Scholar

    [47] 杨甬英, 凌瞳. 新型共路干涉仪[M]. 杭州: 浙江大学出版社, 2020.

    Google Scholar

    Yang Y Y, Ling T. Novel Common-Path Interferometers[M]. Hangzhou: Zhejiang University Press, 2020.

    Google Scholar

    [48] Freischlad K R. Absolute interferometric testing based on reconstruction of rotational shear[J]. Appl Opt, 2001, 40(10): 1637−1648. doi: 10.1364/AO.40.001637

    CrossRef Google Scholar

    [49] Schulz G, Schwider J. IV interferometric testing of smooth surfaces[J]. Progr Opt, 1976, 13: 93−167. doi: 10.1016/S0079-6638(08)70020-9

    CrossRef Google Scholar

    [50] Schulz G, Schwider J, Hiller C, et al. Establishing an optical flatness standard[J]. Appl Opt, 1971, 10(4): 929−934. doi: 10.1364/AO.10.000929

    CrossRef Google Scholar

    [51] Harris J S. The universal Fizeau interferometer[D]. Reading: University of Reading, 1971.

    Google Scholar

    [52] Jensen A E. Absolute calibration method for laser Twyman-Green wave front testing interferometers[J]. Opt J Soc Am, 1973, 63: 1313A. doi: 10.1364/OFT.2006.OFTuB3

    CrossRef Google Scholar

    [53] Selberg L A. Absolute testing of spherical surfaces[J]. Opt Fabricat Test OSA Techn Digest Ser, 1994, 13: 181−184.

    Google Scholar

    [54] Bloemhof E E. Absolute surface metrology by differencing spatially shifted maps from a phase-shifting interferometer[J]. Opt Lett, 2010, 35(14): 2346−2348. doi: 10.1364/OL.35.002346

    CrossRef Google Scholar

    [55] Soons J A, Griesmann U. Absolute interferometric tests of spherical surfaces based on rotational and translational shears[J]. Proc SPIE, 2012, 8493: 84930G. doi: 10.1117/12.930030

    CrossRef Google Scholar

    [56] Su D Q, Miao E L, Sui Y X, et al. Absolute surface figure testing by shift-rotation method using Zernike polynomials[J]. Opt Lett, 2012, 37(15): 3198−3200. doi: 10.1364/OL.37.003198

    CrossRef Google Scholar

    [57] Wang W B, Liu P F, Xing Y L, et al. Error correction for rotationally asymmetric surface deviation testing based on rotational shears[J]. Appl Opt, 2016, 55(26): 7428−7433. doi: 10.1364/AO.55.007428

    CrossRef Google Scholar

    [58] Wang W B, Zhang M Q, Yan S W, et al. Absolute spherical surface metrology by differencing rotation maps[J]. Appl Opt, 2015, 54(20): 6186−6189. doi: 10.1364/AO.54.006186

    CrossRef Google Scholar

    [59] Keenan P B. Pseudo-shear interferometry[J]. Proc SPIE, 1983, 429: 2−7. doi: 10.1117/12.936333

    CrossRef Google Scholar

    [60] Quan H Y, Hou X, Wu G F, et al. Absolute interferometric testing of an ultra-precise flat substrate with a liquid mirror[J]. Proc SPIE, 2019, 11032: 110320J.

    Google Scholar

    [61] Song W H, Hou X, Wu F, et al. Experimental study on absolute measurement of spherical surfaces with shift-rotation method based on Zernike polynomials[J]. Proc SPIE, 2015, 9446: 94463F.

    Google Scholar

    [62] Song W H, Hou X, Wu F, et al. Absolute interferometric shift-rotation method with pixel-level spatial frequency resolution[J]. Opt Lasers Eng, 2014, 54: 68−72. doi: 10.1016/j.optlaseng.2013.10.015

    CrossRef Google Scholar

    [63] Song W H, Li S F, Hou X, et al. Absolute calibration for Fizeau interferometer with the global optimized shift-rotation method[J]. Opt Lasers Eng, 2014, 54: 49−54. doi: 10.1016/j.optlaseng.2013.10.005

    CrossRef Google Scholar

    [64] Song W H, Wu F, Hou X, et al. Optimized absolute testing method of shift-rotation[J]. Appl Opt, 2013, 52(28): 7028−7032. doi: 10.1364/AO.52.007028

    CrossRef Google Scholar

    [65] Yan F T, Fan B, Hou X, et al. Absolute subaperture testing by multiangle averaging and Zernike polynomial fitting method[J]. Opt Eng, 2013, 52(8): 085101. doi: 10.1117/1.OE.52.8.085101

    CrossRef Google Scholar

    [66] Song W H, Wu F, Hou X, et al. Absolute measurement of flats with the method of shift-rotation[J]. Opt Rev, 2013, 20(5): 374−377. doi: 10.1007/s10043-013-0067-5

    CrossRef Google Scholar

    [67] Song W H, Wu F, Hou X, et al. Absolute calibration of a spherical reference surface for a Fizeau interferometer with the shift-rotation method of iterative algorithm[J]. Opt Eng, 2013, 52(3): 033601. doi: 10.1117/1.OE.52.3.033601

    CrossRef Google Scholar

    [68] Song W H, Wu F, Hou X. Experimental study on absolute test of spherical surfaces with shift-rotation method[J]. Proc SPIE, 2012, 8417: 84172A.

    Google Scholar

    [69] Evans C J, Kestner R N. Test optics error removal[J]. Appl Opt, 1996, 35(7): 1015−1021. doi: 10.1364/AO.35.001015

    CrossRef Google Scholar

    [70] 张艳微. 光学面形的旋转绝对检测技术研究[D]. 长春: 中国科学院大学, 2014.

    Google Scholar

    Zhang Y W. Research on rotational absolute testing of the optical surtace[D]. Changchun: University of Chinese Academy of Sciences, 2014.

    Google Scholar

    [71] Creath K, Wyant J C. Absolute measurement of surface roughness[J]. Appl Opt, 1990, 29(26): 3823−3827. doi: 10.1364/AO.29.003823

    CrossRef Google Scholar

    [72] Griesmann U, Wang Q D, Soons J, et al. A simple ball averager for reference sphere calibrations[J]. Proc SPIE, 2005, 5869: 58690S. doi: 10.1117/12.614992

    CrossRef Google Scholar

    [73] 马骅. 球面透镜波前误差的绝对检测方法[D]. 北京: 中国工程物理研究院, 2014.

    Google Scholar

    Ma H. Absolute detection method of wavefront error of spherical lens[D]. Beijing: China Academy of Engineering Physics, 2014.

    Google Scholar

    [74] 苏东奇, 苗二龙, 曲艺, 等. 猫眼法绝对测量干涉仪出射波前[J]. 中国激光, 2015, 42(12): 1208002. doi: 10.3788/CJL201542.1208002

    CrossRef Google Scholar

    Su D Q, Miao E L, Qu Y, et al. Absolute testing of interferometer wavefront using cat's-eye test[J]. Chin J Lasers, 2015, 42(12): 1208002. doi: 10.3788/CJL201542.1208002

    CrossRef Google Scholar

    [75] Li P, Tang F, Wang X Z, et al. High NA objective lens wavefront aberration measurement using a cat-eye retroreflector and Zernike polynomial[J]. Opt Express, 2021, 29(20): 31812−31835. doi: 10.1364/OE.437816

    CrossRef Google Scholar

    [76] Bergner B C, Davies A. Self-calibration for transmitted wavefront measurements[J]. Appl Opt, 2007, 46(1): 18−24. doi: 10.1364/AO.46.000018

    CrossRef Google Scholar

    [77] Bergner B C, Davies A. Self-calibration technique for transmitted wavefront measurements[J]. Proc SPIE, 2003, 5180: 236−243. doi: 10.1117/12.506408

    CrossRef Google Scholar

    [78] Fujii T, Suzuki K, Mizuno Y, et al. Integrated projecting optics tester for inspection of immersion ArF scanner[J]. Proc SPIE, 2006, 6152: 615237. doi: 10.1117/12.656025

    CrossRef Google Scholar

    [79] Li J, Gong Y, Chen H F, et al. Wave-front reconstruction with Hartmann–Shack sensor using a phase-retrieval method[J]. Opt Commun, 2015, 336: 127−133. doi: 10.1016/j.optcom.2014.09.086

    CrossRef Google Scholar

    [80] Miyakawa R H. Wavefront metrology for High Resolution optical systems[D]. Berkeley: University of California, 2011.

    Google Scholar

    [81] Goldberg K A. Extreme ultraviolet interferometry[D]. Berkeley: University of California, 1997.

    Google Scholar

    [82] 李杰, 王向朝, 唐锋, 等. 光栅剪切干涉仪波像差检测的系统误差的消除方法: CN103674493A[P]. 2014-03-26.

    Google Scholar

    Li J, Wang X C, Tang F, et al. Systematic error elimination method for wave aberration detection by grating shear interferometer: CN103674493A[P]. 2014-03-26.

    Google Scholar

    [83] 李杰, 唐锋, 王向朝, 等. 光栅横向剪切干涉仪及其系统误差分析[J]. 中国激光, 2014, 41(5): 0508006. doi: 10.3788/CJL201441.0508006

    CrossRef Google Scholar

    Li J, Tang F, Wang X C, et al. System errors analysis of grating lateral shearing interferometer[J]. Chin J Lasers, 2014, 41(5): 0508006. doi: 10.3788/CJL201441.0508006

    CrossRef Google Scholar

    [84] Li J , Tang F, Wang X Z, et al. Calibration of system errors in lateral shearing interferometer for EUV-wavefront metrology[J]. Proc SPIE, 2015, 9422: 94222O. doi: 10.1117/12.2180265

    CrossRef Google Scholar

    [85] Creath K, Wyant J C. Testing spherical surfaces: A fast, quasi-absolute technique[J]. Appl Opt, 1992, 31(22): 4350−4354. doi: 10.1364/AO.31.004350

    CrossRef Google Scholar

    [86] Parks R E. Removal of test optics errors[J]. Proc SPIE, 1978, 153: 56−63. doi: 10.1117/12.938216

    CrossRef Google Scholar

    [87] Song W H, Wu F, Hou X. Method to test rotationally asymmetric surface deviation with high accuracy[J]. Appl Opt, 2012, 51(22): 5567−5572. doi: 10.1364/AO.51.005567

    CrossRef Google Scholar

    [88] Song W H, Xi H, Fan W, et al. Comparative analysis of absolute methods to test rotationally asymmetric surface deviation[J]. Proc SPIE, 2013, 8789: 87890Z. doi: 10.1117/12.2018219

    CrossRef Google Scholar

    [89] Kim S W, Rhee H G. Self-calibration of high frequency errors of test optics by arbitrary N-step rotation[J]. Int J Precis Eng Manufact, 2000, 1(2): 115−123.

    Google Scholar

    [90] Rhee H G, Lee Y W, Kim S W. Azimuthal position error correction algorithm for absolute test of large optical surfaces[J]. Opt Express, 2006, 14(20): 9169−9177. doi: 10.1364/OE.14.009169

    CrossRef Google Scholar

    [91] Zhang Y W, Su D Q, Li L, et al. Error-immune algorithm for absolute testing of rotationally asymmetric surface deviation[J]. J Opt Soc Korea, 2014, 18(4): 335−340. doi: 10.3807/JOSK.2014.18.4.335

    CrossRef Google Scholar

    [92] Zhang L, Qi K Q, Xiang Y. Two-step algorithm for removing the rotationally asymmetric systemic errors on grating lateral shearing interferometer[J]. Opt Express, 2018, 26(11): 14267−14277. doi: 10.1364/OE.26.014267

    CrossRef Google Scholar

    [93] Otaki K, Kohara N, Sugisaki K, et al. Ultra high-precision wavefront metrology using EUV low brightness source[M]//Osten W. Fringe 2013. Berlin: Springer, 2014: 385–392.

    Google Scholar

    [94] Zhu Y C, Sugisaki K, Okada M, et al. Wavefront measurement interferometry at the operational wavelength of extreme-ultraviolet lithography[J]. Appl Opt, 2007, 46(27): 6783−6792. doi: 10.1364/AO.46.006783

    CrossRef Google Scholar

    [95] 刘克, 李艳秋. 一种新的相移点衍射干涉仪系统误差标定方法[J]. 光学学报, 2010, 30(10): 2923−2927. doi: 10.3788/AOS20103010.2923

    CrossRef Google Scholar

    Liu K, Li Y Q. A new calibration method of systematic errors in phase-shifting point diffraction interferometer[J]. Acta Opt Sin, 2010, 30(10): 2923−2927. doi: 10.3788/AOS20103010.2923

    CrossRef Google Scholar

    [96] Sommargren G E. Phase shifting diffraction interferometry for measuring extreme ultraviolet optics[R]. Boston, MA: Lawrence Livermore National Laboratory, 1996.

    Google Scholar

    [97] Matsuura T, Udaka K, Oshikane Y, et al. Spherical concave mirror measurement by phase-shifting point diffraction interferometer with two optical fibers[J]. Nucl Instrum Methods Phys Res Sect A Accelerat Spectro Detect Assoc Equip, 2010, 616(2-3): 233−236. doi: 10.1016/j.nima.2009.12.031

    CrossRef Google Scholar

    [98] 杨甬英. 先进干涉检测技术与应用[M]. 杭州: 浙江大学出版社, 2017.

    Google Scholar

    Yang Y Y. Advanced Interferometry and Application[M]. Hangzhou: Zhejiang University Press, 2017.

    Google Scholar

    [99] Feng P, Tang F, Wang X Z, et al. Dual-fiber point diffraction interferometer to measure the wavefront aberration of an imaging system[J]. Appl Opt, 2020, 59(10): 3093−3096. doi: 10.1364/AO.387540

    CrossRef Google Scholar

  • The lithography objective lens system is the core component of the lithography machine, and the detection is the last process in the manufacture of the lithography objective lens system. The detection content includes the surface shape detection of a single lens and the wave aberration detection of the entire lithography objective lens system. In order to detect the surface shape of each surface of the lens, the wavefront is usually detected. The wave aberration of the lithography objective is a comprehensive reflection of the errors of each lens. It is necessary to detect the transmitted wavefront through all the lenses, which is related to the final accuracy of the lithography machine. Accurately detecting the wave aberration of the lithography objective lens system is conducive to improving the lithography processing accuracy of the lithography machine, and also plays an indispensable role in the development and manufacture of the lithography objective lens. As the working light wave becomes smaller, the precision needs to be improved to sub-nanometer precision, which has higher requirements for the detection of the wave aberration of the lithography objective. ASML, Cannon and Nikon hold a lot of technical secrets for lithography machine manufacturing and inspection, as does high-precision wave aberration inspection technology. We cannot know the high-precision detection technology of wave aberration proprietary to these companies, but absolute detection technology is a method that can effectively improve detection accuracy. The detection accuracy of current lithography objective wave aberration detection methods (such as Hartmann method, shear interference method and point diffraction method, etc.) is often limited by its systematic errors. The system error is separated, the wave aberration detection accuracy is further improved, and the accuracy limit is finally broken. Different wave aberration detection techniques are suitable for different absolute detection methods, but some other systematic error calibration ideas can be tried to develop new absolute detection techniques for lithography objective lenses. This paper reviews the wave aberration detection method and surface absolute detection technology of lithography objective lens system, combs the application and research progress of absolute detection technology in wave aberration detection in detail, and summarizes the application of absolute detection technology in different wave aberration detection methods. At the same time, combined with these difficulties, the future development trend of the absolute detection technology of wave aberration of lithography objective lens is prospected.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(31)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint