Du J, Liu J B, Quan H Y, et al. Displacement measurement analysis in distortion detection of lithography projection objective[J]. Opto-Electron Eng, 2023, 50(2): 220226. doi: 10.12086/oee.2023.220226
Citation: Du J, Liu J B, Quan H Y, et al. Displacement measurement analysis in distortion detection of lithography projection objective[J]. Opto-Electron Eng, 2023, 50(2): 220226. doi: 10.12086/oee.2023.220226

Displacement measurement analysis in distortion detection of lithography projection objective

    Fund Project: National Key Research and Development Plan (2021YFB3200204), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2021380)
More Information
  • In the distortion detection of the lithography projection objective, the displacement measurement error is one of the important error sources. Depth analysis of the error sources and reduction of the error terms can improve the distortion detection accuracy. Combining the positioning and measurement technology of the moving stage, this paper analyzes the displacement measurement error of the image quality detection stage when the Shack-Hartmann wavefront sensor is used to detect the distortion of the projection objective. In this paper, a set of image quality detection platform is taken as an example to analyze the displacement measurement error in the distortion detection of the projection objective, and the image quality detection platform is used to measure the distortion of a projection objective. The distortion detection result is about 80 nm, in which the displacement measurement error of the image quality detection platform will bring about an uncertainty of about 22 nm to the distortion detection result.
  • 加载中
  • [1] Smith A, McArthur B, Hunter Jr R. Method and apparatus for self-referenced projection lens distortion mapping: 6573986[P]. 2003-06-03.

    Google Scholar

    [2] 李术新, 王帆. 光刻机成像质量及工件台定位精度的现场测量方法: 101261451B[P]. 2011-06-29.

    Google Scholar

    Li S X, Wang F. On-site measurement method of image quality of lithography and positioning accuracy of worktable: 101261451B[P]. 2011-06-29.

    Google Scholar

    [3] 杨志勇. 投影物镜倍率误差及畸变的检测装置及方法: 101387833A[P]. 2008-11-07.

    Google Scholar

    Yang Z Y. The detection device and method for the magnification error and distortion of the projection objective: 101387833A[P]. 2009-03-18.

    Google Scholar

    [4] Hagiwara T, Kondo N, Takane E, et al. Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method: 20020041377[P]. 2002-04-11.

    Google Scholar

    [5] van Haren R, Steinert S, Mouraille O, et al. The impact of the reticle and wafer alignment mark placement accuracy on the intra-field mask-to-mask overlay[J]. Proc SPIE, 2019, 11178: 111780R. doi: 10.1117/12.2535900

    CrossRef Google Scholar

    [6] Lazar B M. ASML alignment sequence generator[D]. Eindhoven: Eindhoven University of Technology, 2012.

    Google Scholar

    [7] 丁功明, 韩春燕, 李术新. 一种物镜畸变和场曲的测试装置及方法、设备: 110941144A[P]. 2020-03-31.

    Google Scholar

    Ding G M, Han C Y, Li S X. Device, method and apparatus for testing distortion and field curvature of objective lens: 110941144A[P]. 2020-03-31.

    Google Scholar

    [8] Mizuno Y. Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing micro device: 6975387[P]. 2005-12-13.

    Google Scholar

    [9] Ishikawa J. Exposure apparatus, exposure method, and device manufacturing method: 6914665[P]. 2005-07-05.

    Google Scholar

    [10] 舒建伟, 刘国淦. 一种检测投影物镜畸变和场曲的方法: 102540751A[P]. 2012-07-04.

    Google Scholar

    Shu J W, Liu G G. A method for detecting distortion and field curvature of projection objective lens: 102540751A[P]. 2012-07-04.

    Google Scholar

    [11] 李天鹏, 何经雷. 一种基于掩模板的投影物镜性能测试装置以及方法: 105890875B[P]. 2018-12-14.

    Google Scholar

    Li T P, He J L. A reticle-based projection objective lens performance test device and method: 105890875B[P]. 2018-12-14.

    Google Scholar

    [12] 郭庭, 张彬, 顾乃庭, 等. 偏振哈特曼波前探测技术研究[J]. 光电工程, 2021, 48(7): 210076. doi: 10.12086/oee.2021.210076

    CrossRef Google Scholar

    Guo T, Zhang B, Gu N T, et al. Research on polarization Hartmann wavefront detection technology[J]. Opto-Electron Eng, 2021, 48(7): 210076. doi: 10.12086/oee.2021.210076

    CrossRef Google Scholar

    [13] 杨旺, 曹玮, 尚红波. 掩模位置误差对光刻投影物镜畸变的影响[J]. 光学 精密工程, 2016, 24(3): 469−476. doi: 10.3788/OPE.20162403.0469

    CrossRef Google Scholar

    Yang W, Cao W, Shang H B. Effect of alignment errors of reticle on distortion in lithographic projection lens[J]. Opt Precis Eng, 2016, 24(3): 469−476. doi: 10.3788/OPE.20162403.0469

    CrossRef Google Scholar

    [14] 王建, 刘俊伯, 胡松. 基于自适应非线性粒子群算法的光刻光源优化方法[J]. 光电工程, 2021, 48(9): 210167. doi: 10.12086/oee.2021.210167

    CrossRef Google Scholar

    Wang J, Liu J B, Hu S. Source optimization based on adaptive nonlinear particle swarm method in lithography[J]. Opto-Electron Eng, 2021, 48(9): 210167. doi: 10.12086/oee.2021.210167

    CrossRef Google Scholar

    [15] 郁道银, 谈恒英. 工程光学[M]. 2版. 北京: 机械工业出版社, 2006: 120–121.

    Google Scholar

    [16] 曹译莎, 唐锋, 王向朝. 光刻投影物镜畸变检测技术[J]. 激光与光电子学进展, 2022, 59(9): 0922012. doi: 10.3788/LOP202259.0922012

    CrossRef Google Scholar

    Cao Y S, Tang F, Wang X C. Measurement techniques for distortion of lithography projection objective[J]. Laser Optoelectron Prog, 2022, 59(9): 0922012. doi: 10.3788/LOP202259.0922012

    CrossRef Google Scholar

    [17] Sudoh Y, Kanda T. New lens barrel structure utilized on the FPA-6000AS4 and its contribution to the lens performance[J]. Proc SPIE, 2003, 5040: 1657−1664. doi: 10.1117/12.485480

    CrossRef Google Scholar

    [18] 王向朝, 戴凤钊. 光刻机像质检测技术-上册[M]. 北京: 科学出版社, 2021: 95–97.

    Google Scholar

    [19] 程维明, 葛轶君. 精密定位中的激光干涉测量误差分析[J]. 上海工程技术大学学报, 2006, 20(4): 287−290. doi: 10.3969/j.issn.1009-444X.2006.04.001

    CrossRef Google Scholar

    Cheng W M, Ge Y J. Error analyses for measuring of laser interferometer in precision positioning[J]. J Shanghai Univ Eng Sci, 2006, 20(4): 287−290. doi: 10.3969/j.issn.1009-444X.2006.04.001

    CrossRef Google Scholar

    [20] 程吉水. 工件台激光干涉仪测量误差模型研究[D]. 武汉: 华中科技大学, 2008.

    Google Scholar

    Cheng J S. Study on interferometer measurement error model in wafer stage[D]. Wuhan: Huazhong University of Science and Technology, 2008.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(6)

Article Metrics

Article views(2964) PDF downloads(1359) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint