Hua Z H, Sui Z X, Qian S, et al. Research progress in development of Ce3+-doped scintillation glass[J]. Opto-Electron Eng, 2023, 50(5): 220247. doi: 10.12086/oee.2023.220247
Citation: Hua Z H, Sui Z X, Qian S, et al. Research progress in development of Ce3+-doped scintillation glass[J]. Opto-Electron Eng, 2023, 50(5): 220247. doi: 10.12086/oee.2023.220247

Research progress in development of Ce3+-doped scintillation glass

    Fund Project: National Natural Science Foundation of China (12065010), the Open Fund of the State Key Laboratory of Particle Detection and Electronics (SKLPDE-KF-202212, SKLPDE-KF-202213), and the Program of Science Technology Service Network of Chinese Academy of Science, Youth Innovation Promotion Association CAS.
More Information
  • Scintillation glasses have potential application in hadron calorimeter of circular electron positron collider (CEPC) due to the advantages of simple preparation process, flexible and controllable size, and low cost. Among them, Ce3+ luminescent center doped scintillation glasses have better scintillation performance. Matrix glass can be classified into oxide glass, halide glass, and glass-ceramic. According to the classification of different matrix glasses, this paper focuses on the optical transmittance, light yield, decay time, and radiation resistance properties of the Ce3+-doped scintillation glasses. Moreover, we introduce and summarize the research progress at domestic, foreign, and GS R&D Group. In view of the research status of different glasses, the methods for improving the glass performance are discussed from two aspects of glass composition and preparation. Finally, the future research and development directions of Ce3+-doped scintillation glasses are prospected.
  • 加载中
  • [1] 吕时超, 周时凤, 唐俊州, 等. 玻璃闪烁体的研究进展[J]. 光子学报, 2019, 48(10): 1148011. doi: 10.3788/gzxb20194811.1148011

    CrossRef Google Scholar

    Lü S C, Zhou S F, Tang J Z, et al. Research progress in development of glass scintillator[J]. Acta Photon Sin, 2019, 48(10): 1148011. doi: 10.3788/gzxb20194811.1148011

    CrossRef Google Scholar

    [2] 姚保利, 雷铭, 薛彬, 等. 高分辨和超分辨光学成像技术在空间和生物中的应用[J]. 光子学报, 2011, 40(11): 1607−1618. doi: 10.3788/gzxb20114011.1607

    CrossRef Google Scholar

    Yao B L, Lei M, Xue B, et al. Progress and applications of high-resolution and super-resolution optical imaging in space and biology[J]. Acta Photon Sin, 2011, 40(11): 1607−1618. doi: 10.3788/gzxb20114011.1607

    CrossRef Google Scholar

    [3] 顾鹏, 王鹏刚, 官伟明, 等. LYSO: Ce闪烁晶体的研究进展[J]. 人工晶体学报, 2021, 50(10): 1858−1869. doi: 10.3969/j.issn.1000-985X.2021.10.005

    CrossRef Google Scholar

    Gu P, Wang P G, Guan W M, et al. Research progress on LYSO: Ce scintillation crystals[J]. J Synth Cryst, 2021, 50(10): 1858−1869. doi: 10.3969/j.issn.1000-985X.2021.10.005

    CrossRef Google Scholar

    [4] Owens A, Bos A J J, Brandenburg S, et al. Assessment of the radiation tolerance of LaBr3: Ce scintillators to solar proton events[J]. Nucl Instrum Methods Phys Res Sec A Accel Spectrom Dect Assoc Equip, 2007, 572(2): 785−793. doi: 10.1016/j.nima.2006.12.008

    CrossRef Google Scholar

    [5] Han J F, Zhu J L, Wang Z H, et al. Pulse characteristics of CLYC and piled-up neutron–gamma discrimination using a convolutional neural network[J]. Nucl Instrum Methods Phys Res Sec A Accel Spectrom Dect Assoc Equip, 2022, 1028: 166328. doi: 10.1016/J.NIMA.2022.166328

    CrossRef Google Scholar

    [6] 尹士玉, 郭浩, 颜敏, 等. 无机闪烁体性能测试方案研究[J]. 光电工程, 2021, 48(6): 210038. doi: 10.12086/oee.2021.210038

    CrossRef Google Scholar

    Yin S Y, Guo H, Yan M, et al. Study on performance test plan of inorganic scintillator[J]. Opto-Electron Eng, 2021, 48(6): 210038. doi: 10.12086/oee.2021.210038

    CrossRef Google Scholar

    [7] Peng S, Hua Z H, Wu Q, et al. Piled-up neutron-gamma discrimination system for CLLB using convolutional neural network[J]. J Instrum, 2022, 17: T08001. doi: 10.1088/1748-0221/17/08/T08001

    CrossRef Google Scholar

    [8] Zhu Y, Qian S, Wang Z G, et al. Scintillation properties of GAGG: Ce ceramic and single crystal[J]. Opt Mater, 2020, 105: 109964. doi: 10.1016/j.optmat.2020.109964

    CrossRef Google Scholar

    [9] Tang G, Hua Z H, Qian S, et al. Optical and scintillation properties of aluminoborosilicate glass[J]. Opt Mater, 2022, 130: 112585. doi: 10.1016/j.optmat.2022.112585

    CrossRef Google Scholar

    [10] Struebing C, Beckert M B, Nadler J H, et al. Optimization of a gadolinium-rich oxyhalide glass scintillator for gamma ray spectroscopy[J]. J Am Ceram Soc, 2018, 101(3): 1116−1121. doi: 10.1111/jace.15273

    CrossRef Google Scholar

    [11] Zou W C, Martin S W, Schwellenbach D, et al. New high-density fluoride glasses doped with CeF3[J]. J Non-Cryst Solids, 1995, 184: 84−92. doi: 10.1016/0022-3093(95)00002-X

    CrossRef Google Scholar

    [12] Auffray E, Akchurin N, Benaglia A, et al. DSB: Ce3+ scintillation glass for future[J]. J Phys Conf Ser, 2015, 587: 012062. doi: 10.1088/1742-6596/587/1/012062

    CrossRef Google Scholar

    [13] Aydın G. Simulation study for the energy resolution performances of homogenous calorimeters with scintillator-photodetector combinations[J]. Adv High Energy Phys, 2018, 2018: 4791509. doi: 10.1155/2018/4791509

    CrossRef Google Scholar

    [14] Xiu Q L, Zhu H B, Yue T, et al. Study of beamstrahlung effects at CEPC[J]. Chin Phys C, 2016, 40(5): 053001. doi: 10.1088/1674-1137/40/5/053001

    CrossRef Google Scholar

    [15] Li L, Shan Q, Jia W, et al. Optimization of the CEPC-AHCAL scintillator detector cells[J]. J Instrum, 2021, 16(3): P03001. doi: 10.1088/1748-0221/16/03/P03001

    CrossRef Google Scholar

    [16] Qian S. Status of the scintillation glass HCAL[Z]. CEPC Day, 2022. https://indico.ihep.ac.cn/event/16585/contributions/49055/attachments/23377/26500/Research_progress_of_glass_scintillator_for_CEPC-V3.0.pdf

    Google Scholar

    [17] Chiodini N, Fasoli M, Martini M, et al. High-efficiency SiO2: Ce3+ glass scintillators[J]. Appl Phys Lett, 2002, 81(23): 4374−4376. doi: 10.1063/1.1524294

    CrossRef Google Scholar

    [18] Hu P, Hua Z H, Ma L S, et al. Study on the optimized energy resolution of scintillator detectors based on SiPMs and LYSO: Ce[J]. J Instrum, 2022, 17(9): T09010. doi: 10.1088/1748-0221/17/09/T09010

    CrossRef Google Scholar

    [19] 王阳, 马秀荣, 钱森, 等. 超快速MCP-PMT的时间特性测试方法研究[J]. 光电工程, 2020, 47(2): 190635. doi: 10.12086/oee.2020.190635

    CrossRef Google Scholar

    Wang Y, Ma X R, Qian S, et al. The study of test method of time characteristic for ultra-fast-MCP-PMT[J]. Opto-Electron Eng, 2020, 47(2): 190635. doi: 10.12086/oee.2020.190635

    CrossRef Google Scholar

    [20] Nikl M. Scintillation detectors for x-rays[J]. Meas Sci Technol, 2006, 17(4): R37−R54. doi: 10.1088/0957-0233/17/4/R01

    CrossRef Google Scholar

    [21] Torimoto A, Masai H, Okada G, et al. Emission properties of cerium-doped barium borate glasses for scintillator applications[J]. Radiat Meas, 2017, 106: 46−51. doi: 10.1016/j.radmeas.2017.05.012

    CrossRef Google Scholar

    [22] Torimoto A, Masai H, Okada G, et al. Emission properties of Ce-doped alkaline earth borate glasses for scintillator applications[J]. Opt Mater, 2017, 73: 517−522. doi: 10.1016/j.optmat.2017.09.006

    CrossRef Google Scholar

    [23] Nakauchi D, Okada G, Fujimoto Y, et al. Optical and radiation-induced luminescence properties of Ce-doped magnesium aluminoborate glasses[J]. Opt Mater, 2017, 72: 190−194. doi: 10.1016/j.optmat.2017.05.063

    CrossRef Google Scholar

    [24] Samizo H, Shinozaki K, Kato T, et al. X-ray induced luminescence properties of Ce-doped BaF2-Al2O3-B2O3 glasses[J]. Opt Mater, 2019, 90: 64−69. doi: 10.1016/j.optmat.2019.01.035

    CrossRef Google Scholar

    [25] Kato T, Hirano S, Samizo H, et al. Dosimetric, luminescence and scintillation properties of Ce-doped CaF2-Al2O3-B2O3 glasses[J]. J Non-Cryst Solids, 2019, 509: 60−64. doi: 10.1016/j.jnoncrysol.2018.12.025

    CrossRef Google Scholar

    [26] Sun X Y, Gao P, Zheng Y Q, et al. Enhanced emission intensity of Ce3+ ions in Li2O–B2O3–Gd2O3 scintillating glasses by adding carbon and Si3N4 agent[J]. J Non-Cryst Solids, 2015, 422: 12−15. doi: 10.1016/j.jnoncrysol.2015.05.008

    CrossRef Google Scholar

    [27] Novotny R W, Brinkmann K T, Dormenev V, et al. Performance of DSB – a new glass and glass ceramic as scintillation material for future calorimetry[J]. J Phys Conf Ser, 2019, 1162: 012023. doi: 10.1088/1742-6596/1162/1/012023

    CrossRef Google Scholar

    [28] Dormenev V, Amelina A, Auffray E, et al. Multipurpose Ce-doped Ba-Gd silica glass scintillator for radiation measurements[J]. Nucl Instrum Methods Phys Res Sec A Accel Spectrom Detect Assoc Equip, 2021, 1015: 165762. doi: 10.1016/j.nima.2021.165762

    CrossRef Google Scholar

    [29] Brinkman K T, Borisevich A, Dormenev V, et al. Radiation damage and recovery of medium heavy and light inorganic crystalline, glass and glass ceramic materials after irradiation with 150 MeV protons and 1.2 MeV gamma-rays[C]//Proceedings of 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, Seattle, 2016.

    Google Scholar

    [30] Yanagida T, Ueda J, Masai H, et al. Optical and scintillation properties of Ce-doped 34Li2O–5MgO–10Al2O3–51SiO2 glass[J]. J Non-Cryst Solids, 2016, 431: 140−144. doi: 10.1016/j.jnoncrysol.2015.04.033

    CrossRef Google Scholar

    [31] Isokawa Y, Nakauchi D, Okada G, et al. Radiation induced luminescence properties of Ce-doped Y2O3-Al2O3-SiO2 glass prepared using floating zone furnace[J]. J Alloys Compd, 2019, 782: 859−864. doi: 10.1016/j.jallcom.2018.12.245

    CrossRef Google Scholar

    [32] Amelina A, Mikhlin A, Belus S, et al. (Gd, Ce)2O3-Al2O3-SiO2 scintillation glass[J]. J Non-Cryst Solids, 2022, 580: 121393. doi: 10.1016/j.jnoncrysol.2021.121393

    CrossRef Google Scholar

    [33] Fu J, Parker J M, Brown R M, et al. Compositional dependence of scintillation yield of glasses with high Gd2O3 concentrations[J]. J Non-Cryst Solids, 2003, 326–327: 335−338. doi: 10.1016/S0022-3093(03)00428-9

    CrossRef Google Scholar

    [34] Zuo C G, Zhou Z H, Zhu L G, et al. Spectroscopic properties of Ce3+-doped borosilicate glasses under UV excitation[J]. Mater Res Bull, 2016, 83: 155−159. doi: 10.1016/j.materresbull.2016.06.001

    CrossRef Google Scholar

    [35] Isokawa Y, Hirano S, Okada G, et al. Characterization of Ce-doped lithium borosilicate glasses as tissue-equivalent phosphors for radiation measurements[J]. Radiat Meas, 2018, 111: 13−18. doi: 10.1016/j.radmeas.2018.02.009

    CrossRef Google Scholar

    [36] Pan L Y, Daguano J K M F, Trindade N M, et al. Scintillation, luminescence and optical properties of Ce-Doped borosilicate glasses[J]. Opt Mater, 2020, 104: 109847. doi: 10.1016/j.optmat.2020.109847

    CrossRef Google Scholar

    [37] Hirano S, Kuro T, Tatsumi H, et al. Scintillation, TSL and OSL properties of Ce-doped 30Zn3(PO4)2–70Al(PO3)3 glasses[J]. J Mater Sci Mater Electron, 2017, 28(8): 6064−6070. doi: 10.1007/s10854-016-6282-7

    CrossRef Google Scholar

    [38] Masai H, Shinozaki K, Okada G, et al. Luminescence of Ce3+ in aluminophosphate glasses prepared in air[J]. J Lumin, 2018, 195: 413−419. doi: 10.1016/j.jlumin.2017.11.063

    CrossRef Google Scholar

    [39] Shiratori D, Kawaguchi N, Yanagida T. Scintillation properties of xCe: 30Rb2O-30BaO-10Al2O3–30P2O5 glasses[J]. Jpn J Appl Phys, 2020, 59: SCCB16. doi: 10.7567/1347-4065/ab48c2

    CrossRef Google Scholar

    [40] Sun X Y, Ye Z P, Wu Y T, et al. A simple and highly efficient method for synthesis of Ce3+-activated borogermanate scintillating glasses in air[J]. J Am Ceram Soc, 2014, 97(11): 3388−3391. doi: 10.1111/jace.13296

    CrossRef Google Scholar

    [41] Sun X Y, Yuan Y, Xiao Z H, et al. Optical investigation of Ce3+-activated borogermanate glass induced by substitution of BaF2 for BaO[J]. J Am Ceram Soc, 2015, 98(12): 3655−3658. doi: 10.1111/jace.13934

    CrossRef Google Scholar

    [42] Auffray E, Bouttet D, Dafinei I, et al. Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry[J]. Nucl Instrum Methods Phys Res Sec A Accel Spectrom Detect Assoc Equip, 1996, 380(3): 524−536. doi: 10.1016/0168-9002(96)00717-6

    CrossRef Google Scholar

    [43] Hu C, Margaryan A, Margaryan A, et al. Alkali-free Ce-doped and co-doped fluorophosphate glasses for future HEP experiments[J]. Nucl Instrum Methods Phys Res Sec A Accel Spectrom Detect Assoc Equip, 2020, 954: 161665. doi: 10.1016/j.nima.2018.11.124

    CrossRef Google Scholar

    [44] Akatsuka M, Shinozaki K, Nakauchi D, et al. Scintillator and dosimeter properties of Ce3+ doped CaF2-AlF3-AlPO4 glasses[J]. Opt Mater, 2019, 94: 86−91. doi: 10.1016/j.optmat.2019.04.064

    CrossRef Google Scholar

    [45] Ito G, Kimura H, Shiratori D, et al. Optical and scintillation properties of Ce-doped 20CsCl-20BaCl2–60ZnCl2 glasses[J]. Optik, 2021, 226: 165825. doi: 10.1016/j.ijleo.2020.165825

    CrossRef Google Scholar

    [46] 孙博超, 隋泽萱, 王慈, 等. 纳米晶复合玻璃闪烁体: 机遇与挑战[J]. 硅酸盐学报, 2022, 50(4): 1143−1159. doi: 10.14062/j.issn.0454-5648.20211116

    CrossRef Google Scholar

    Sun B C, Sui Z X, Wang C, et al. Nano-glass composite scintillators: opportunities and challenges[J]. J Chin Ceram Soc, 2022, 50(4): 1143−1159. doi: 10.14062/j.issn.0454-5648.20211116

    CrossRef Google Scholar

    [47] Nikitin A, Fedorov A, Korjik M. Novel glass ceramic scintillator for detection of slow neutrons in well logging applications[J]. IEEE Trans Nucl Sci, 2013, 60(2): 1044−1048. doi: 10.1109/TNS.2013.2251748

    CrossRef Google Scholar

    [48] Huang S M, Gao Q C, Gu M. Enhanced luminescence in transparent glass ceramics containing BaYF5: Ce3+ nanocrystals[J]. J Lumin, 2012, 132(3): 750−754. doi: 10.1016/j.jlumin.2011.11.002

    CrossRef Google Scholar

    [49] Liu P, Lv S C, Chen X P, et al. Crystallization control toward colorless cerium-doped scintillating glass[J]. Opt Express, 2018, 26(16): 20582−20589. doi: 10.1364/OE.26.020582

    CrossRef Google Scholar

    [50] Du Y, Han S, Zou Y, et al. Luminescence properties of Ce3+ -doped oxyfluoride aluminosilicate glass and glass ceramics[J]. Opt Mater, 2019, 89: 243−249. doi: 10.1016/j.optmat.2019.01.018

    CrossRef Google Scholar

    [51] Tang J Z, Lv S C, Lin Z Y, et al. Pressureless crystallization of glass toward scintillating composite with high crystallinity for radiation detection[J]. J Mater Sci Technol, 2022, 129: 173−180. doi: 10.1016/j.jmst.2022.04.041

    CrossRef Google Scholar

    [52] Sun X Y, Xiao Z H, Wu Y T, et al. Role of Al3+ on tuning optical properties of Ce3+-activated borosilicate scintillating glasses prepared in air[J]. J Am Ceram Soc, 2018, 101(10): 4480−4485. doi: 10.1111/jace.15773

    CrossRef Google Scholar

    [53] Sun X Y, Xiao Z H, Wu Y T, et al. Fast Ce3+-activated borosilicate glass scintillators prepared in air atmosphere[J]. Ceram Int, 2017, 43(3): 3401−3404. doi: 10.1016/j.ceramint.2016.11.187

    CrossRef Google Scholar

    [54] Sun X Y, Liu X J, Xiao Z H, et al. Enhancement of emission intensity in Ce3+-activated aluminoborosilicate scintillating glass synthesized in air[J]. J Am Ceram Soc, 2020, 103(2): 768−772. doi: 10.1111/jace.16882

    CrossRef Google Scholar

    [55] Sun X Y, Liu X J, Wu Y T, et al. Enhanced emission intensity of Ce3+-doped aluminoborosilicate glasses prepared in air[J]. Ceram Int, 2020, 46(3): 4035−4038. doi: 10.1016/j.ceramint.2019.10.109

    CrossRef Google Scholar

    [56] Wu T, Hua Z H, Tang G, et al. Enhanced photoluminescence quantum yield of Ce3+-doped aluminum-silicate glasses for scintillation application[J]. J Am Ceram Soc, 2023, 106(1): 476−487. doi: 10.1111/jace.18761

    CrossRef Google Scholar

    [57] Sun B C, Xie Y Q, Zhao Y L, et al. A highly robust Ce3+-doped and Gd3+-mixed KLaF4 nano-glass composite scintillator[J]. J Mater Chem C, 2021, 9(48): 17504−17510. doi: 10.1039/D1TC04772H

    CrossRef Google Scholar

  • Nowadays, scintillation glass has attracted worldwide attention and plays an important role in medical imaging, high energy physics, environmental monitoring, and security inspection. Scholars are exploring the application prospects of scintillation glass in high energy physics and other fields. At present, the maximum light yield of the Ce3+-doped scintillating glass can reach 4300 ph/MeV, and the maximum density can exceed 6.9 g/cm3.

    With the rapid development of high energy physics, the concept of circular electron positron collider (CEPC) has been proposed. The structure of scintillation glass and silicon photomultiplier (SiPM) may be used in hadron calorimeter of CEPC. It requires a large density (>6 g/cm3) and considerable scintillation performance (light yield >1000 ph/MeV, decay time <100 ns). Among them, the Ce3+-doped glasses have better scintillation properties.

    In this paper, the glasses are divided into oxide glasses, halide glasses, and glass ceramics according to the different substrates doped with Ce3+. Moreover, we focus on the optical transmittance, light yield, decay time, and irradiation resistance of the Ce3+-doped scintillation glasses. Moreover, we introduce and summarize the research progress at domestic, foreign, and GS R&D Group. In view of the research status of different glasses, the methods for improving the glass performance are discussed from two aspects of glass composition and preparation. Finally, the future research and development directions of Ce3+-doped scintillation glass are prospected.

    In order to improve the scintillation performance of the glasses, future preparation methods and research directions can focus on 1) reducing impurities in glass raw materials through further purification to reduce defects in the glass; 2) Add an appropriate amount of clarifying agent and improving the glass stirring process to reduce the bubbles in the glass; 3) using a reducing atmosphere and a appropriate reducing agent to avoid the oxidation of Ce ions; 4) Partial fluoride can be used to replace the oxide to reduce the melting point of the glass, reduce the introduction of impurities in the corundum crucible, and improve the uniformity of the glass; 5) Reduce the introduction of elements that are unfavorable to scintillation performance in glass, and increase the proportion of Gd element in the glass. Exploring suitable scintillation glass components and glass preparation processes is the key to the long-term development and real application of scintillation glass in the future.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(7)

Article Metrics

Article views(7432) PDF downloads(2410) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint