Chen Z X, Yang Q X, Liu H L. Phase transition properties of the LIPSS induced by femtosecond laser direct writing on PMN-PT crystal[J]. Opto-Electron Eng, 2023, 50(3): 220275. doi: 10.12086/oee.2023.220275
Citation: Chen Z X, Yang Q X, Liu H L. Phase transition properties of the LIPSS induced by femtosecond laser direct writing on PMN-PT crystal[J]. Opto-Electron Eng, 2023, 50(3): 220275. doi: 10.12086/oee.2023.220275

Phase transition properties of the LIPSS induced by femtosecond laser direct writing on PMN-PT crystal

    Fund Project: National Natural Science Foundation of China (NSFC) (12274236).
More Information
  • In this paper, we propose a femtosecond laser-induced surface periodic structure (LIPSS) based on relaxed ferroelectric PMN-PT crystals. By changing the applied laser parameters, the period of the LIPSS structure is varied from 750 nm to 3 μm. Finally, the phase transition properties of the LIPSS structure are investigated by increasing the temperature. Compared to the phase transition properties of the substrate, the Curie temperature of the LIPSS structure is significantly reduced, and this will provide a possible new idea for the preparation of temperature-controlled modulators based on PMN-PT crystals.
  • 加载中
  • [1] Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application[J]. Opto-Electron Adv, 2020, 3(10): 190042. doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [2] Li L Q, Kong W J, Chen F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Adv Photonics, 2022, 4(2): 024002. doi: 10.1117/1.AP.4.2.024002

    CrossRef Google Scholar

    [3] Li L Q, Li Z Q, Nie W J, et al. Femtosecond-laser-written S-curved waveguide in Nd: YAP crystal: fabrication and multi-gigahertz lasing[J]. J Light Technol, 2020, 38(24): 6845−6852. doi: 10.1109/JLT.2020.3015690

    CrossRef Google Scholar

    [4] Tan D Z, Sun X Y, Li Z L, et al. Effectively writing low propagation and bend loss waveguides in the silica glass by using a femtosecond laser[J]. Opt Lett, 2022, 47(18): 4766−4769. doi: 10.1364/OL.470670

    CrossRef Google Scholar

    [5] Yang Q X, Liu H L, He S, et al. Circular cladding waveguides in Pr: YAG fabricated by femtosecond laser inscription: Raman, luminescence properties and guiding performance[J]. Opto-Electron Adv, 2021, 4(2): 200005. doi: 10.29026/oea.2021.200005

    CrossRef Google Scholar

    [6] Xu X Y, Wang T X, Chen P C, et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 2022, 609(7927): 496−501. doi: 10.1038/s41586-022-05042-z

    CrossRef Google Scholar

    [7] Wu P F, Jiang X R, Zhang B, et al. Mode-controllable waveguide fabricated by laser-induced phase transition in KTN[J]. Opt Express, 2020, 28(17): 25633−25641. doi: 10.1364/OE.401407

    CrossRef Google Scholar

    [8] Zhang Q, Li M, Xu J, et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering[J]. Photonics Res, 2019, 7(5): 503−507. doi: 10.1364/PRJ.7.000503

    CrossRef Google Scholar

    [9] Lv H Y, Chu L R, Wang S X, et al. Layer-dependent nonlinear optical properties of two-dimensional InSe and its applications in waveguide lasers[J]. Opt Express, 2022, 30(13): 23986−23999. doi: 10.1364/OE.462811

    CrossRef Google Scholar

    [10] Xin C, Yang L, Li J W, et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery[J]. Adv Mater, 2019, 31(25): 1808226. doi: 10.1002/adma.201808226

    CrossRef Google Scholar

    [11] Chen W L, Yan Z, Tian J, et al. Flexible four-dimensional optical data storage enabled by single-pulse femtosecond laser irradiation in thermoplastic polyurethane[J]. Opt Lett, 2021, 46(13): 3211−3214. doi: 10.1364/OL.432092

    CrossRef Google Scholar

    [12] Lei Y H, Sakakura M, Wang L, et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement[J]. Optica, 2021, 8(11): 1365−1371. doi: 10.1364/OPTICA.433765

    CrossRef Google Scholar

    [13] Birnbaum M. Semiconductor surface damage produced by ruby lasers[J]. J Appl Phys, 1965, 36(11): 3688−3689. doi: 10.1063/1.1703071

    CrossRef Google Scholar

    [14] Li Y N, Wu Q, Yang M, et al. Uniform deep-subwavelength ripples produced on temperature controlled LiNbO3: Fe crystal surface via femtosecond laser ablation[J]. Appl Surf Sci, 2019, 478: 779−783. doi: 10.1016/j.apsusc.2019.02.037.

    CrossRef Google Scholar

    [15] Zhang D S, Li X Z, Fu Y, et al. Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS[J]. Opto-Electron Adv, 2022, 5(2): 210066. doi: 10.29026/oea.2022.210066

    CrossRef Google Scholar

    [16] Zhang Y C, Jiang Q L, Long M Q, et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications[J]. Opto-Electron Sci, 2022, 1(6): 220005. doi: 10.29026/oes.2022.220005

    CrossRef Google Scholar

    [17] Ren Y Y, Zhang L M, Romero C, et al. Femtosecond laser irradiation on Nd: YAG crystal: surface ablation and high-spatial-frequency nanograting[J]. Appl Surf Sci, 2018, 441: 372−380. doi: 10.1016/j.apsusc.2018.01.217

    CrossRef Google Scholar

    [18] Huang J, Jiang L, Li X W, et al. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification[J]. Nanophotonics, 2019, 8(5): 869−878. doi: 10.1515/nanoph-2019-0056

    CrossRef Google Scholar

    [19] Cho D H, Hong S H, Lee W J, et al. Colorful solar cells utilizing off-axis light diffraction via transparent nanograting structures[J]. Nano Energy, 2021, 80: 105550. doi: 10.1016/j.nanoen.2020.105550

    CrossRef Google Scholar

    [20] Fang Z, Jiang X D, Tian X, et al. Ultratransparent PMN-PT electro-optic ceramics and its application in optical communication[J]. Adv Opt Mater, 2021, 9(13): 2002139. doi: 10.1002/adom.202002139

    CrossRef Google Scholar

    [21] Deng C G, Ye L X, He C J, et al. Reporting excellent transverse piezoelectric and electro-optic effects in transparent rhombohedral PMN-PT single crystal by engineered domains[J]. Adv Mater, 2021, 33(43): 2103013. doi: 10.1002/adma.202103013

    CrossRef Google Scholar

    [22] Li Q, Liu Y B, Liu J F, et al. Enhanced piezoelectric properties and improved property uniformity in Nd-doped PMN-PT relaxor ferroelectric single crystals[J]. Adv Funct Mater, 2022, 32(25): 2201719. doi: 10.1002/adfm.202201719

    CrossRef Google Scholar

    [23] Piredda G, Stroj S, Ziss D, et al. Micro-machining of PMN-PT crystals with ultrashort laser pulses[J]. Appl Phys A, 2019, 125(3): 201. doi: 10.1007/s00339-019-2460-9

    CrossRef Google Scholar

    [24] Chen X, Liu D W, Liu S, et al. Optical induction and erasure of ferroelectric domains in tetragonal PMN-38PT crystals[J]. Adv Opt Mater, 2022, 10(4): 2102115. doi: 10.1002/adom.202102115

    CrossRef Google Scholar

    [25] Shen T L, Si J H, Chen T, et al. Fabrication of microgrooves in PMN-PT using femtosecond laser irradiation and acid etching[J]. Appl Opt, 2022, 61(21): 6234−6240. doi: 10.1364/AO.459556

    CrossRef Google Scholar

    [26] Sipe J E, Young J F, Preston J S, et al. Laser-induced periodic surface structure. I. Theory[J]. Phys Rev B, 1983, 27(2): 1141−1154. doi: 10.1103/PhysRevB.27.1141

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(5203) PDF downloads(782) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint