Zhou J, Zhou Y, Ni X Y, et al. Research progress and applications of polarization integrated infrared photodetector[J]. Opto-Electron Eng, 2023, 50(5): 230010. doi: 10.12086/oee.2023.230010
Citation: Zhou J, Zhou Y, Ni X Y, et al. Research progress and applications of polarization integrated infrared photodetector[J]. Opto-Electron Eng, 2023, 50(5): 230010. doi: 10.12086/oee.2023.230010

Research progress and applications of polarization integrated infrared photodetector

    Fund Project: National Natural Science Foundation of China (61904183, 61974152, 62004205, 62104236, 62104237, 62222412), National Key Research and Development Program of China (2022YFB3606800), Shanghai Rising-Star Program Sailing Program (21YF1455000, 22YF1455800), Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences, Shanghai Branch (JCYJ-SHFY-2022-004) and Special Fund for Innovation of SITP, CAS (CX-399, CX-455)
More Information
  • Polarization integrated detector has the advantages of small size, light weight, compact structure, and no need for image registration to detect and recognize the dynamic targets simultaneously at the same place. This article mainly introduces the research progress and applications of polarization integrated infrared detector. We analyse the key technologies for obtaining high extinction ratio polarization integrated detectors, such as grating structure design and simulation, submicron polarization grating preparation, integration and testing, polarization image data reconstruction, etc. Finally, we introduce the typical applications of polarization imaging in unmanned aerial vehicles, camouflaged trucks, landmines, sea vessels, facial recognition, road recognition, sea oil leakage detection, medical detection, etc.
  • 加载中
  • [1] Rust D M, Thompson K E. An integrated imaging detector of polarization and spectral content[J]. Remote Sens Rev, 1994, 8(1–3): 215−225. doi: 10.1080/02757259309532197

    CrossRef Google Scholar

    [2] 王霞, 苏子航, 赵家碧, 等. 基于交织序列的偏振方向映射方法[J]. 应用光学, 2021, 42(5): 877−883. doi: 10.5768/JAO202142.0503001

    CrossRef Google Scholar

    Wang X, Su Z H, Zhao J B, et al. Sequence-interleaving mapping method for direction of polarization[J]. Journal of Applied Optics, 2021, 42(5): 877−883. doi: 10.5768/JAO202142.0503001

    CrossRef Google Scholar

    [3] Andreou A G, Kalayjian Z K. Polarization imaging: principles and integrated polarimeters[J]. IEEE Sens J, 2002, 2(6): 566−576. doi: 10.1109/JSEN.2003.807946

    CrossRef Google Scholar

    [4] Chen C J, Choi K K, Rokhinson L, et al. Corrugated quantum well infrared photodetectors for polarization detection[J]. Appl Phys Lett, 1999, 74(6): 862−864. doi: 10.1063/1.123391

    CrossRef Google Scholar

    [5] Apalkov V, Ariyawansa G, Perera A G U, et al. Wasilewski. Polarization sensitivity of quantum well infrared photodetector coupled to a metallic diffraction grid[J]. IEEE J Quantum Electron, 2010, 46(6): 877−883. doi: 10.1109/JQE.2010.2040461

    CrossRef Google Scholar

    [6] Kim J O, Yoon S, Kang B, et al. Linear polarization detection of Type II InAs/GaSb superlattice infrared photodetectors[C]//Asia Communications and Photonics Conference 2015, Hong Kong, China, 2015: ASu5A. 5. https://doi.org/10.1364/ACPC.2015.ASu5A.5.

    Google Scholar

    [7] Li Q, Li Z F, Li N, et al. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity[J]. Sci Rep, 2014, 4(1): 6332. doi: 10.1038/srep06332

    CrossRef Google Scholar

    [8] Ogawa S, Masuda K, Takagawa Y, et al. Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber[J]. Opt Eng, 2014, 53(10): 107110. doi: 10.1117/1.OE.53.10.107110

    CrossRef Google Scholar

    [9] Yang J K, Seo M K, Hwang I K, et al. Polarization-selective resonant photonic crystal photodetector[J]. Appl Phys Lett, 2008, 93(21): 211103. doi: 10.1063/1.3036954

    CrossRef Google Scholar

    [10] Li W, Coppens Z J, Besteiro L V, et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials[J]. Nature Commun, 2015, 6(1): 8379. doi: 10.1038/ncomms9379

    CrossRef Google Scholar

    [11] Li Z C, Liu W W, Cheng H, et al. Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface[J]. Sci Rep, 2016, 5(1): 18106. doi: 10.1038/srep18106

    CrossRef Google Scholar

    [12] Bai J, Wang C, Chen X H, et al. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection[J]. Photonics Res, 2019, 7(9): 1051−1060. doi: 10.1364/PRJ.7.001051

    CrossRef Google Scholar

    [13] Basiri A, Chen X H, Bai J, et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements[J]. Light Sci Appl, 2019, 8(1): 78. doi: 10.1038/s41377-019-0184-4

    CrossRef Google Scholar

    [14] Bai J, Wang C, Chen X H, et al. Chip-integrated plasmonic flat optics for mid-infrared polarization detection[C]//Applications and Technology, CLEO_AT 2018, San Jose, 2018: JW2A. 19.

    Google Scholar

    [15] Wei J X, Xu C, Dong B W, et al. Mid-infrared semimetal polarization detectors with configurable polarity transition[J]. Nat Photonics, 2021, 15(8): 614−621. doi: 10.1038/s41566-021-00819-6

    CrossRef Google Scholar

    [16] Wei J X, Chen Y, Li Y, et al. Geometric filterless photodetectors for mid-infrared spin light[J]. Nat Photonics, 2023, 17(2): 171−178. doi: 10.1038/s41566-022-01115-7

    CrossRef Google Scholar

    [17] Wang R, Li T, Shao X M, et al. Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors[J]. ACS Appl Mater Interfaces, 2015, 7(26): 14471−14476. doi: 10.1021/acsami.5b03679

    CrossRef Google Scholar

    [18] Feng B, Chen Y F, Sun D, et al. Precision integration of grating-based polarizers onto focal plane arrays of near-infrared photovoltaic detectors for enhanced contrast polarimetric imaging[J]. Int J Extreme Manuf, 2021, 3(3): 035201. doi: 10.1088/2631-7990/abf5c8

    CrossRef Google Scholar

    [19] Sun D, Li T, Yang B, et al. Research on polarization performance of InGaAs focal plane array integrated with superpixel-structured subwavelength grating[J]. Opt Express, 2019, 27(7): 9447−9458. doi: 10.1364/OE.27.009447

    CrossRef Google Scholar

    [20] Hubbs J E, Gramer M M, Maestas-Jepson D, et al. Measurement of the radiometric and polarization characteristics of a microgrid polarizer infrared focal plane array[J]. Proc SPIE, 2006, 6295: 62950C. doi: 10.1117/12.685468

    CrossRef Google Scholar

    [21] Cruz-Cabrera A A, Kemme S A, Wendt J R, et al. Edge termination effects on finite aperture polarizers for polarimetric imaging applications at mid-wave IR[J]. Proc SPIE, 2006, 6126: 61260K. doi: 10.1117/12.644310

    CrossRef Google Scholar

    [22] Forrai D P, Endres D W, Devitt J W, et al. Development of a MWIR polarimetric FPA[J]. Proc SPIE, 2007, 6660: 666007. doi: 10.1117/12.737777

    CrossRef Google Scholar

    [23] Malone N R, Hampp A, Gordon E E, et al. Detection comparisons between LWIR and MWIR polarimetric sensors[J]. Proc SPIE, 2008, 6972: 69720P. doi: 10.1117/12.779259

    CrossRef Google Scholar

    [24] Gruev V, Perkins R, York T. CCD polarization imaging sensor with aluminum nanowire optical filters[J]. Opt Express, 2010, 18(18): 19087−19094. doi: 10.1364/OE.18.019087

    CrossRef Google Scholar

    [25] POWELL S B, GRUEV V. Calibration methods for division-of-focal-plane polarimeters[J]. Opt Express, 2013, 21(18): 21039−21055. doi: 10.1364/OE.21.021039

    CrossRef Google Scholar

    [26] Baker G, Wilson M, Coulter P. Development and results of NIR polarization camera[J]. Proc SPIE, 2007, 6567: 65671L. doi: 10.1117/12.720746

    CrossRef Google Scholar

    [27] 赵永强, 李宁, 张鹏, 等. 红外偏振感知与智能处理[J]. 红外与激光工程, 2018, 47(11): 1102001. doi: 10.3788/IRLA201847.1102001

    CrossRef Google Scholar

    Zhao Y Q, Li N, Zhang P, et al. Infrared polarization perception and intelligent processing[J]. Infrared Laser Eng, 2018, 47(11): 1102001. doi: 10.3788/IRLA201847.1102001

    CrossRef Google Scholar

    [28] Zhang J C, Luo H B, Liang R G, et al. Sparse representation-based demosaicing method for microgrid polarimeter imagery[J]. Opt Lett, 2018, 43(14): 3265−3268. doi: 10.1364/OL.43.003265

    CrossRef Google Scholar

    [29] 罗海波, 张俊超, 盖兴琴, 等. 偏振成像技术的发展现状与展望(特邀)[J]. 红外与激光工程, 2022, 51(1): 20210987. doi: 10.3788/IRLA20210987

    CrossRef Google Scholar

    Luo H B, Zhang J C, Gai X Q, et al. Development status and prospects of polarization imaging technology (Invited)[J]. Infrared Laser Eng, 2022, 51(1): 20210987. doi: 10.3788/IRLA20210987

    CrossRef Google Scholar

    [30] Zhou Y W, Li Z F, Zhou J, et al. High extinction ratio super pixel for long wavelength infrared polarization imaging detection based on plasmonic microcavity quantum well infrared photodetectors[J]. Sci Rep, 2018, 8(1): 15070. doi: 10.1038/s41598-018-33432-9

    CrossRef Google Scholar

    [31] Rebhan D, Rosenberger M, Notni G. Principle investigations on polarization image sensors[J]. Proc SPIE, 2019, 11144: 111440A. doi: 10.1117/12.25335903

    CrossRef Google Scholar

    [32] 林国画, 张敏, 孟令伟, 等. 集成式偏振红外焦平面探测器的制备[J]. 激光与红外, 2019, 49(10): 1234−1238. doi: 10.3969/j.issn.1001-5078.2019.10.015

    CrossRef Google Scholar

    Lin G H, Zhang M, Meng L W, et al. Polarizer fabricated onto infrared focal detector[J]. Laser Infrared, 2019, 49(10): 1234−1238. doi: 10.3969/j.issn.1001-5078.2019.10.015

    CrossRef Google Scholar

    [33] Xue F D, Jin W Q, Qiu S, et al. Airborne optical polarization imaging for observation of submarine Kelvin wakes on the sea surface: imaging chain and simulation[J]. ISPRS J Photogramm Remote Sens, 2021, 178: 136−154. doi: 10.1016/j.isprsjprs.2021.06.001

    CrossRef Google Scholar

    [34] 褚金奎, 张然, 王志文, 等. 仿生偏振光导航传感器研究进展[J]. 科学通报, 2016, 61(23): 2568−2577. doi: 10.1360/N972015-01163

    CrossRef Google Scholar

    Chu J K, Zhang R, Wang Z W, et al. Progress on bio-inspired polarized skylight navigation sensor[J]. Chin Sci Bull, 2016, 61(23): 2568−2577. doi: 10.1360/N972015-01163

    CrossRef Google Scholar

    [35] Li J S, Chu J K, Zhang R, et al. Bio-inspired attitude measurement method using a polarization skylight and a gravitational field[J]. Appl Opt, 2020, 59(9): 2955−2962. doi: 10.1364/AO.387770

    CrossRef Google Scholar

    [36] Wan M J, Gu G H, Qian W X, et al. Stokes-vector-based polarimetric imaging system for adaptive target/background contrast enhancement[J]. Appl Opt, 2016, 55(21): 5513−5519. doi: 10.1364/AO.55.005513

    CrossRef Google Scholar

    [37] Zhou X J, Gu G H, Ren K, et al. Single-incidence polarimetry for optical characteristics[J]. Optik, 2019, 188: 308−315. doi: 10.1016/j.ijleo.2019.05.038

    CrossRef Google Scholar

    [38] Li J Y, Bao L, Jiang S, et al. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging[J]. Opt Express, 2019, 27(6): 8375−8386. doi: 10.1364/OE.27.008375

    CrossRef Google Scholar

    [39] Zhou J, Zhou Y, Shi Y, et al. A compact polarization-integrated long wavelength infrared focal plane array based on InAs/GaSb superlattice[J]. Sci China Inf Sci, 2022, 65(2): 122407. doi: 10.1007/s11432-021-3252-2

    CrossRef Google Scholar

    [40] Zhou J, Zhou Y, Shi Y, et al. The light crosstalk suppression between adjacent pixels in polarization-integrated infrared detectors[J]. Proc SPIE, 2020, 11427: 1142738. doi: 10.1117/12.2552973

    CrossRef Google Scholar

    [41] Zhou J, Zhou Y, Wang F F, et al. Design and analysis high extinction ratio monolithic polarization-integrated super pixel long wavelength infrared detectors[J]. Proc SPIE, 2021, 11763: 117638G. doi: 10.1117/12.2587591

    CrossRef Google Scholar

    [42] Pors A, Nielsen M G, Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters[J]. Optica, 2015, 2(8): 716−723. doi: 10.1364/OPTICA.2.000716

    CrossRef Google Scholar

    [43] Ahmed A, Zhao X J, Gruev V, et al. Residual interpolation for division of focal plane polarization image sensors[J]. Opt Express, 2017, 25(9): 10651−10662. doi: 10.1364/OE.25.010651

    CrossRef Google Scholar

    [44] Yang Z Y, Wang Z K, Wang Y X, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nat Commun, 2018, 9(1): 4607. doi: 10.1038/s41467-018-07056-6

    CrossRef Google Scholar

    [45] Rubin N A, D’Aversa G, Chevalier P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839

    CrossRef Google Scholar

    [46] Tyo J S, Ratliff B M, Alenin A S. Adapting the HSV polarization-color mapping for regions with low irradiance and high polarization[J]. Opt Letters, 2016, 41(20): 4759−4762. doi: 10.1364/OL.41.004759

    CrossRef Google Scholar

    [47] Li J X, Hung Y C, Kulce O, et al. Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network[J]. Light Sci Appl, 2022, 11(1): 153.

    Google Scholar

    [48] Short N, Hu S W, Gurram P, et al. Improving cross-modal face recognition using polarimetric imaging[J]. Opt Lett, 2015, 40(6): 882−885. doi: 10.1364/OL.40.000882

    CrossRef Google Scholar

    [49] Gurton K P, Yuffa A J, Videen G. LWIR polarimetry for enhanced facial recognition in thermal imagery[J]. Proc SPIE, 2014, 9099: 90990G. doi: 10.1117/12.2049700

    CrossRef Google Scholar

    [50] Li N, Zhao Y Q, Pan Q, et al. Full-time monocular road detection using zero-distribution prior of angle of polarization[C]//European Conference on Computer Vision, Glasgow, 2020: 457–473. https://doi.org/10.1007/978-3-030-58595-2_28.

    Google Scholar

    [51] Li N, Zhao Y Q, Pan Q, et al. Illumination-invariant road detection and tracking using LWIR polarization characteristics[J]. ISPRS J Photogramm Remote Sens, 2021, 180: 357−369. doi: 10.1016/j.isprsjprs.2021.08.022

    CrossRef Google Scholar

    [52] Zhang B, Perrie W, Li X F, et al. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image[J]. Geophys Res Lett, 2011, 38(10): L10602. doi: 10.1029/2011GL047013

    CrossRef Google Scholar

    [53] Nunziata F, Gambardella A, Migliaccio M. On the degree of polarization for SAR sea oil slick observation[J]. ISPRS J Photogramm Remote Sens, 2013, 78: 41−49. doi: 10.1016/j.isprsjprs.2012.12.007

    CrossRef Google Scholar

    [54] Anderson R R. Polarized light examination and photography of the skin[J]. Arch Dermatol, 1991, 127(7): 1000−1005. doi: 10.1001/archderm.1991.01680060074007

    CrossRef Google Scholar

    [55] Jacques S L, Ramella-Roman J C, Lee K. Imaging skin pathology with polarized light[J]. J Biomed Opt, 2002, 7(3): 329−340. doi: 10.1117/1.1484498

    CrossRef Google Scholar

    [56] Salomatina-Motts E, Neel V A, Yaroslavskaya A N. Multimodal polarization system for imaging skin cancer[J]. Opt Spectrosc, 2009, 107(6): 884−890. doi: 10.1134/S0030400X0912008X

    CrossRef Google Scholar

    [57] Ratliff B M, LeMaster D A, Mack R T, et al. Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data[J]. Proc SPIE, 2011, 8160: 816002. doi: 10.1117/12.894669

    CrossRef Google Scholar

    [58] Tyo J S, Goldstein D L, Chenault D B, et al. Review of passive imaging polarimetry for remote sensing applications[J]. Appl Opt, 2006, 45(22): 5453−5469. doi: 10.1364/AO.45.005453

    CrossRef Google Scholar

    [59] 王霞, 夏润秋, 金伟其, 等. 红外偏振成像探测技术进展[J]. 红外与激光工程, 2014, 43(10): 3175−3182. doi: 10.3969/j.issn.1007-2276.2014.10.001

    CrossRef Google Scholar

    Wang X, Xia R Q, Jin W Q, et al. Technology progress of infrared polarization imaging detection[J]. Infrared Laser Eng, 2014, 43(10): 3175−3182. doi: 10.3969/j.issn.1007-2276.2014.10.001

    CrossRef Google Scholar

    [60] Li N, Zhao Y Q, Wu R Y, et al. Polarization-guided road detection network for LWIR division-of-focal-plane camera[J]. Opt Lett, 2021, 46(22): 5679−5682. doi: 10.1364/OL.441817

    CrossRef Google Scholar

    [61] Tong S W, Liu X G, Chen Q H, et al. Multi-feature based ocean oil spill detection for polarimetric sar data using random forest and the self-similarity parameter[J]. Remote Sens, 2019, 11(4): 451. doi: 10.3390/rs11040451

    CrossRef Google Scholar

    [62] Song D M, Zhen Z J, Wang B, et al. A novel marine oil spillage identification scheme based on convolution neural network feature extraction from fully polarimetric SAR imagery[J]. IEEE Access, 2020, 8: 59801−59820. doi: 10.1109/ACCESS.2020.2979219

    CrossRef Google Scholar

    [63] Patel R, Khan A, Quinlan R, et al. Polarization-sensitive multimodal imaging for detecting breast cancer[J]. Cancer Res, 2014, 74(17): 4685−4693. doi: 10.1158/0008-5472.CAN-13-2411

    CrossRef Google Scholar

  • As one of the important platforms of the fourth generation new photoelectric imaging technology, the polarization integrated detector can simultaneously obtain multi-dimensional information such as the intensity and polarization of infrared radiation, and has the advantages of small size and high reliability. It is the development direction of the future infrared polarization imaging system. We first introduce the concept and research progress of the polarization integrated detectors, from the earliest regional polarization integrated detectors to pixel level polarization integrated detectors, and from the linear polarization integrated detectors to the focal planar array polarization integrated detectors. The second part mainly introduces the key technologies of the polarization integrated detector, mainly including the integrated structure design and the influence of related parameters on device performance, the method of the submicron polarization grating structure integration process, and the performance testing system. The third part mainly introduces the pseudo color image reconstruction method of the polarization integrated detector imaging and its application to typical targets in complex scenes. The last part introduces the new progress of the long-wave infrared polarization focal plane of Shanghai Institute of Technical Physics.

    Infrared polarization imaging shows great advantages based on the application requirements in some scenarios, but it also faces the huge challenge of reducing the signal-to-noise ratio and the spatial resolution caused by halving the received radiation energy. It needs to make continuous efforts to break through the existing technical bottlenecks in both hardware and software. In terms of the performance of polarization integrated devices, it is necessary to continue to improve the extinction ratio of the polarization integrated detector by cooperating with the metasurface structure to control the light field. In the aspect of image reconstruction and fusion, it is necessary to clarify the polarization characteristics of the target and background and the transmission characteristics of polarization through the polarization coding algorithm, and reflect its important value of significantly improving the signal-to-background ratio in the imaging detection of typical targets in relevant application scenarios.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(21)

Article Metrics

Article views(12187) PDF downloads(1754) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint