Peng Y F, He J K, Huang X P, et al. Ultra-precision grinding and polishing processing technology research and equipment development[J]. Opto-Electron Eng, 2023, 50(4): 220097. doi: 10.12086/oee.2023.220097
Citation: Peng Y F, He J K, Huang X P, et al. Ultra-precision grinding and polishing processing technology research and equipment development[J]. Opto-Electron Eng, 2023, 50(4): 220097. doi: 10.12086/oee.2023.220097

Ultra-precision grinding and polishing processing technology research and equipment development

    Fund Project: National Natural Science Foundation of China (52075463) and Technology Projects of Shenzhen (JCYJ20210324122001003)
More Information
  • Under the opportunity of "Made in China 2025", in the field of ultra-precision, China has broken through many key bottleneck technologies, achieved many remarkable scientific research results, built a number of high-level ultra-precision processing technology innovation platforms, talent growth platforms and application demonstration bases, and created an independent ultra-precision industry in China. This paper mainly introduces the research progress of optical ultra-precision processing technology and equipment in the Precision Engineering Laboratory of Xiamen University. Focusing on the grinding and polishing processing of large-diameter optical aspherical components, the processing technology, grinding and polishing equipment, equipment monitoring and control software and related unit technologies developed by the group are described. These research results can provide manufacturing and processing technology support and equipment solutions for the ultra-precision processing of high-end optical components.
  • 加载中
  • [1] 袁巨龙, 张飞虎, 戴一帆, 等. 超精密加工领域科学技术发展研究[J]. 机械工程学报, 2010, 46(15): 161−177. doi: 10.3901/JME.2010.15.161

    CrossRef Google Scholar

    Yuan J L, Zhang F H, Dai Y F, et al. Development research of science and technologies in ultra-precision machining field[J]. J Mech Eng, 2010, 46(15): 161−177. doi: 10.3901/JME.2010.15.161

    CrossRef Google Scholar

    [2] 王卓, 吴宇列, 戴一帆, 等. 光学材料抛光亚表面损伤检测及材料去除机理[J]. 国防科技大学学报, 2009, 31(2): 107−111. doi: 10.3969/j.issn.1001-2486.2009.02.023

    CrossRef Google Scholar

    Wang Z, Wu Y L, Dai Y F, et al. Detection of subsurface damage and material removal mechanism in optical polishing process[J]. J Natl Univ Def. Technol, 2009, 31(2): 107−111. doi: 10.3969/j.issn.1001-2486.2009.02.023

    CrossRef Google Scholar

    [3] Tonnellier X, Morantz P, Shore P, et al. Precision grinding for rapid fabrication of segments for extremely large telescopes using the Cranfield BoX[J]. Proc SPIE, 2010, 7739: 773905. doi: 10.1117/12.858806

    CrossRef Google Scholar

    [4] Luo X C, Cheng K, Webb D, et al. Design of ultraprecision machine tools with applications to manufacture of miniature and micro components[J]. J Mater Process Technol, 2005, 167(2–3): 515−528. doi: 10.1016/j.jmatprotec.2005.05.050

    CrossRef Google Scholar

    [5] Ruckman J L, Fess E M, Pollicove H M. Deterministic processes for manufacturing conformal (freeform) optical surfaces[J]. Proc SPIE, 2001, 4375: 108−113. doi: 10.1117/12.439166

    CrossRef Google Scholar

    [6] Jones R A. Fabrication using the computer controlled polisher[J]. Appl Opt, 1978, 17(12): 1889−1892. doi: 10.1364/AO.17.001889

    CrossRef Google Scholar

    [7] Hull T, Hartmann P, Clarkson A R, et al. Lightweight high-performance 1–4 meter class spaceborne mirrors: emerging technology for demanding spaceborne requirements[J]. Proc SPIE, 2010, 7739: 77390C. doi: 10.1117/12.857900

    CrossRef Google Scholar

    [8] Geyl R. From VLT to GTC and the ELTs[J]. Proc SPIE, 2005, 5965: 59650P. doi: 10.1117/12.627677

    CrossRef Google Scholar

    [9] 朱祥龙, 康仁科. 300 mm硅片超精密磨床设计与开发[J]. 机械工程学报, 2013, 49(4): 192.

    Google Scholar

    Zhu X L, Kang R K. Design and development of 300 mm silicon wafer ultra-precision grinding machine[J]. J Mech Eng, 2013, 49(4): 192.

    Google Scholar

    [10] 牛玉杰. 单晶硅曲面镜低损伤精密磨削及检测技术研究[D]. 长沙: 国防科学技术大学, 2015: 40–52.

    Google Scholar

    Niu Y J. Research on precision grinding and measurement technique for low subsurface damage of monocrystalline silicon curved optics[D]. Changsha: National University of Defense Technology, 2015: 40–52.

    Google Scholar

    [11] Shi C C, Wang Z Z, Peng Y F, et al. Quasi-static kinematics model for motion errors of closed hydrostatic guideways in ultra-precision machining[J]. Precis Eng, 2021, 71: 90−102. doi: 10.1016/j.precisioneng.2021.03.004

    CrossRef Google Scholar

    [12] 林晓辉, 王振忠, 郭隐彪, 等. 光学非球面磨削中的圆弧砂轮修整误差分析[J]. 兵工学报, 2013, 34(1): 60−65. doi: 10.3969/j.issn.1000-1093.2013.01.011

    CrossRef Google Scholar

    Lin X H, Wang Z Z, Guo Y B, et al. Truing error analysis of arc wheel in optical aspheric grinding[J]. Acta Armam, 2013, 34(1): 60−65. doi: 10.3969/j.issn.1000-1093.2013.01.011

    CrossRef Google Scholar

    [13] Chang X L, Wu H Y, Peng Y F. Research on the 2-axis cup-wheel dressing technology of arc-diamond grinding wheel[J]. Proc SPIE, 2014, 9281: 92811X. doi: 10.1117/12.2067889

    CrossRef Google Scholar

    [14] 郭隐彪, 杨炜, 王振忠, 等. 大口径光学元件超精密加工技术与应用[J]. 机械工程学报, 2013, 49(19): 171−178. doi: 10.3901/JME.2013.19.171

    CrossRef Google Scholar

    Guo Y B, Yang W, Wang Z Z, et al. Technology and application of ultra-precision machining for large size optic[J]. J Mech Eng, 2013, 49(19): 171−178. doi: 10.3901/JME.2013.19.171

    CrossRef Google Scholar

    [15] 樊非, 徐曦, 许乔, 等. 大口径强激光光学元件超精密制造技术研究进展[J]. 光电工程, 2020, 47(8): 200135. doi: 10.12086/oee.2020.200135

    CrossRef Google Scholar

    Fan F, Xu X, Xu Q, et al. Progress on ultra precision manufacturing technology of large-aperture high-power laser optics[J]. Opto-Electron Eng, 2020, 47(8): 200135. doi: 10.12086/oee.2020.200135

    CrossRef Google Scholar

    [16] 肖道林, 张超, 房博文, 等. 液体静压导轨技术分析[J]. 机电信息, 2021(20): 51−52. doi: 10.3969/j.issn.1671-0797.2021.20.020.

    CrossRef Google Scholar

    Xiao D L, Zhang C, Fang B W, et al. Analysis of liquid hydrostatic guide technology[J]. Mech Electr Inform, 2021(20): 51−52. doi: 10.3969/j.issn.1671-0797.2021.20.020.

    CrossRef Google Scholar

    [17] 施晨淳, 王振忠, 彭云峰, 等. PM流量控制器参数对液体静压导轨运动精度影响的研究[J]. 机械工程学报, 2020, 56(1): 157−165. doi: 10.3901/JME.2020.01.157

    CrossRef Google Scholar

    Shi C C, Wang Z Z, Peng Y F, et al. Influence of PM controller parameters on motion accuracy of hydrostatic guideways[J]. J Mech Eng, 2020, 56(1): 157−165. doi: 10.3901/JME.2020.01.157

    CrossRef Google Scholar

    [18] Bingham R G, Walker D D, Kim D H, et al. Novel automated process for aspheric surfaces[J]. Proc SPIE, 2000, 4093: 445−450. doi: 10.1117/12.405237

    CrossRef Google Scholar

    [19] 郭隐彪, 彭云峰, 王振忠, 等. 大口径光学元件的精密磨抛与检测装备开发及应用[J]. 航空制造技术, 2018, 61(6): 26−35. doi: 10.16080/j.issn1671-833x.2018.06.026

    CrossRef Google Scholar

    Guo Y B, Peng Y F, Wang Z Z, et al. Development and application of precision grinding/polishing and measurement equipment for large-size optical components[J]. Aeronaut Manuf Technol, 2018, 61(6): 26−35. doi: 10.16080/j.issn1671-833x.2018.06.026

    CrossRef Google Scholar

    [20] 王春锦. 大口径光学元件的半柔性气囊高效抛光技术研究[D]. 厦门: 厦门大学, 2015: 109–142.

    Google Scholar

    Wang C J. Research on efficient polishing technology of semi-flexible airbags for large-diameter optical components[D]. Xiamen: Xiamen University, 2015: 109–142.

    Google Scholar

    [21] Peng Y F, Li C L, Shen B Y, et al. Sphere precessions polishing method[J]. Opt Eng, 2021, 60(6): 064108. doi: 10.1117/1.OE.60.6.064108

    CrossRef Google Scholar

    [22] 王竞航, 彭云峰. 基于环境模型优化的机器人磨抛阻抗控制[J]. 金刚石与磨料磨具工程, 2021, 41(6): 12−17. doi: 10.13394/j.cnki.jgszz.2021.6.0003

    CrossRef Google Scholar

    Wang J H, Peng Y F. Robot grinding and polishing impedance control based on environmental model optimization[J]. Diamond Abras Eng, 2021, 41(6): 12−17. doi: 10.13394/j.cnki.jgszz.2021.6.0003

    CrossRef Google Scholar

    [23] Hogan N. Impedance control: an approach to manipulation[C]//1984 American Control Conference, 1984. https://doi.org/10.23919/ACC.1984.4788393.

    Google Scholar

    [24] 黄雪鹏. SiC元件机器人气囊抛光材料去除机理及工艺优化研究[D]. 厦门: 厦门大学, 2021: 51–65.

    Google Scholar

    Huang X P. Study on the removal mechanism and process optimization of robotic airbag polishing material for SiC components[D]. Xiamen: Xiamen University, 2021: 51–65.

    Google Scholar

    [25] 林泽文. 光学元件机器人气囊抛光技术及工艺研究[D]. 厦门: 厦门大学, 2020: 15–34.

    Google Scholar

    Lin Z W. Research on bonnet polishing technology and process with industrial robot for optics[D]. Xiamen: Xiamen University, 2020: 15–34.

    Google Scholar

    [26] 林泽文, 王振忠, 黄雪鹏, 等. 机器人气囊抛光去除函数稳定性分析[J]. 强激光与粒子束, 2021, 33(5): 051002. doi: 10.11884/HPLPB202133.200293

    CrossRef Google Scholar

    Lin Z W, Wang Z Z, Huang X P, et al. Influence of robotic structural deformation on bonnet polishing removal function[J]. High Power Laser Part Beams, 2021, 33(5): 051002. doi: 10.11884/HPLPB202133.200293

    CrossRef Google Scholar

    [27] 汤期林, 彭云峰, 童雅芳, 等. 超精密磨床多信号监测系统的设计与实现[J]. 组合机床与自动化加工技术, 2019(2): 72−75. doi: 10.13462/j.cnki.mmtamt.2019.02.019

    CrossRef Google Scholar

    Tang Q L, Peng Y F, Tong Y F, et al. Design and implementation of multi signal monitoring system for ultra precision grinding machine[J]. Modular Mach Tool Autom Manuf Tech, 2019(2): 72−75. doi: 10.13462/j.cnki.mmtamt.2019.02.019

    CrossRef Google Scholar

    [28] 毕果, 汤期林, 王振忠, 等. 精密磨削机床智能监测系统开发与应用[J]. 航空制造技术, 2019, 62(6): 32−40. doi: 10.16080/j.issn1671-833x.2019.06.032

    CrossRef Google Scholar

    Bi G, Tang Q L, Wang Z Z, et al. Design and implementation of multi signal monitoring system for Ultra Precision grinding machine[J]. Aeronaut Manuf Technol, 2019, 62(6): 32−40. doi: 10.16080/j.issn1671-833x.2019.06.032

    CrossRef Google Scholar

    [29] 毕果, 王惠雪, 周炼, 等. 金刚石砂轮磨削性能退化评估[J]. 光学 精密工程, 2019, 27(7): 1508−1515. doi: 10.3788/OPE.20192707.1508

    CrossRef Google Scholar

    Bi G, Wang H X, Zhou L, et al. Gringing performance degradation of diamond wheel[J]. Opt Precis Eng, 2019, 27(7): 1508−1515. doi: 10.3788/OPE.20192707.1508

    CrossRef Google Scholar

    [30] 苏史博, 毕果, 郑守红, 等. 基于LSTM和声发射的金刚石砂轮磨损状态识别[J]. 组合机床与自动化加工技术, 2021(8): 169−172. doi: 10.13462/j.cnki.mmtamt.2021.08.041

    CrossRef Google Scholar

    Su S B, Bi G, Zheng S H, et al. Identification of wear status of diamond grinding wheel based on LSTM and acoustic emission[J]. Mod Mach Tool Autom Manuf Tech, 2021(8): 169−172. doi: 10.13462/j.cnki.mmtamt.2021.08.041

    CrossRef Google Scholar

    [31] Bi G, Zheng S H, Zhou L. Online monitoring of diamond grinding wheel wear based on linear discriminant analysis[J]. Int J Adv Manuf Technol, 2021, 115(7–8): 2111−2124. doi: 10.1007/s00170-021-07190-4

    CrossRef Google Scholar

  • Driven by the rapid development of national optical projects such as laser nuclear fusion and aerospace telescopes, as well as high-end civilian fields such as advanced instruments and optical lenses, the requirements for full-frequency domain processing errors and surfaces of optical components are becoming more and more stringent. At this stage, the optical components generally need to go through rough grinding, fine grinding, polishing and coating, and other processes, and their surface quality mainly depends on the defect removal ability and error control level of the polishing process. Whether the fine grinding process can obtain better surface shape accuracy and low surface/subsurface damage suppression determines the processing efficiency, and the ultra-precision processing manufacturing equipment is the premise of the realization of ultra-precision machining of the optical components. So far, all countries in the world have invested in the research and development of optical ultra-precision grinding and polishing technology, and have developed more relatively mature high-precision grinding and polishing equipment, which can better meet the processing needs of most of the current optical components. For the core equipment and key technologies required for ultra-precision manufacturing, China has long relied on imports. In order to break through the bottleneck restricting the development of ultra-precision technology in China at this stage, under the traction and drive of the national large-scale engineering project, China has made remarkable progress in optical ultra-precision manufacturing equipment and technology. However, for the optical ultra-precision technology and equipment, there is still a certain gap between China and the international advanced level, and it is necessary to continue to strengthen the research. In addition to the high-end grinding and polishing equipment necessary for the ultra-precision machining of optical components, it is also necessary to strengthen the technical level of a series of key supporting units, such as ultra-precision grinding and polishing processing technology, high-end key functional components, intelligent monitoring technology of processing environment, efficient ultra-precision machining tools, processing and inspection path planning and compensation processing strategies, computer-aided manufacturing and testing software, etc. The research, development, and application of these technologies are related to the development of high-end manufacturing in the civilian fields and national defense fields, and are also the focus of the country. This paper mainly focuses on the ultra-precision machining of large-diameter optical aspherical components. Starting from the grinding and polishing process route, this paper introduces the long-term research progress of the Precision Engineering Laboratory of Xiamen University in the field of large-diameter optical aspherical component processing, and introduces in detail the technical and system achievements such as ultra-precision grinding and polishing equipment, robot-assisted grinding and polishing, equipment intelligent monitoring system, processing technology and control software.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(27)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint